mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 08:17:45 +01:00
Merge branch 'master-github' into release/1.7
This commit is contained in:
@@ -1,15 +1,19 @@
|
||||
import os
|
||||
|
||||
from modelscope.metainfo import Trainers
|
||||
from modelscope.msdatasets.audio.asr_dataset import ASRDataset
|
||||
from modelscope.msdatasets.dataset_cls.custom_datasets import ASRDataset
|
||||
from modelscope.trainers import build_trainer
|
||||
from modelscope.utils.constant import DownloadMode
|
||||
|
||||
|
||||
def modelscope_finetune(params):
|
||||
if not os.path.exists(params.output_dir):
|
||||
os.makedirs(params.output_dir, exist_ok=True)
|
||||
# dataset split ["train", "validation"]
|
||||
ds_dict = ASRDataset.load(params.data_path, namespace='speech_asr')
|
||||
ds_dict = ASRDataset.load(
|
||||
params.data_path,
|
||||
namespace='speech_asr',
|
||||
download_mode=params.download_mode)
|
||||
kwargs = dict(
|
||||
model=params.model,
|
||||
data_dir=ds_dict,
|
||||
@@ -36,5 +40,6 @@ if __name__ == '__main__':
|
||||
# 如果dataset_type="large",batch_bins单位为毫秒,
|
||||
params.max_epoch = 50 # 最大训练轮数
|
||||
params.lr = 0.00005 # 设置学习率
|
||||
params.download_mode = DownloadMode.FORCE_REDOWNLOAD # 重新下载数据,否则设置为默认值DownloadMode.REUSE_DATASET_IF_EXISTS
|
||||
|
||||
modelscope_finetune(params)
|
||||
|
||||
@@ -8,7 +8,6 @@ from text_generation_metric import TextGenerationMetric
|
||||
from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
from modelscope import snapshot_download
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models import Model
|
||||
from modelscope.msdatasets import MsDataset
|
||||
from modelscope.swift import Swift
|
||||
@@ -143,6 +142,14 @@ class Chatglm6bArguments(TrainingArgs):
|
||||
metadata={'help': 'The lora alpha'},
|
||||
)
|
||||
|
||||
use_amp: int = field(
|
||||
default=0,
|
||||
metadata={
|
||||
'help':
|
||||
'Whether to use amp(automatic mixed precision) to train the model.'
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
args = Chatglm6bArguments(eval_metrics='chatglm').parse_cli()
|
||||
print(args)
|
||||
@@ -160,6 +167,13 @@ def cfg_modify_fn(cfg):
|
||||
cfg.merge_from_dict(config)
|
||||
else:
|
||||
cfg = config
|
||||
if args.use_amp:
|
||||
if not getattr(cfg.train, 'hooks', None):
|
||||
cfg.train.hooks = []
|
||||
cfg.train.hooks.append({
|
||||
'type': 'TorchAMPOptimizerHook',
|
||||
# Optional loss_scale parameter here.
|
||||
})
|
||||
if cfg.train.lr_scheduler.type == 'LinearLR':
|
||||
cfg.train.lr_scheduler['total_iters'] = \
|
||||
int(len(train_dataset) / cfg.train.dataloader.batch_size_per_gpu) * cfg.train.max_epochs
|
||||
@@ -187,15 +201,13 @@ model_config['model'] = ConfigDict({
|
||||
'type': config['model']['type'],
|
||||
})
|
||||
|
||||
if config['model']['type'] == 'chatglm6b':
|
||||
model_config['model']['pre_seq_len'] = args.pre_seq_len
|
||||
model_config['model']['prefix_projection'] = args.prefix_projection
|
||||
|
||||
model_config['model']['pre_seq_len'] = args.pre_seq_len
|
||||
model_config['model']['prefix_projection'] = args.prefix_projection
|
||||
tokenizer = ChatGLMTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
||||
|
||||
device_map_kwargs = {}
|
||||
device_kwargs = {}
|
||||
if args.use_lora != 0:
|
||||
if args.use_lora != 0 and torch.cuda.device_count() > 1:
|
||||
device_map_kwargs['device_map'] = 'auto'
|
||||
# No placement for model, leave the model to `device_map`
|
||||
device_kwargs['device'] = 'cpu'
|
||||
@@ -231,7 +243,10 @@ if args.use_lora != 0:
|
||||
rank=args.lora_rank,
|
||||
lora_alpha=args.lora_alpha,
|
||||
lora_dropout=args.lora_dropout)
|
||||
model = model.bfloat16()
|
||||
if args.use_amp:
|
||||
model = model.float()
|
||||
else:
|
||||
model = model.bfloat16()
|
||||
Swift.prepare_model(model, lora_config)
|
||||
|
||||
prefix = args.source_prefix if args.source_prefix is not None else ''
|
||||
@@ -334,13 +349,10 @@ def preprocess_function_train(examples):
|
||||
|
||||
pad_len = max_seq_length - len(input_ids)
|
||||
input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
|
||||
if config['model']['type'] == 'chatglm6b':
|
||||
labels = labels + [tokenizer.pad_token_id] * pad_len
|
||||
if args.ignore_pad_token_for_loss:
|
||||
labels = [(lb if lb != tokenizer.pad_token_id else -100)
|
||||
for lb in labels]
|
||||
else:
|
||||
labels = labels + [-100] * pad_len
|
||||
labels = labels + [tokenizer.pad_token_id] * pad_len
|
||||
if args.ignore_pad_token_for_loss:
|
||||
labels = [(lb if lb != tokenizer.pad_token_id else -100)
|
||||
for lb in labels]
|
||||
|
||||
model_inputs['input_ids'].append(input_ids)
|
||||
model_inputs['labels'].append(labels)
|
||||
@@ -372,8 +384,7 @@ data_collator = DataCollatorForSeq2Seq(
|
||||
padding=False)
|
||||
|
||||
model.gradient_checkpointing_enable()
|
||||
if config['model']['type'] == 'chatglm6b':
|
||||
model.enable_input_require_grads()
|
||||
model.enable_input_require_grads()
|
||||
|
||||
# import torch
|
||||
# model = torch.nn.DataParallel(model).cuda()
|
||||
|
||||
@@ -0,0 +1,26 @@
|
||||
PRE_SEQ_LEN=128
|
||||
LR=2e-2
|
||||
|
||||
PYTHONPATH=. python examples/pytorch/chatglm6b/finetune.py \
|
||||
--train_dataset_name AdvertiseGen/train.json \
|
||||
--val_dataset_name AdvertiseGen/dev.json \
|
||||
--prompt_column content \
|
||||
--response_column summary \
|
||||
--model "ZhipuAI/chatglm2-6b" \
|
||||
--max_source_length 64 \
|
||||
--max_target_length 128 \
|
||||
--per_device_train_batch_size 16 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--train.optimizer.options.cumulative_iters 1 \
|
||||
--max_epochs 1 \
|
||||
--save_strategy 'by_step' \
|
||||
--save_interval 1000 \
|
||||
--lr $LR \
|
||||
--eval_strategy "by_step" \
|
||||
--eval_interval 1000 \
|
||||
--lr_strategy 'by_step' \
|
||||
--task 'chat' \
|
||||
--model.type 'chatglm2-6b' \
|
||||
--pre_seq_len $PRE_SEQ_LEN \
|
||||
--quantization_bit 4 \
|
||||
--work_dir ptuning_adv_target \
|
||||
466
examples/pytorch/llm/_common.py
Normal file
466
examples/pytorch/llm/_common.py
Normal file
@@ -0,0 +1,466 @@
|
||||
import ast
|
||||
import datetime as dt
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import sys
|
||||
from dataclasses import dataclass, field
|
||||
from functools import partial
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import json
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
#
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from datasets import Dataset as HfDataset
|
||||
from datasets import concatenate_datasets
|
||||
from matplotlib.axes import Axes
|
||||
from matplotlib.figure import Figure
|
||||
from numpy import ndarray
|
||||
from tensorboard.backend.event_processing.event_accumulator import \
|
||||
EventAccumulator
|
||||
from torch import Tensor
|
||||
from torch import device as Device
|
||||
from torch import dtype as Dtype
|
||||
from torch.nn import Module
|
||||
from torch.nn.parameter import Parameter
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from torch.optim import Optimizer
|
||||
from torch.optim import lr_scheduler as lrs
|
||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
||||
from torch.utils.data import Dataset
|
||||
#
|
||||
from torchmetrics import Accuracy, MeanMetric
|
||||
#
|
||||
from tqdm import tqdm
|
||||
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
|
||||
GenerationConfig, HfArgumentParser, TextStreamer)
|
||||
|
||||
#
|
||||
from modelscope import (Model, MsDataset, get_logger, read_config,
|
||||
snapshot_download)
|
||||
from modelscope.metrics.base import Metric
|
||||
from modelscope.metrics.builder import METRICS
|
||||
from modelscope.models.nlp.chatglm2 import ChatGLM2Tokenizer
|
||||
from modelscope.msdatasets.dataset_cls.custom_datasets import \
|
||||
TorchCustomDataset
|
||||
from modelscope.swift import LoRAConfig, Swift
|
||||
from modelscope.trainers import EpochBasedTrainer
|
||||
from modelscope.utils.config import Config, ConfigDict
|
||||
from modelscope.utils.registry import default_group
|
||||
|
||||
#
|
||||
COLOR, COLOR_S = '#FFE2D9', '#FF7043'
|
||||
|
||||
PROMPT = """Human: {instruction}
|
||||
AI: """
|
||||
|
||||
logger = get_logger()
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
||||
#
|
||||
|
||||
|
||||
def _get_version(work_dir: str) -> int:
|
||||
if os.path.isdir(work_dir):
|
||||
fnames = os.listdir(work_dir)
|
||||
else:
|
||||
fnames = []
|
||||
v_list = [-1]
|
||||
for fname in fnames:
|
||||
m = re.match(r'v(\d+)', fname)
|
||||
if m is None:
|
||||
continue
|
||||
v = m.group(1)
|
||||
v_list.append(int(v))
|
||||
return max(v_list) + 1
|
||||
|
||||
|
||||
def get_work_dir(work_dir: str) -> str:
|
||||
"""add version"""
|
||||
work_dir = os.path.abspath(work_dir)
|
||||
version = _get_version(work_dir)
|
||||
time = dt.datetime.now().strftime('%Y%m%d-%H%M%S')
|
||||
#
|
||||
work_dir = os.path.join(work_dir, f'v{version}-{time}')
|
||||
logger.info(f'work_dir: {work_dir}')
|
||||
return work_dir
|
||||
|
||||
|
||||
def _format_device(device: Union[List[int], str]) -> Tuple[List[int], str]:
|
||||
if isinstance(device, list):
|
||||
device_ids = device
|
||||
device_str = ','.join([str(d) for d in device])
|
||||
else:
|
||||
device_ids = [int(d) for d in device.split(',') if d != '-1']
|
||||
device_str = device
|
||||
device_str = device_str.replace(' ', '')
|
||||
return device_ids, device_str
|
||||
|
||||
|
||||
def select_device(device: Union[List[int], str]) -> Device:
|
||||
"""Call this function before cuda is initialized.
|
||||
device: e.g. []: 'cpu', [0], [0, 1, 2]
|
||||
e.g. '-1': 'cpu', '0', '0,1,2'
|
||||
"""
|
||||
if torch.cuda.is_initialized():
|
||||
logger.warning('CUDA has been initialized! Device selection fails!')
|
||||
return torch.device('cuda:0')
|
||||
#
|
||||
device_ids, device_str = _format_device(device)
|
||||
#
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = device_str
|
||||
log_s = 'Using device: '
|
||||
if len(device_ids) == 0:
|
||||
master_device: str = 'cpu'
|
||||
log_s += 'cpu'
|
||||
else:
|
||||
assert torch.cuda.is_available(
|
||||
) and torch.cuda.device_count() >= len(device_ids)
|
||||
master_device = 'cuda:0'
|
||||
log_s += f'cuda:{device_str}'
|
||||
logger.info(log_s)
|
||||
return torch.device(master_device)
|
||||
|
||||
|
||||
def seed_everything(seed: Optional[int] = None, gpu_dtm: bool = False) -> int:
|
||||
if seed is None:
|
||||
seed_max = np.iinfo(np.int32).max
|
||||
seed = random.randint(0, seed_max)
|
||||
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
logger.info(f'Global seed set to {seed}')
|
||||
if gpu_dtm:
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
logger.info(f'Setting deterministic: {True}, benchmark: {False}')
|
||||
return seed
|
||||
|
||||
|
||||
def get_T_max(dataset_len: int, batch_size: int, max_epochs: int,
|
||||
drop_last: bool) -> int:
|
||||
"""Calculate T_max in CosineAnnealingLR"""
|
||||
if drop_last:
|
||||
T_max = dataset_len // batch_size
|
||||
else:
|
||||
T_max = math.ceil(dataset_len / batch_size)
|
||||
T_max *= max_epochs
|
||||
return T_max
|
||||
|
||||
|
||||
def tokenize_function(example: Dict[str, Optional[str]],
|
||||
tokenizer,
|
||||
max_length: Optional[int] = 2048) -> Dict[str, Any]:
|
||||
"""Only applicable to baichuan and chatglm2. Other models need to be tested"""
|
||||
instruction: str = example['instruction']
|
||||
input_ = example['input']
|
||||
if input_ is not None and input_ != '':
|
||||
# instruction = instruction + '\n'
|
||||
if input_.startswith('输入:'):
|
||||
instruction = instruction + input_[3:]
|
||||
else:
|
||||
instruction = instruction + input_
|
||||
output = example['output']
|
||||
src_text = PROMPT.format(instruction=instruction)
|
||||
src_input_ids: List[int] = tokenizer(
|
||||
src_text, return_attention_mask=False,
|
||||
add_special_tokens=True)['input_ids']
|
||||
#
|
||||
tgt_input_ids = []
|
||||
if output is not None:
|
||||
tgt_input_ids += tokenizer(
|
||||
output, return_attention_mask=False,
|
||||
add_special_tokens=False)['input_ids']
|
||||
tgt_input_ids += [tokenizer.eos_token_id]
|
||||
labels = [-100] * len(src_input_ids) + tgt_input_ids
|
||||
else:
|
||||
labels = None
|
||||
input_ids = src_input_ids + tgt_input_ids
|
||||
#
|
||||
if max_length is not None:
|
||||
input_ids = input_ids[-max_length:]
|
||||
if labels is not None:
|
||||
labels = labels[-max_length:]
|
||||
#
|
||||
return {'input_ids': input_ids, 'labels': labels}
|
||||
|
||||
|
||||
def stat_dataset(dataset: HfDataset) -> None:
|
||||
"""Statistical analysis was performed on the data set"""
|
||||
_token_len = []
|
||||
for d in dataset:
|
||||
_token_len.append(len(d['input_ids']))
|
||||
_token_len = np.array(_token_len)
|
||||
mean = _token_len.mean().item()
|
||||
std = _token_len.std().item()
|
||||
min_ = _token_len.min().item()
|
||||
max_ = _token_len.max().item()
|
||||
logger.info(
|
||||
f'Dataset Token Length: {mean:.6f}±{std:.6f}, min={min_:.6f}, max={max_:.6f}, size={_token_len.shape[0]}'
|
||||
)
|
||||
|
||||
|
||||
def print_example(example: Dict[str, Any], tokenizer) -> None:
|
||||
input_ids, labels = example['input_ids'], example['labels']
|
||||
print(f'[INPUT_IDS] {input_ids}')
|
||||
print(f'[INPUT] {tokenizer.decode(input_ids)}')
|
||||
print()
|
||||
print(f'[LABLES_IDS] {labels}')
|
||||
print(
|
||||
f'[LABLES] {tokenizer.decode([lb if lb != -100 else 0 for lb in labels])}'
|
||||
)
|
||||
|
||||
|
||||
def data_collate_fn(batch: List[Dict[str, Any]], tokenizer) -> Dict[str, Any]:
|
||||
input_ids = [torch.tensor(b['input_ids']) for b in batch]
|
||||
labels = [torch.tensor(b['labels']) for b in batch]
|
||||
attention_mask = [
|
||||
torch.ones(len(input_ids[i]), dtype=torch.int64)
|
||||
for i in range(len(input_ids))
|
||||
]
|
||||
#
|
||||
input_ids = pad_sequence(
|
||||
input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
|
||||
attention_mask = pad_sequence(
|
||||
attention_mask, batch_first=True, padding_value=0)
|
||||
labels = pad_sequence(labels, batch_first=True, padding_value=-100)
|
||||
return {
|
||||
'input_ids': input_ids,
|
||||
'attention_mask': attention_mask,
|
||||
'labels': labels
|
||||
}
|
||||
|
||||
|
||||
def print_model_info(model: Module, name: Optional[str] = None) -> None:
|
||||
if name is None:
|
||||
name = model.__class__.__name__
|
||||
#
|
||||
n_params = sum(p.numel() for p in model.parameters())
|
||||
n_grads = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
n_buffers = sum(p.numel() for p in model.buffers())
|
||||
#
|
||||
n_params /= 1e6
|
||||
n_grads /= 1e6
|
||||
n_buffers /= 1e6
|
||||
s = [
|
||||
f'{name}: ',
|
||||
f'{n_params:.4f}M Params ({n_grads:.4f}M Trainable), ',
|
||||
f'{n_buffers:.4f}M Buffers',
|
||||
]
|
||||
s += '.'
|
||||
logger.info(''.join(s))
|
||||
|
||||
|
||||
def show_freeze_layers(model: Module, max_lines: int = 20) -> None:
|
||||
named_p = list(model.named_parameters())
|
||||
for i, (n, p) in enumerate(named_p):
|
||||
if i >= max_lines:
|
||||
logger.info('...')
|
||||
break
|
||||
logger.info(f'{n}: requires_grad={p.requires_grad}')
|
||||
|
||||
|
||||
@METRICS.register_module(group_key=default_group, module_name='my_metric')
|
||||
class MyMetric(Metric):
|
||||
|
||||
def __init__(self, vocab_size: int):
|
||||
self.acc = Accuracy('multiclass', num_classes=vocab_size)
|
||||
self.loss = MeanMetric()
|
||||
|
||||
def add(self, outputs: Dict[str, Any], inputs: Dict[str, Any]) -> None:
|
||||
loss: Tensor = outputs.loss
|
||||
self.loss.update(loss)
|
||||
#
|
||||
labels: Tensor = inputs['labels']
|
||||
labels = labels[:, 1:]
|
||||
labels_mask = labels != -100
|
||||
logits: Tensor = outputs.logits[:, :-1]
|
||||
logits = logits[labels_mask].contiguous().view(-1, logits.shape[-1])
|
||||
pred = logits.argmax(dim=-1)
|
||||
labels = labels[labels_mask].to(logits.device)
|
||||
self.acc.update(pred, labels)
|
||||
|
||||
def evaluate(self):
|
||||
return {
|
||||
'acc': self.acc.compute().item(),
|
||||
'loss': self.loss.compute().item()
|
||||
}
|
||||
|
||||
def merge(self, other: 'MyMetric') -> None:
|
||||
"""This script does not support ddp. TODO"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def _add_special_token(tokenizer):
|
||||
if tokenizer.eos_token_id is None:
|
||||
tokenizer.eos_token_id = 2
|
||||
if tokenizer.bos_token_id is None:
|
||||
tokenizer.bos_token_id = 1
|
||||
if tokenizer.pad_token_id is None:
|
||||
tokenizer.pad_token_id = 0
|
||||
logger.info(f'bos_token_id: {tokenizer.bos_token_id}, '
|
||||
f'eos_token_id: {tokenizer.eos_token_id}, '
|
||||
f'pad_token_id: {tokenizer.pad_token_id}')
|
||||
|
||||
|
||||
def get_baichuan_model_tokenizer(model_dir: str,
|
||||
load_model: bool = True,
|
||||
add_special_token: bool = True):
|
||||
sys.path.insert(0, model_dir)
|
||||
model_config = AutoConfig.from_pretrained(
|
||||
model_dir, trust_remote_code=True)
|
||||
model_config.torch_dtype = torch.float16
|
||||
logger.info(f'model_config: {model_config}')
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_dir, trust_remote_code=True)
|
||||
model = None
|
||||
if load_model:
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_dir,
|
||||
config=model_config,
|
||||
device_map='auto',
|
||||
torch_dtype=torch.float16,
|
||||
trust_remote_code=True)
|
||||
#
|
||||
if add_special_token:
|
||||
_add_special_token(tokenizer)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def get_chatglm2_model_tokenizer(model_dir: str,
|
||||
load_model: bool = True,
|
||||
add_special_token: bool = True):
|
||||
config = read_config(model_dir)
|
||||
config['model'] = ConfigDict({'type': 'chatglm2-6b'})
|
||||
tokenizer = ChatGLM2Tokenizer.from_pretrained(model_dir)
|
||||
model = None
|
||||
if load_model:
|
||||
model = Model.from_pretrained(
|
||||
model_dir,
|
||||
cfg_dict=config,
|
||||
device_map='auto',
|
||||
torch_dtype=torch.float16)
|
||||
if add_special_token:
|
||||
_add_special_token(tokenizer)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def get_llama2_model_tokenizer(model_dir: str,
|
||||
load_model: bool = True,
|
||||
add_special_token: bool = True):
|
||||
config = AutoConfig.from_pretrained(model_dir)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
||||
model = None
|
||||
if load_model:
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_dir,
|
||||
config=config,
|
||||
device_map='auto',
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
if add_special_token:
|
||||
_add_special_token(tokenizer)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def get_alpaca_en_zh_dataset(
|
||||
tokenize_function,
|
||||
only_val: bool = False,
|
||||
test_split_p: float = 0.01,
|
||||
split_seed: int = 42,
|
||||
data_sample: Optional[int] = None) -> Tuple[HfDataset, HfDataset]:
|
||||
"""
|
||||
split: Literal['train', 'validation', None]
|
||||
"""
|
||||
|
||||
dataset_en: HfDataset = MsDataset.load(
|
||||
'AI-ModelScope/alpaca-gpt4-data-en', split='train').to_hf_dataset()
|
||||
dataset_zh: HfDataset = MsDataset.load(
|
||||
'AI-ModelScope/alpaca-gpt4-data-zh', split='train').to_hf_dataset()
|
||||
dataset_en = dataset_en.remove_columns(['text'])
|
||||
dataset: HfDataset = concatenate_datasets([dataset_zh, dataset_en])
|
||||
#
|
||||
if data_sample is not None:
|
||||
dataset = dataset.select(range(data_sample))
|
||||
dataset = dataset.train_test_split(test_split_p, seed=split_seed)
|
||||
if only_val:
|
||||
dataset = dataset['test']
|
||||
if tokenize_function is not None:
|
||||
dataset = dataset.map(tokenize_function)
|
||||
dataset = dataset.remove_columns(['instruction', 'input', 'output'])
|
||||
#
|
||||
if only_val:
|
||||
return None, dataset
|
||||
else:
|
||||
return dataset['train'], dataset['test']
|
||||
|
||||
|
||||
Item = Dict[str, float]
|
||||
|
||||
|
||||
def read_tensorboard_file(fpath: str) -> Dict[str, List[Item]]:
|
||||
if not os.path.isfile(fpath):
|
||||
raise FileNotFoundError(f'fpath: {fpath}')
|
||||
ea = EventAccumulator(fpath)
|
||||
ea.Reload()
|
||||
res = {}
|
||||
tags = ea.Tags()['scalars']
|
||||
for tag in tags:
|
||||
values = ea.Scalars(tag)
|
||||
r = []
|
||||
for v in values:
|
||||
r.append({'step': v.step, 'value': v.value})
|
||||
res[tag] = r
|
||||
return res
|
||||
|
||||
|
||||
def tensorboard_smoothing(values: List[float],
|
||||
smooth: float = 0.9) -> List[float]:
|
||||
norm_factor = 1
|
||||
x = 0
|
||||
res = []
|
||||
for i in range(len(values)):
|
||||
x = x * smooth + values[i] # Exponential decay
|
||||
res.append(x / norm_factor)
|
||||
#
|
||||
norm_factor *= smooth
|
||||
norm_factor += 1
|
||||
return res
|
||||
|
||||
|
||||
def plot_image(tb_dir: str,
|
||||
smooth_key: List[str],
|
||||
smooth_val: float = 0.9,
|
||||
figsize: Tuple[int, int] = (8, 5),
|
||||
dpi: int = 100) -> None:
|
||||
image_dir = os.path.join(os.path.dirname(tb_dir), 'images')
|
||||
os.makedirs(image_dir, exist_ok=True)
|
||||
#
|
||||
fname = os.listdir(tb_dir)[0]
|
||||
tb_path = os.path.join(tb_dir, fname)
|
||||
data = read_tensorboard_file(tb_path)
|
||||
#
|
||||
for k in data.keys():
|
||||
_data = data[k]
|
||||
steps = [d['step'] for d in _data]
|
||||
values = [d['value'] for d in _data]
|
||||
if len(values) == 0:
|
||||
continue
|
||||
_, ax = plt.subplots(1, 1, squeeze=True, figsize=figsize, dpi=dpi)
|
||||
ax.set_title(k)
|
||||
if len(values) == 1:
|
||||
ax.scatter(steps, values, color=COLOR_S)
|
||||
elif k in smooth_key:
|
||||
ax.plot(steps, values, color=COLOR)
|
||||
values_s = tensorboard_smoothing(values, smooth_val)
|
||||
ax.plot(steps, values_s, color=COLOR_S)
|
||||
else:
|
||||
ax.plot(steps, values, color=COLOR_S)
|
||||
fpath = os.path.join(image_dir, k.replace('/', '_'))
|
||||
plt.savefig(fpath, dpi=dpi, bbox_inches='tight')
|
||||
122
examples/pytorch/llm/llm_infer.py
Normal file
122
examples/pytorch/llm/llm_infer.py
Normal file
@@ -0,0 +1,122 @@
|
||||
# ### Setting up experimental environment.
|
||||
from _common import *
|
||||
|
||||
|
||||
@dataclass
|
||||
class Arguments:
|
||||
device: str = '0' # e.g. '-1'; '0'; '0,1'
|
||||
model_type: str = field(
|
||||
default='baichuan-7b',
|
||||
metadata={
|
||||
'choices':
|
||||
['baichuan-7b', 'baichuan-13b', 'chatglm2', 'llama2-7b']
|
||||
})
|
||||
ckpt_fpath: str = '' # e.g. '/path/to/your/iter_xxx.pth'
|
||||
eval_human: bool = False # False: eval test_dataset
|
||||
data_sample: Optional[int] = None
|
||||
#
|
||||
lora_target_modules: Optional[List[str]] = None
|
||||
lora_rank: int = 8
|
||||
lora_alpha: int = 32
|
||||
lora_dropout_p: float = 0.1
|
||||
#
|
||||
max_new_tokens: int = 512
|
||||
temperature: float = 0.9
|
||||
top_k: int = 50
|
||||
top_p: float = 0.9
|
||||
|
||||
def __post_init__(self):
|
||||
if self.lora_target_modules is None:
|
||||
if self.model_type in {'baichuan-7b', 'baichuan-13b'}:
|
||||
self.lora_target_modules = ['W_pack']
|
||||
elif self.model_type == 'chatglm2':
|
||||
self.lora_target_modules = ['query_key_value']
|
||||
elif self.model_type == 'llama2-7b':
|
||||
self.lora_target_modules = ['q_proj', 'k_proj', 'v_proj']
|
||||
else:
|
||||
raise ValueError(f'model_type: {self.model_type}')
|
||||
#
|
||||
if not os.path.isfile(self.ckpt_fpath):
|
||||
raise ValueError('Please enter a valid fpath')
|
||||
|
||||
|
||||
def parse_args() -> Arguments:
|
||||
args, = HfArgumentParser([Arguments]).parse_args_into_dataclasses()
|
||||
return args
|
||||
|
||||
|
||||
args = parse_args()
|
||||
logger.info(args)
|
||||
select_device(args.device)
|
||||
|
||||
# ### Loading Model and Tokenizer
|
||||
if args.model_type == 'baichuan-7b':
|
||||
model_dir = snapshot_download('baichuan-inc/baichuan-7B', 'v1.0.5')
|
||||
model, tokenizer = get_baichuan_model_tokenizer(model_dir)
|
||||
elif args.model_type == 'baichuan-13b':
|
||||
model_dir = snapshot_download('baichuan-inc/Baichuan-13B-Base', 'v1.0.2')
|
||||
model, tokenizer = get_baichuan_model_tokenizer(model_dir)
|
||||
elif args.model_type == 'chatglm2':
|
||||
model_dir = snapshot_download('ZhipuAI/chatglm2-6b', 'v1.0.6')
|
||||
model, tokenizer = get_chatglm2_model_tokenizer(model_dir)
|
||||
elif args.model_type == 'llama2-7b':
|
||||
model_dir = snapshot_download('modelscope/Llama-2-7b-ms', 'v1.0.0')
|
||||
model, tokenizer = get_llama2_model_tokenizer(model_dir)
|
||||
else:
|
||||
raise ValueError(f'model_type: {args.model_type}')
|
||||
|
||||
# ### Preparing lora
|
||||
lora_config = LoRAConfig(
|
||||
replace_modules=args.lora_target_modules,
|
||||
rank=args.lora_rank,
|
||||
lora_alpha=args.lora_alpha,
|
||||
lora_dropout=args.lora_dropout_p,
|
||||
pretrained_weights=args.ckpt_fpath)
|
||||
logger.info(f'lora_config: {lora_config}')
|
||||
Swift.prepare_model(model, lora_config)
|
||||
model.bfloat16() # Consistent with training
|
||||
|
||||
# ### Inference
|
||||
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||||
generation_config = GenerationConfig(
|
||||
max_new_tokens=args.max_new_tokens,
|
||||
temperature=args.temperature,
|
||||
top_k=args.top_k,
|
||||
top_p=args.top_p,
|
||||
do_sample=True,
|
||||
pad_token_id=tokenizer.eos_token_id)
|
||||
logger.info(generation_config)
|
||||
|
||||
|
||||
def inference(data: Dict[str, Optional[str]]) -> str:
|
||||
input_ids = tokenize_function(data, tokenizer)['input_ids']
|
||||
print(f'[TEST]{tokenizer.decode(input_ids)}', end='')
|
||||
input_ids = torch.tensor(input_ids)[None].cuda()
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
generate_ids = model.generate(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
streamer=streamer,
|
||||
generation_config=generation_config)
|
||||
output_text = tokenizer.decode(generate_ids[0])
|
||||
return output_text
|
||||
|
||||
|
||||
if args.eval_human:
|
||||
while True:
|
||||
instruction = input('<<< ')
|
||||
data = {'instruction': instruction, 'input': None, 'output': None}
|
||||
inference(data)
|
||||
print('-' * 80)
|
||||
else:
|
||||
_, test_dataset = get_alpaca_en_zh_dataset(
|
||||
None, True, split_seed=42, data_sample=None)
|
||||
mini_test_dataset = test_dataset.select(range(10))
|
||||
for data in mini_test_dataset:
|
||||
output = data['output']
|
||||
data['output'] = None
|
||||
inference(data)
|
||||
print()
|
||||
print(f'[LABELS]{output}')
|
||||
print('-' * 80)
|
||||
# input('next[ENTER]')
|
||||
237
examples/pytorch/llm/llm_sft.py
Normal file
237
examples/pytorch/llm/llm_sft.py
Normal file
@@ -0,0 +1,237 @@
|
||||
# ### Setting up experimental environment.
|
||||
"""
|
||||
pip install modelscope
|
||||
pip install numpy pandas matplotlib scikit-learn
|
||||
pip install transformers datasets
|
||||
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
|
||||
pip install tqdm tensorboard torchmetrics sentencepiece charset_normalizer
|
||||
pip install accelerate transformers_stream_generator
|
||||
|
||||
pip install numpy -U # Resolve torchmetrics dependencies and update numpy
|
||||
"""
|
||||
|
||||
from _common import *
|
||||
|
||||
|
||||
@dataclass
|
||||
class Arguments:
|
||||
device: str = '0,1' # e.g. '-1'; '0'; '0,1'
|
||||
seed: int = 42
|
||||
model_type: str = field(
|
||||
default='baichuan-7b',
|
||||
metadata={
|
||||
'choices':
|
||||
['baichuan-7b', 'baichuan-13b', 'chatglm2', 'llama2-7b']
|
||||
})
|
||||
data_sample: Optional[int] = None
|
||||
#
|
||||
lora_target_modules: Optional[List[str]] = None
|
||||
lora_rank: int = 8
|
||||
lora_alpha: int = 32
|
||||
lora_dropout_p: float = 0.1
|
||||
#
|
||||
gradient_checkpoint: bool = True
|
||||
batch_size: int = 1
|
||||
max_epochs: int = 1
|
||||
eval_interval: int = 500
|
||||
learning_rate: float = 1e-4
|
||||
weight_decay: float = 0.01
|
||||
n_accumulate_grad: int = 16
|
||||
grad_clip_norm: float = 1.
|
||||
warmup_iters: int = 200
|
||||
last_max_checkpoint_num: int = 1
|
||||
best_max_checkpoint_num: int = 1
|
||||
#
|
||||
logging_interval: int = 5
|
||||
tb_interval: int = 5
|
||||
|
||||
def __post_init__(self):
|
||||
if self.lora_target_modules is None:
|
||||
if self.model_type in {'baichuan-7b', 'baichuan-13b'}:
|
||||
self.lora_target_modules = ['W_pack']
|
||||
elif self.model_type == 'chatglm2':
|
||||
self.lora_target_modules = ['query_key_value']
|
||||
elif self.model_type == 'llama2-7b':
|
||||
self.lora_target_modules = ['q_proj', 'k_proj', 'v_proj']
|
||||
else:
|
||||
raise ValueError(f'model_type: {self.model_type}')
|
||||
|
||||
|
||||
def parse_args() -> Arguments:
|
||||
args, = HfArgumentParser([Arguments]).parse_args_into_dataclasses()
|
||||
return args
|
||||
|
||||
|
||||
args = parse_args()
|
||||
logger.info(args)
|
||||
select_device(args.device)
|
||||
seed_everything(args.seed)
|
||||
|
||||
# ### Loading Model and Tokenizer
|
||||
if args.model_type == 'baichuan-7b':
|
||||
model_dir = snapshot_download('baichuan-inc/baichuan-7B', 'v1.0.5')
|
||||
model, tokenizer = get_baichuan_model_tokenizer(model_dir)
|
||||
elif args.model_type == 'baichuan-13b':
|
||||
model_dir = snapshot_download('baichuan-inc/Baichuan-13B-Base', 'v1.0.2')
|
||||
model, tokenizer = get_baichuan_model_tokenizer(model_dir)
|
||||
elif args.model_type == 'chatglm2':
|
||||
model_dir = snapshot_download('ZhipuAI/chatglm2-6b', 'v1.0.6')
|
||||
model, tokenizer = get_chatglm2_model_tokenizer(model_dir)
|
||||
elif args.model_type == 'llama2-7b':
|
||||
model_dir = snapshot_download('modelscope/Llama-2-7b-ms', 'v1.0.0')
|
||||
model, tokenizer = get_llama2_model_tokenizer(model_dir)
|
||||
else:
|
||||
raise ValueError(f'model_type: {args.model_type}')
|
||||
|
||||
#
|
||||
if args.gradient_checkpoint:
|
||||
# baichuan13B does not implement the `get_input_embeddings` function
|
||||
if args.model_type == 'baichuan-13b':
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embed_tokens
|
||||
|
||||
model.__class__.get_input_embeddings = get_input_embeddings.__get__(
|
||||
model)
|
||||
model.gradient_checkpointing_enable()
|
||||
model.enable_input_require_grads()
|
||||
|
||||
# ### Preparing lora
|
||||
lora_config = LoRAConfig(
|
||||
replace_modules=args.lora_target_modules,
|
||||
rank=args.lora_rank,
|
||||
lora_alpha=args.lora_alpha,
|
||||
lora_dropout=args.lora_dropout_p)
|
||||
logger.info(f'lora_config: {lora_config}')
|
||||
Swift.prepare_model(model, lora_config)
|
||||
#
|
||||
show_freeze_layers(model)
|
||||
print_model_info(model)
|
||||
_p: Parameter = list(model.parameters())[100]
|
||||
logger.info(f'device: {_p.device}, dtype: {_p.dtype}')
|
||||
model.bfloat16()
|
||||
|
||||
# ### Loading Dataset
|
||||
tokenize_function = partial(tokenize_function, tokenizer=tokenizer)
|
||||
train_dataset, val_dataset = get_alpaca_en_zh_dataset(
|
||||
tokenize_function, split_seed=42, data_sample=args.data_sample)
|
||||
# Data analysis
|
||||
stat_dataset(train_dataset)
|
||||
stat_dataset(val_dataset)
|
||||
data_collate_fn = partial(data_collate_fn, tokenizer=tokenizer)
|
||||
print_example(train_dataset[0], tokenizer)
|
||||
|
||||
# ### Setting Config
|
||||
cfg_file = os.path.join(model_dir, 'configuration.json')
|
||||
#
|
||||
T_max = get_T_max(len(train_dataset), args.batch_size, args.max_epochs, True)
|
||||
work_dir = get_work_dir(f'runs/{args.model_type}')
|
||||
config = Config({
|
||||
'train': {
|
||||
'dataloader': {
|
||||
'batch_size_per_gpu': args.batch_size,
|
||||
'workers_per_gpu': 1,
|
||||
'shuffle': True,
|
||||
'drop_last': True,
|
||||
'pin_memory': True
|
||||
},
|
||||
'max_epochs':
|
||||
args.max_epochs,
|
||||
'work_dir':
|
||||
work_dir,
|
||||
'optimizer': {
|
||||
'type': 'AdamW',
|
||||
'lr': args.learning_rate,
|
||||
'weight_decay': args.weight_decay,
|
||||
'options': {
|
||||
'cumulative_iters': args.n_accumulate_grad,
|
||||
'grad_clip': {
|
||||
'norm_type': 2,
|
||||
'max_norm': args.grad_clip_norm
|
||||
}
|
||||
}
|
||||
},
|
||||
'lr_scheduler': {
|
||||
'type': 'CosineAnnealingLR',
|
||||
'T_max': T_max,
|
||||
'eta_min': 0,
|
||||
'options': {
|
||||
'by_epoch': False,
|
||||
'warmup': {
|
||||
'type': 'LinearWarmup',
|
||||
'warmup_ratio': 0.1,
|
||||
'warmup_iters': args.warmup_iters
|
||||
}
|
||||
}
|
||||
},
|
||||
'hooks': [
|
||||
{
|
||||
'type': 'CheckpointHook',
|
||||
'by_epoch': False,
|
||||
'interval': args.eval_interval,
|
||||
'max_checkpoint_num': args.last_max_checkpoint_num
|
||||
},
|
||||
{
|
||||
'type': 'EvaluationHook',
|
||||
'by_epoch': False,
|
||||
'interval': args.eval_interval
|
||||
},
|
||||
{
|
||||
'type': 'BestCkptSaverHook',
|
||||
'metric_key': 'loss',
|
||||
'save_best': True,
|
||||
'rule': 'min',
|
||||
'max_checkpoint_num': args.best_max_checkpoint_num
|
||||
},
|
||||
{
|
||||
'type': 'TextLoggerHook',
|
||||
'by_epoch': True, # Whether EpochBasedTrainer is used
|
||||
'interval': args.logging_interval
|
||||
},
|
||||
{
|
||||
'type': 'TensorboardHook',
|
||||
'by_epoch': False,
|
||||
'interval': args.tb_interval
|
||||
}
|
||||
]
|
||||
},
|
||||
'evaluation': {
|
||||
'dataloader': {
|
||||
'batch_size_per_gpu': args.batch_size,
|
||||
'workers_per_gpu': 1,
|
||||
'shuffle': False,
|
||||
'drop_last': False,
|
||||
'pin_memory': True
|
||||
},
|
||||
'metrics': [{
|
||||
'type': 'my_metric',
|
||||
'vocab_size': tokenizer.vocab_size
|
||||
}]
|
||||
}
|
||||
})
|
||||
|
||||
# ### Finetuning
|
||||
|
||||
|
||||
def cfg_modify_fn(cfg: Config) -> Config:
|
||||
cfg.update(config)
|
||||
return cfg
|
||||
|
||||
|
||||
trainer = EpochBasedTrainer(
|
||||
model=model,
|
||||
cfg_file=cfg_file,
|
||||
data_collator=data_collate_fn,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=val_dataset,
|
||||
remove_unused_data=True,
|
||||
seed=42,
|
||||
device='cpu', # No placement for model, leave the model to `device_map`
|
||||
cfg_modify_fn=cfg_modify_fn,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# ### Visualization
|
||||
tb_dir = os.path.join(work_dir, 'tensorboard_output')
|
||||
plot_image(tb_dir, ['loss'], 0.9)
|
||||
5
examples/pytorch/llm/run_infer.sh
Normal file
5
examples/pytorch/llm/run_infer.sh
Normal file
@@ -0,0 +1,5 @@
|
||||
python llm_infer.py \
|
||||
--device 0 \
|
||||
--model_type llama2-7b \
|
||||
--ckpt_fpath "runs/llama2-7b/vx_xxx/output_best/pytorch_model.bin" \
|
||||
--eval_human true
|
||||
8
examples/pytorch/llm/run_sft.sh
Normal file
8
examples/pytorch/llm/run_sft.sh
Normal file
@@ -0,0 +1,8 @@
|
||||
#!/bin/bash
|
||||
|
||||
DATE=$(date +"%Y%m%d-%H%M%S")
|
||||
nohup python llm_sft.py \
|
||||
--device 0 \
|
||||
--model_type llama2-7b \
|
||||
--data_sample 25000 \
|
||||
&> train_$DATE.out &
|
||||
@@ -49,11 +49,9 @@ from modelscope.utils.config import Config, ConfigDict
|
||||
from modelscope.utils.registry import default_group
|
||||
|
||||
#
|
||||
SYSTEM_TEXT = """{system}"""
|
||||
USER_TEXT = """\n\n### 用户
|
||||
{user}"""
|
||||
ASSISTANT_PROMPT = """\n\n### 助手
|
||||
"""
|
||||
PROMPT = """System: {system}
|
||||
Human: {user}
|
||||
AI: """
|
||||
MAX_LENGTH = 2048
|
||||
TEST_MAX_LENGTH = MAX_LENGTH
|
||||
|
||||
@@ -62,11 +60,6 @@ logger = get_logger()
|
||||
#
|
||||
|
||||
|
||||
def get_model_dir(model_id: str, model_revision: Optional[str] = None) -> str:
|
||||
model_dir = snapshot_download(model_id, model_revision)
|
||||
return model_dir
|
||||
|
||||
|
||||
def _get_version(work_dir: str) -> int:
|
||||
if os.path.isdir(work_dir):
|
||||
fnames = os.listdir(work_dir)
|
||||
@@ -93,28 +86,40 @@ def get_work_dir(work_dir: str) -> str:
|
||||
return work_dir
|
||||
|
||||
|
||||
def select_device(device_ids: List[int]) -> Device:
|
||||
def _format_device(device: Union[List[int], str]) -> Tuple[List[int], str]:
|
||||
if isinstance(device, list):
|
||||
device_ids = device
|
||||
device_str = ','.join([str(d) for d in device])
|
||||
else:
|
||||
device_ids = [int(d) for d in device.split(',') if d != '-1']
|
||||
device_str = device
|
||||
device_str = device_str.replace(' ', '')
|
||||
return device_ids, device_str
|
||||
|
||||
|
||||
def select_device(device: Union[List[int], str]) -> Device:
|
||||
"""Call this function before cuda is initialized.
|
||||
Return: master device
|
||||
device: e.g. []: 'cpu', [0], [0, 1, 2]
|
||||
e.g. '-1': 'cpu', '0', '0,1,2'
|
||||
"""
|
||||
if torch.cuda.is_initialized():
|
||||
logger.warning('CUDA has been initialized! Device selection fails!')
|
||||
return torch.device('cuda:0')
|
||||
#
|
||||
device_ids, device_str = _format_device(device)
|
||||
#
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = device_str
|
||||
log_s = 'Using device: '
|
||||
if len(device_ids) == 0: # cpu
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
||||
device: str = 'cpu'
|
||||
log_s += device
|
||||
if len(device_ids) == 0:
|
||||
master_device: str = 'cpu'
|
||||
log_s += 'cpu'
|
||||
else:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(
|
||||
[str(d) for d in device_ids])
|
||||
assert torch.cuda.is_available(
|
||||
) and torch.cuda.device_count() >= len(device_ids)
|
||||
log_s += f"cuda:{','.join([str(d) for d in device_ids])}" # e.g. "cuda:1,7,8"
|
||||
device = 'cuda:0'
|
||||
master_device = 'cuda:0'
|
||||
log_s += f'cuda:{device_str}'
|
||||
logger.info(log_s)
|
||||
return torch.device(device)
|
||||
return torch.device(master_device)
|
||||
|
||||
|
||||
def seed_everything(seed: Optional[int] = None, gpu_dtm: bool = False) -> int:
|
||||
@@ -148,37 +153,27 @@ def get_T_max(dataset_len: int, batch_size: int, max_epochs: int,
|
||||
def tokenize_function(system: str, user: str, assistant: Optional[str],
|
||||
tokenizer) -> Dict[str, Any]:
|
||||
"""Only applicable to baichuan and chatglm2. Other models need to be tested"""
|
||||
system_text = SYSTEM_TEXT.format(system=system)
|
||||
user_text = USER_TEXT.format(user=user)
|
||||
system_text_ids: List[int] = tokenizer(
|
||||
system_text, return_attention_mask=False,
|
||||
src_text = PROMPT.format(system=system, user=user)
|
||||
src_input_ids: List[int] = tokenizer(
|
||||
src_text, return_attention_mask=False,
|
||||
add_special_tokens=True)['input_ids']
|
||||
user_text_ids: List[int] = tokenizer(
|
||||
user_text, return_attention_mask=False,
|
||||
add_special_tokens=False)['input_ids']
|
||||
assistant_p_input_ids: List[int] = tokenizer(
|
||||
ASSISTANT_PROMPT,
|
||||
return_attention_mask=False,
|
||||
add_special_tokens=False)['input_ids']
|
||||
|
||||
# tokenizer.bos_token_id: Avoid `assistant` being empty
|
||||
assistant_input_ids: List[int] = [tokenizer.bos_token_id]
|
||||
#
|
||||
tgt_input_ids: List[int] = []
|
||||
if assistant is not None:
|
||||
assistant_input_ids += tokenizer(
|
||||
tgt_input_ids += tokenizer(
|
||||
assistant, return_attention_mask=False,
|
||||
add_special_tokens=False)['input_ids']
|
||||
assistant_input_ids += [tokenizer.eos_token_id]
|
||||
tgt_input_ids += [tokenizer.eos_token_id]
|
||||
labels = [-100] * len(src_input_ids) + tgt_input_ids
|
||||
else:
|
||||
labels = None
|
||||
input_ids = src_input_ids + tgt_input_ids
|
||||
#
|
||||
input_ids = system_text_ids + user_text_ids + assistant_p_input_ids + assistant_input_ids
|
||||
if assistant is not None: # train, val
|
||||
if assistant is not None:
|
||||
if len(input_ids) > MAX_LENGTH:
|
||||
return {}
|
||||
len_mask = len(input_ids) - len(assistant_input_ids)
|
||||
labels = [-100] * len_mask + assistant_input_ids
|
||||
else: # test
|
||||
else:
|
||||
input_ids = input_ids[-TEST_MAX_LENGTH:]
|
||||
labels = None
|
||||
|
||||
#
|
||||
return {'input_ids': input_ids, 'labels': labels}
|
||||
|
||||
@@ -221,7 +216,7 @@ def print_examples(examples: Dict[str, Any], tokenizer) -> None:
|
||||
print(f'[INPUT_IDS] {tokenizer.decode(input_ids)}')
|
||||
print()
|
||||
print(
|
||||
f'[LABLES] {tokenizer.decode([l if l != -100 else 0 for l in labels])}'
|
||||
f'[LABLES] {tokenizer.decode([lb if lb != -100 else 0 for lb in labels])}'
|
||||
)
|
||||
|
||||
|
||||
@@ -305,12 +300,21 @@ class MyMetric(Metric):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def get_baichuan_model_tokenizer(model_dir: Optional[str] = None,
|
||||
load_model: bool = True):
|
||||
if model_dir is None:
|
||||
model_id = 'baichuan-inc/baichuan-7B'
|
||||
model_dir = get_model_dir(model_id, None)
|
||||
#
|
||||
def _add_special_token(tokenizer):
|
||||
if tokenizer.eos_token_id is None:
|
||||
tokenizer.eos_token_id = 2
|
||||
if tokenizer.bos_token_id is None:
|
||||
tokenizer.bos_token_id = 1
|
||||
if tokenizer.pad_token_id is None:
|
||||
tokenizer.pad_token_id = 0
|
||||
logger.info(f'bos_token_id: {tokenizer.bos_token_id}, '
|
||||
f'eos_token_id: {tokenizer.eos_token_id}, '
|
||||
f'pad_token_id: {tokenizer.pad_token_id}')
|
||||
|
||||
|
||||
def get_baichuan7B_model_tokenizer(model_dir: str,
|
||||
load_model: bool = True,
|
||||
add_special_token: bool = True):
|
||||
sys.path.insert(0, model_dir)
|
||||
from configuration_baichuan import BaiChuanConfig
|
||||
from tokenization_baichuan import BaiChuanTokenizer
|
||||
@@ -327,16 +331,14 @@ def get_baichuan_model_tokenizer(model_dir: Optional[str] = None,
|
||||
device_map='auto',
|
||||
torch_dtype=torch.float16)
|
||||
#
|
||||
if add_special_token:
|
||||
_add_special_token(tokenizer)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def get_chatglm2_model_tokenizer(model_dir: Optional[str] = None,
|
||||
load_model: bool = True):
|
||||
if model_dir is None:
|
||||
model_id = 'ZhipuAI/chatglm2-6b'
|
||||
model_revision = 'v1.0.3'
|
||||
model_dir = snapshot_download(model_id, model_revision)
|
||||
#
|
||||
def get_chatglm2_model_tokenizer(model_dir: str,
|
||||
load_model: bool = True,
|
||||
add_special_token: bool = True):
|
||||
config = read_config(model_dir)
|
||||
config['model'] = ConfigDict({'type': 'chatglm2-6b'})
|
||||
tokenizer = ChatGLM2Tokenizer.from_pretrained(model_dir)
|
||||
@@ -347,6 +349,8 @@ def get_chatglm2_model_tokenizer(model_dir: Optional[str] = None,
|
||||
cfg_dict=config,
|
||||
device_map='auto',
|
||||
torch_dtype=torch.float16)
|
||||
if add_special_token:
|
||||
_add_special_token(tokenizer)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
@@ -355,7 +359,7 @@ def make_dataset(
|
||||
Dict[str, Any]]
|
||||
) -> MyDataset:
|
||||
"""
|
||||
split: Literal["train", "validation"]
|
||||
split: Literal['train', 'validation']
|
||||
"""
|
||||
dataset = MsDataset.load(
|
||||
'modelscope/ms_hackathon_23_agent_train_dev', split=split)
|
||||
|
||||
@@ -16,15 +16,6 @@
|
||||
"### 配置实验环境"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# !pip install transformers"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
@@ -62,8 +53,7 @@
|
||||
"source": [
|
||||
"from _common import *\n",
|
||||
"from transformers import TextStreamer\n",
|
||||
"device_ids = list(range(min(4, torch.cuda.device_count())))\n",
|
||||
"logger.info(device_ids)\n",
|
||||
"device_ids = [0, 1]\n",
|
||||
"select_device(device_ids)"
|
||||
]
|
||||
},
|
||||
@@ -152,12 +142,11 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"CKPT_FAPTH = \"/home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/output_best/pytorch_model.bin\"\n",
|
||||
"LORA_TARGET_MODULES = [\"W_pack\"]\n",
|
||||
"CKPT_FAPTH = '/home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/output_best/pytorch_model.bin'\n",
|
||||
"LORA_TARGET_MODULES = ['W_pack']\n",
|
||||
"\n",
|
||||
"model, tokenizer = get_baichuan_model_tokenizer()\n",
|
||||
"if tokenizer.pad_token_id is None:\n",
|
||||
" tokenizer.pad_token_id = tokenizer.eos_token_id\n",
|
||||
"model_dir = snapshot_download('baichuan-inc/baichuan-7B', 'v1.0.5')\n",
|
||||
"model, tokenizer = get_baichuan7B_model_tokenizer(model_dir)\n",
|
||||
"model.bfloat16() # Consistent with training"
|
||||
]
|
||||
},
|
||||
@@ -225,7 +214,7 @@
|
||||
" lora_alpha=LORA_ALPHA,\n",
|
||||
" lora_dropout=LORA_DROPOUT_P,\n",
|
||||
" pretrained_weights=CKPT_FAPTH)\n",
|
||||
"logger.info(f\"lora_config: {lora_config}\")\n",
|
||||
"logger.info(f'lora_config: {lora_config}')\n",
|
||||
"Swift.prepare_model(model, lora_config)"
|
||||
]
|
||||
},
|
||||
@@ -289,8 +278,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"test_dataset = make_dataset(\"validation\", lambda system, user, assistant:\n",
|
||||
" {\"system\": system, \"user\": user, \"assistant\": assistant})"
|
||||
"test_dataset = make_dataset('validation', lambda system, user, assistant:\n",
|
||||
" {'system': system, 'user': user, 'assistant': assistant})"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -451,20 +440,21 @@
|
||||
"source": [
|
||||
"streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)\n",
|
||||
"for d in test_dataset[:5]:\n",
|
||||
" system = d[\"system\"]\n",
|
||||
" user = d[\"user\"]\n",
|
||||
" assistant = d[\"assistant\"]\n",
|
||||
" input_ids = tokenize_function(system, user, None, tokenizer)[\"input_ids\"]\n",
|
||||
" print(f\"[TEST]{tokenizer.decode(input_ids)}\", end=\"\")\n",
|
||||
" system = d['system']\n",
|
||||
" user = d['user']\n",
|
||||
" assistant = d['assistant']\n",
|
||||
" input_ids = tokenize_function(system, user, None, tokenizer)['input_ids']\n",
|
||||
" print(f'[TEST]{tokenizer.decode(input_ids)}', end='')\n",
|
||||
" input_ids = torch.tensor(input_ids)[None].cuda()\n",
|
||||
" attention_mask = torch.ones_like(input_ids)\n",
|
||||
" generate_ids = model.generate(input_ids=input_ids, max_new_tokens=512,\n",
|
||||
" attention_mask=attention_mask,\n",
|
||||
" streamer=streamer, pad_token_id=tokenizer.pad_token_id)\n",
|
||||
" streamer=streamer, pad_token_id=tokenizer.eos_token_id, \n",
|
||||
" temperature=0.7, top_k=50, top_p=0.7, do_sample=True)\n",
|
||||
" print()\n",
|
||||
" print(f\"[LABELS]{assistant}\")\n",
|
||||
" print(\"-----------------------------------------------------------------------------------\")\n",
|
||||
" # input(\"next[ENTER]\")"
|
||||
" print(f'[LABELS]{assistant}')\n",
|
||||
" print('-----------------------------------------------------------------------------------')\n",
|
||||
" # input('next[ENTER]')"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -484,7 +474,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -33,14 +33,12 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# !pip install modelscope -U\n",
|
||||
"# !pip install modelscope\n",
|
||||
"# !pip install numpy pandas matplotlib scikit-learn\n",
|
||||
"# !pip install transformers datasets\n",
|
||||
"# !conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia\n",
|
||||
"# !pip install tqdm\n",
|
||||
"# !pip install tensorboard\n",
|
||||
"# !pip install torchmetrics\n",
|
||||
"#\n",
|
||||
"# !pip install tqdm tensorboard torchmetrics sentencepiece charset_normalizer accelerate\n",
|
||||
"\n",
|
||||
"# !pip install numpy -U # Resolve torchmetrics dependencies and update numpy"
|
||||
]
|
||||
},
|
||||
@@ -73,8 +71,7 @@
|
||||
],
|
||||
"source": [
|
||||
"from _common import *\n",
|
||||
"device_ids = list(range(min(4, torch.cuda.device_count())))\n",
|
||||
"logger.info(device_ids)\n",
|
||||
"device_ids = [0, 1]\n",
|
||||
"select_device(device_ids)\n",
|
||||
"_ = seed_everything(42)"
|
||||
]
|
||||
@@ -130,22 +127,16 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model_id = \"baichuan-inc/baichuan-7B\"\n",
|
||||
"WORK_DIR = \"runs/baichuan\"\n",
|
||||
"LORA_TARGET_MODULES = [\"W_pack\"]\n",
|
||||
"WORK_DIR = 'runs/baichuan'\n",
|
||||
"LORA_TARGET_MODULES = ['W_pack']\n",
|
||||
"#\n",
|
||||
"model_dir = get_model_dir(model_id, None)\n",
|
||||
"model, tokenizer = get_baichuan_model_tokenizer(model_dir)\n",
|
||||
"model_dir = snapshot_download('baichuan-inc/baichuan-7B', 'v1.0.5')\n",
|
||||
"model, tokenizer = get_baichuan7B_model_tokenizer(model_dir)\n",
|
||||
"#\n",
|
||||
"GRADIENT_CHECKPOINTING = True\n",
|
||||
"if GRADIENT_CHECKPOINTING:\n",
|
||||
" model.gradient_checkpointing_enable()\n",
|
||||
" model.enable_input_require_grads()\n",
|
||||
"if tokenizer.pad_token_id is None:\n",
|
||||
" tokenizer.pad_token_id = tokenizer.eos_token_id\n",
|
||||
"#\n",
|
||||
"logger.info(f\"bos_token_id: {tokenizer.bos_token_id}, eos_token_id: {tokenizer.eos_token_id}, \"\n",
|
||||
" f\"pad_token_id: {tokenizer.pad_token_id}\")"
|
||||
" model.enable_input_require_grads()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -237,13 +228,13 @@
|
||||
" rank=LORA_RANK,\n",
|
||||
" lora_alpha=LORA_ALPHA,\n",
|
||||
" lora_dropout=LORA_DROPOUT_P)\n",
|
||||
"logger.info(f\"lora_config: {lora_config}\")\n",
|
||||
"logger.info(f'lora_config: {lora_config}')\n",
|
||||
"Swift.prepare_model(model, lora_config)\n",
|
||||
"#\n",
|
||||
"show_freeze_layers(model)\n",
|
||||
"print_model_info(model)\n",
|
||||
"_p = list(model.parameters())[100]\n",
|
||||
"logger.info(f\"device: {_p.device}, dtype: {_p.dtype}\")\n",
|
||||
"logger.info(f'device: {_p.device}, dtype: {_p.dtype}')\n",
|
||||
"model.bfloat16()"
|
||||
]
|
||||
},
|
||||
@@ -308,8 +299,8 @@
|
||||
],
|
||||
"source": [
|
||||
"tokenize_function = partial(tokenize_function, tokenizer=tokenizer)\n",
|
||||
"train_dataset = make_dataset(\"train\", tokenize_function)\n",
|
||||
"val_dataset = make_dataset(\"validation\", tokenize_function)\n",
|
||||
"train_dataset = make_dataset('train', tokenize_function)\n",
|
||||
"val_dataset = make_dataset('validation', tokenize_function)\n",
|
||||
"# Data analysis\n",
|
||||
"stat_dataset(train_dataset)\n",
|
||||
"stat_dataset(val_dataset)\n",
|
||||
@@ -339,7 +330,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"cfg_file = os.path.join(model_dir, \"configuration.json\")\n",
|
||||
"cfg_file = os.path.join(model_dir, 'configuration.json')\n",
|
||||
"#\n",
|
||||
"BATCH_SIZE = 1\n",
|
||||
"MAX_EPOCHS = 1\n",
|
||||
@@ -347,62 +338,62 @@
|
||||
"WORK_DIR = get_work_dir(WORK_DIR)\n",
|
||||
"EVAL_INTERVAL = 200\n",
|
||||
"CONFIG = Config({\n",
|
||||
" \"train\": {\n",
|
||||
" \"dataloader\": {\n",
|
||||
" \"batch_size_per_gpu\": BATCH_SIZE,\n",
|
||||
" \"workers_per_gpu\": 1,\n",
|
||||
" \"shuffle\": True,\n",
|
||||
" \"drop_last\": True,\n",
|
||||
" \"pin_memory\": True\n",
|
||||
" 'train': {\n",
|
||||
" 'dataloader': {\n",
|
||||
" 'batch_size_per_gpu': BATCH_SIZE,\n",
|
||||
" 'workers_per_gpu': 1,\n",
|
||||
" 'shuffle': True,\n",
|
||||
" 'drop_last': True,\n",
|
||||
" 'pin_memory': True\n",
|
||||
" },\n",
|
||||
" \"max_epochs\": MAX_EPOCHS,\n",
|
||||
" \"work_dir\": WORK_DIR,\n",
|
||||
" \"optimizer\": {\n",
|
||||
" \"type\": \"AdamW\",\n",
|
||||
" \"lr\": 1e-4,\n",
|
||||
" \"weight_decay\": 0.01,\n",
|
||||
" \"options\": {\n",
|
||||
" \"cumulative_iters\": 16, \"grad_clip\": {\n",
|
||||
" \"norm_type\": 2,\n",
|
||||
" \"max_norm\": 2.0\n",
|
||||
" 'max_epochs': MAX_EPOCHS,\n",
|
||||
" 'work_dir': WORK_DIR,\n",
|
||||
" 'optimizer': {\n",
|
||||
" 'type': 'AdamW',\n",
|
||||
" 'lr': 1e-4,\n",
|
||||
" 'weight_decay': 0.01,\n",
|
||||
" 'options': {\n",
|
||||
" 'cumulative_iters': 16, 'grad_clip': {\n",
|
||||
" 'norm_type': 2,\n",
|
||||
" 'max_norm': 2.0\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"lr_scheduler\": {\n",
|
||||
" \"type\": \"CosineAnnealingLR\",\n",
|
||||
" \"T_max\": T_max,\n",
|
||||
" \"eta_min\": 1e-5,\n",
|
||||
" \"options\": {\n",
|
||||
" \"by_epoch\": False,\n",
|
||||
" \"warmup\": {\n",
|
||||
" 'lr_scheduler': {\n",
|
||||
" 'type': 'CosineAnnealingLR',\n",
|
||||
" 'T_max': T_max,\n",
|
||||
" 'eta_min': 1e-5,\n",
|
||||
" 'options': {\n",
|
||||
" 'by_epoch': False,\n",
|
||||
" 'warmup': {\n",
|
||||
" 'type': 'LinearWarmup',\n",
|
||||
" 'warmup_ratio': 0.1,\n",
|
||||
" \"warmup_iters\": 200\n",
|
||||
" 'warmup_iters': 200\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"hooks\": [\n",
|
||||
" {\"type\": \"CheckpointHook\", \"by_epoch\": False, \"interval\": EVAL_INTERVAL, \"max_checkpoint_num\": 1},\n",
|
||||
" {\"type\": \"EvaluationHook\", \"by_epoch\": False, \"interval\": EVAL_INTERVAL},\n",
|
||||
" {\"type\": \"BestCkptSaverHook\",\n",
|
||||
" \"metric_key\": \"acc\",\n",
|
||||
" \"save_best\": True, \"rule\": \"max\", \"max_checkpoint_num\": 1},\n",
|
||||
" {\"type\": \"TextLoggerHook\",\n",
|
||||
" \"by_epoch\": True, # Whether EpochBasedTrainer is used\n",
|
||||
" \"interval\": 5},\n",
|
||||
" {\"type\": \"TensorboardHook\", \"by_epoch\": False, \"interval\": 5}\n",
|
||||
" 'hooks': [\n",
|
||||
" {'type': 'CheckpointHook', 'by_epoch': False, 'interval': EVAL_INTERVAL, 'max_checkpoint_num': 1},\n",
|
||||
" {'type': 'EvaluationHook', 'by_epoch': False, 'interval': EVAL_INTERVAL},\n",
|
||||
" {'type': 'BestCkptSaverHook',\n",
|
||||
" 'metric_key': 'acc',\n",
|
||||
" 'save_best': True, 'rule': 'max', 'max_checkpoint_num': 1},\n",
|
||||
" {'type': 'TextLoggerHook',\n",
|
||||
" 'by_epoch': True, # Whether EpochBasedTrainer is used\n",
|
||||
" 'interval': 5},\n",
|
||||
" {'type': 'TensorboardHook', 'by_epoch': False, 'interval': 5}\n",
|
||||
" ]\n",
|
||||
" },\n",
|
||||
" \"evaluation\": {\n",
|
||||
" \"dataloader\": {\n",
|
||||
" \"batch_size_per_gpu\": BATCH_SIZE,\n",
|
||||
" \"workers_per_gpu\": 1,\n",
|
||||
" \"shuffle\": False,\n",
|
||||
" \"drop_last\": False,\n",
|
||||
" \"pin_memory\": True\n",
|
||||
" 'evaluation': {\n",
|
||||
" 'dataloader': {\n",
|
||||
" 'batch_size_per_gpu': BATCH_SIZE,\n",
|
||||
" 'workers_per_gpu': 1,\n",
|
||||
" 'shuffle': False,\n",
|
||||
" 'drop_last': False,\n",
|
||||
" 'pin_memory': True\n",
|
||||
" },\n",
|
||||
" \"metrics\": [\n",
|
||||
" {\"type\": \"my_metric\", \"vocab_size\": tokenizer.vocab_size}\n",
|
||||
" 'metrics': [\n",
|
||||
" {'type': 'my_metric', 'vocab_size': tokenizer.vocab_size}\n",
|
||||
" ]\n",
|
||||
" }\n",
|
||||
"})"
|
||||
@@ -1778,16 +1769,16 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tb_dir = os.path.join(WORK_DIR, \"tensorboard_output\")\n",
|
||||
"tb_dir = os.path.join(WORK_DIR, 'tensorboard_output')\n",
|
||||
"fname = os.listdir(tb_dir)[0]\n",
|
||||
"tb_path = os.path.join(tb_dir, fname)\n",
|
||||
"#\n",
|
||||
"data = read_tensorboard_file(tb_path)\n",
|
||||
"print(data.keys())\n",
|
||||
"_ = plot_image(data, \"loss\", 0.9)\n",
|
||||
"_ = plot_image(data, \"lr\", 0)\n",
|
||||
"_ = plot_image(data, \"evaluation/acc\", 0)\n",
|
||||
"_ = plot_image(data, \"evaluation/loss\", 0)"
|
||||
"_ = plot_image(data, 'loss', 0.9)\n",
|
||||
"_ = plot_image(data, 'lr', 0)\n",
|
||||
"_ = plot_image(data, 'evaluation/acc', 0)\n",
|
||||
"_ = plot_image(data, 'evaluation/loss', 0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -17,15 +17,6 @@
|
||||
"The following code is copied from baichuan_infer.ipynb"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# !pip install transformers"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
@@ -63,8 +54,7 @@
|
||||
"source": [
|
||||
"from _common import *\n",
|
||||
"from transformers import TextStreamer\n",
|
||||
"device_ids = list(range(min(4, torch.cuda.device_count())))\n",
|
||||
"logger.info(device_ids)\n",
|
||||
"device_ids = [0, 1]\n",
|
||||
"select_device(device_ids)"
|
||||
]
|
||||
},
|
||||
@@ -149,14 +139,11 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"CKPT_FAPTH = \"/home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/output_best/pytorch_model.bin\"\n",
|
||||
"LORA_TARGET_MODULES = [\"query_key_value\"]\n",
|
||||
"CKPT_FAPTH = '/home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/output_best/pytorch_model.bin'\n",
|
||||
"LORA_TARGET_MODULES = ['query_key_value']\n",
|
||||
"\n",
|
||||
"model, tokenizer = get_chatglm2_model_tokenizer()\n",
|
||||
"if tokenizer.eos_token_id is None:\n",
|
||||
" tokenizer.eos_token_id = tokenizer.pad_token_id\n",
|
||||
"if tokenizer.bos_token_id is None:\n",
|
||||
" tokenizer.bos_token_id = 1\n",
|
||||
"model_dir = snapshot_download('ZhipuAI/chatglm2-6b', 'v1.0.6')\n",
|
||||
"model, tokenizer = get_chatglm2_model_tokenizer(model_dir)\n",
|
||||
"model.bfloat16() # Consistent with training"
|
||||
]
|
||||
},
|
||||
@@ -230,7 +217,7 @@
|
||||
" lora_alpha=LORA_ALPHA,\n",
|
||||
" lora_dropout=LORA_DROPOUT_P,\n",
|
||||
" pretrained_weights=CKPT_FAPTH)\n",
|
||||
"logger.info(f\"lora_config: {lora_config}\")\n",
|
||||
"logger.info(f'lora_config: {lora_config}')\n",
|
||||
"Swift.prepare_model(model, lora_config)"
|
||||
]
|
||||
},
|
||||
@@ -295,8 +282,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"test_dataset = make_dataset(\"validation\", lambda system, user, assistant:\n",
|
||||
" {\"system\": system, \"user\": user, \"assistant\": assistant})"
|
||||
"test_dataset = make_dataset('validation', lambda system, user, assistant:\n",
|
||||
" {'system': system, 'user': user, 'assistant': assistant})"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -484,20 +471,21 @@
|
||||
"source": [
|
||||
"streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)\n",
|
||||
"for d in test_dataset[:5]:\n",
|
||||
" system = d[\"system\"]\n",
|
||||
" user = d[\"user\"]\n",
|
||||
" assistant = d[\"assistant\"]\n",
|
||||
" input_ids = tokenize_function(system, user, None, tokenizer)[\"input_ids\"]\n",
|
||||
" print(f\"[TEST]{tokenizer.decode(input_ids)}\", end=\"\")\n",
|
||||
" system = d['system']\n",
|
||||
" user = d['user']\n",
|
||||
" assistant = d['assistant']\n",
|
||||
" input_ids = tokenize_function(system, user, None, tokenizer)['input_ids']\n",
|
||||
" print(f'[TEST]{tokenizer.decode(input_ids)}', end='')\n",
|
||||
" input_ids = torch.tensor(input_ids)[None].cuda()\n",
|
||||
" attention_mask = torch.ones_like(input_ids)\n",
|
||||
" generate_ids = model.generate(input_ids=input_ids, max_new_tokens=512,\n",
|
||||
" attention_mask=attention_mask,\n",
|
||||
" streamer=streamer, pad_token_id=tokenizer.pad_token_id)\n",
|
||||
" streamer=streamer, pad_token_id=tokenizer.eos_token_id, \n",
|
||||
" temperature=0.7, top_k=50, top_p=0.7, do_sample=True)\n",
|
||||
" print()\n",
|
||||
" print(f\"[LABELS]{assistant}\")\n",
|
||||
" print(\"-----------------------------------------------------------------------------------\")\n",
|
||||
" # input(\"next[ENTER]\")"
|
||||
" print(f'[LABELS]{assistant}')\n",
|
||||
" print('-----------------------------------------------------------------------------------')\n",
|
||||
" # input('next[ENTER]')"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -517,7 +505,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
"version": "3.10.12"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
|
||||
@@ -40,20 +40,18 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# !pip install modelscope -U\n",
|
||||
"# !pip install modelscope\n",
|
||||
"# !pip install numpy pandas matplotlib scikit-learn\n",
|
||||
"# !pip install transformers datasets\n",
|
||||
"# !conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia\n",
|
||||
"# !pip install tqdm\n",
|
||||
"# !pip install tensorboard\n",
|
||||
"# !pip install torchmetrics\n",
|
||||
"#\n",
|
||||
"# !pip install tqdm tensorboard torchmetrics sentencepiece charset_normalizer accelerate\n",
|
||||
"\n",
|
||||
"# !pip install numpy -U # Resolve torchmetrics dependencies and update numpy"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -78,8 +76,7 @@
|
||||
],
|
||||
"source": [
|
||||
"from _common import *\n",
|
||||
"device_ids = list(range(min(4, torch.cuda.device_count())))\n",
|
||||
"logger.info(device_ids)\n",
|
||||
"device_ids = [0, 1]\n",
|
||||
"select_device(device_ids)\n",
|
||||
"_ = seed_everything(42)"
|
||||
]
|
||||
@@ -134,26 +131,16 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model_id = \"ZhipuAI/chatglm2-6b\"\n",
|
||||
"model_revision = \"v1.0.3\"\n",
|
||||
"WORK_DIR = \"runs/chatglm2\"\n",
|
||||
"LORA_TARGET_MODULES = [\"query_key_value\"]\n",
|
||||
"WORK_DIR = 'runs/chatglm2'\n",
|
||||
"LORA_TARGET_MODULES = ['query_key_value']\n",
|
||||
"#\n",
|
||||
"model_dir = get_model_dir(model_id, model_revision)\n",
|
||||
"model_dir = snapshot_download('ZhipuAI/chatglm2-6b', 'v1.0.6')\n",
|
||||
"model, tokenizer = get_chatglm2_model_tokenizer(model_dir)\n",
|
||||
"# chatglm2 does not support gradient_checkpointing\n",
|
||||
"GRADIENT_CHECKPOINTING = False\n",
|
||||
"#\n",
|
||||
"GRADIENT_CHECKPOINTING = True\n",
|
||||
"if GRADIENT_CHECKPOINTING:\n",
|
||||
" model.gradient_checkpointing_enable()\n",
|
||||
" model.enable_input_require_grads()\n",
|
||||
"logger.info(tokenizer.special_tokens)\n",
|
||||
"if tokenizer.eos_token_id is None:\n",
|
||||
" tokenizer.eos_token_id = tokenizer.pad_token_id\n",
|
||||
"if tokenizer.bos_token_id is None:\n",
|
||||
" tokenizer.bos_token_id = 1\n",
|
||||
"#\n",
|
||||
"logger.info(f\"bos_token_id: {tokenizer.bos_token_id}, eos_token_id: {tokenizer.eos_token_id}, \"\n",
|
||||
" f\"pad_token_id: {tokenizer.pad_token_id}\")"
|
||||
" model.enable_input_require_grads()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -251,13 +238,13 @@
|
||||
" rank=LORA_RANK,\n",
|
||||
" lora_alpha=LORA_ALPHA,\n",
|
||||
" lora_dropout=LORA_DROPOUT_P)\n",
|
||||
"logger.info(f\"lora_config: {lora_config}\")\n",
|
||||
"logger.info(f'lora_config: {lora_config}')\n",
|
||||
"Swift.prepare_model(model, lora_config)\n",
|
||||
"#\n",
|
||||
"show_freeze_layers(model)\n",
|
||||
"print_model_info(model)\n",
|
||||
"_p = list(model.parameters())[100]\n",
|
||||
"logger.info(f\"device: {_p.device}, dtype: {_p.dtype}\")\n",
|
||||
"logger.info(f'device: {_p.device}, dtype: {_p.dtype}')\n",
|
||||
"model.bfloat16()"
|
||||
]
|
||||
},
|
||||
@@ -399,8 +386,8 @@
|
||||
],
|
||||
"source": [
|
||||
"tokenize_function = partial(tokenize_function, tokenizer=tokenizer)\n",
|
||||
"train_dataset = make_dataset(\"train\", tokenize_function)\n",
|
||||
"val_dataset = make_dataset(\"validation\", tokenize_function)\n",
|
||||
"train_dataset = make_dataset('train', tokenize_function)\n",
|
||||
"val_dataset = make_dataset('validation', tokenize_function)\n",
|
||||
"# Data analysis\n",
|
||||
"stat_dataset(train_dataset)\n",
|
||||
"stat_dataset(val_dataset)\n",
|
||||
@@ -431,7 +418,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"cfg_file = os.path.join(model_dir, \"configuration.json\")\n",
|
||||
"cfg_file = os.path.join(model_dir, 'configuration.json')\n",
|
||||
"#\n",
|
||||
"BATCH_SIZE = 1\n",
|
||||
"MAX_EPOCHS = 1\n",
|
||||
@@ -439,62 +426,62 @@
|
||||
"WORK_DIR = get_work_dir(WORK_DIR)\n",
|
||||
"EVAL_INTERVAL = 200\n",
|
||||
"CONFIG = Config({\n",
|
||||
" \"train\": {\n",
|
||||
" \"dataloader\": {\n",
|
||||
" \"batch_size_per_gpu\": BATCH_SIZE,\n",
|
||||
" \"workers_per_gpu\": 1,\n",
|
||||
" \"shuffle\": True,\n",
|
||||
" \"drop_last\": True,\n",
|
||||
" \"pin_memory\": True\n",
|
||||
" 'train': {\n",
|
||||
" 'dataloader': {\n",
|
||||
" 'batch_size_per_gpu': BATCH_SIZE,\n",
|
||||
" 'workers_per_gpu': 1,\n",
|
||||
" 'shuffle': True,\n",
|
||||
" 'drop_last': True,\n",
|
||||
" 'pin_memory': True\n",
|
||||
" },\n",
|
||||
" \"max_epochs\": MAX_EPOCHS,\n",
|
||||
" \"work_dir\": WORK_DIR,\n",
|
||||
" \"optimizer\": {\n",
|
||||
" \"type\": \"AdamW\",\n",
|
||||
" \"lr\": 1e-4,\n",
|
||||
" \"weight_decay\": 0.01,\n",
|
||||
" \"options\": {\n",
|
||||
" \"cumulative_iters\": 16, \"grad_clip\": {\n",
|
||||
" \"norm_type\": 2,\n",
|
||||
" \"max_norm\": 2.0\n",
|
||||
" 'max_epochs': MAX_EPOCHS,\n",
|
||||
" 'work_dir': WORK_DIR,\n",
|
||||
" 'optimizer': {\n",
|
||||
" 'type': 'AdamW',\n",
|
||||
" 'lr': 1e-4,\n",
|
||||
" 'weight_decay': 0.01,\n",
|
||||
" 'options': {\n",
|
||||
" 'cumulative_iters': 16, 'grad_clip': {\n",
|
||||
" 'norm_type': 2,\n",
|
||||
" 'max_norm': 2.0\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"lr_scheduler\": {\n",
|
||||
" \"type\": \"CosineAnnealingLR\",\n",
|
||||
" \"T_max\": T_max,\n",
|
||||
" \"eta_min\": 1e-5,\n",
|
||||
" \"options\": {\n",
|
||||
" \"by_epoch\": False,\n",
|
||||
" \"warmup\": {\n",
|
||||
" 'lr_scheduler': {\n",
|
||||
" 'type': 'CosineAnnealingLR',\n",
|
||||
" 'T_max': T_max,\n",
|
||||
" 'eta_min': 1e-5,\n",
|
||||
" 'options': {\n",
|
||||
" 'by_epoch': False,\n",
|
||||
" 'warmup': {\n",
|
||||
" 'type': 'LinearWarmup',\n",
|
||||
" 'warmup_ratio': 0.1,\n",
|
||||
" \"warmup_iters\": 200\n",
|
||||
" 'warmup_iters': 200\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"hooks\": [\n",
|
||||
" {\"type\": \"CheckpointHook\", \"by_epoch\": False, \"interval\": EVAL_INTERVAL, \"max_checkpoint_num\": 1},\n",
|
||||
" {\"type\": \"EvaluationHook\", \"by_epoch\": False, \"interval\": EVAL_INTERVAL},\n",
|
||||
" {\"type\": \"BestCkptSaverHook\",\n",
|
||||
" \"metric_key\": \"acc\",\n",
|
||||
" \"save_best\": True, \"rule\": \"max\", \"max_checkpoint_num\": 1},\n",
|
||||
" {\"type\": \"TextLoggerHook\",\n",
|
||||
" \"by_epoch\": True, # Whether EpochBasedTrainer is used\n",
|
||||
" \"interval\": 5},\n",
|
||||
" {\"type\": \"TensorboardHook\", \"by_epoch\": False, \"interval\": 5}\n",
|
||||
" 'hooks': [\n",
|
||||
" {'type': 'CheckpointHook', 'by_epoch': False, 'interval': EVAL_INTERVAL, 'max_checkpoint_num': 1},\n",
|
||||
" {'type': 'EvaluationHook', 'by_epoch': False, 'interval': EVAL_INTERVAL},\n",
|
||||
" {'type': 'BestCkptSaverHook',\n",
|
||||
" 'metric_key': 'acc',\n",
|
||||
" 'save_best': True, 'rule': 'max', 'max_checkpoint_num': 1},\n",
|
||||
" {'type': 'TextLoggerHook',\n",
|
||||
" 'by_epoch': True, # Whether EpochBasedTrainer is used\n",
|
||||
" 'interval': 5},\n",
|
||||
" {'type': 'TensorboardHook', 'by_epoch': False, 'interval': 5}\n",
|
||||
" ]\n",
|
||||
" },\n",
|
||||
" \"evaluation\": {\n",
|
||||
" \"dataloader\": {\n",
|
||||
" \"batch_size_per_gpu\": BATCH_SIZE,\n",
|
||||
" \"workers_per_gpu\": 1,\n",
|
||||
" \"shuffle\": False,\n",
|
||||
" \"drop_last\": False,\n",
|
||||
" \"pin_memory\": True\n",
|
||||
" 'evaluation': {\n",
|
||||
" 'dataloader': {\n",
|
||||
" 'batch_size_per_gpu': BATCH_SIZE,\n",
|
||||
" 'workers_per_gpu': 1,\n",
|
||||
" 'shuffle': False,\n",
|
||||
" 'drop_last': False,\n",
|
||||
" 'pin_memory': True\n",
|
||||
" },\n",
|
||||
" \"metrics\": [\n",
|
||||
" {\"type\": \"my_metric\", \"vocab_size\": tokenizer.vocab_size}\n",
|
||||
" 'metrics': [\n",
|
||||
" {'type': 'my_metric', 'vocab_size': tokenizer.vocab_size}\n",
|
||||
" ]\n",
|
||||
" }\n",
|
||||
"})"
|
||||
@@ -1884,16 +1871,16 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tb_dir = os.path.join(WORK_DIR, \"tensorboard_output\")\n",
|
||||
"tb_dir = os.path.join(WORK_DIR, 'tensorboard_output')\n",
|
||||
"fname = os.listdir(tb_dir)[0]\n",
|
||||
"tb_path = os.path.join(tb_dir, fname)\n",
|
||||
"#\n",
|
||||
"data = read_tensorboard_file(tb_path)\n",
|
||||
"print(data.keys())\n",
|
||||
"_ = plot_image(data, \"loss\", 0.9)\n",
|
||||
"_ = plot_image(data, \"lr\", 0)\n",
|
||||
"_ = plot_image(data, \"evaluation/acc\", 0)\n",
|
||||
"_ = plot_image(data, \"evaluation/loss\", 0)"
|
||||
"_ = plot_image(data, 'loss', 0.9)\n",
|
||||
"_ = plot_image(data, 'lr', 0)\n",
|
||||
"_ = plot_image(data, 'evaluation/acc', 0)\n",
|
||||
"_ = plot_image(data, 'evaluation/loss', 0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -165,6 +165,7 @@ class Models(object):
|
||||
doc2bot = 'doc2bot'
|
||||
peer = 'peer'
|
||||
llama = 'llama'
|
||||
llama2 = 'llama2'
|
||||
chatglm_6b = 'chatglm6b'
|
||||
chatglm2_6b = 'chatglm2-6b'
|
||||
|
||||
|
||||
@@ -6,6 +6,7 @@ from typing import Callable, List, Optional, Union
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
|
||||
from packaging import version
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
@@ -34,6 +35,7 @@ class StableDiffusion(TorchModel):
|
||||
"""
|
||||
super().__init__(model_dir, *args, **kwargs)
|
||||
revision = kwargs.pop('revision', None)
|
||||
xformers_enable = kwargs.pop('xformers_enable', False)
|
||||
self.lora_tune = kwargs.pop('lora_tune', False)
|
||||
self.dreambooth_tune = kwargs.pop('dreambooth_tune', False)
|
||||
|
||||
@@ -66,6 +68,18 @@ class StableDiffusion(TorchModel):
|
||||
self.unet.requires_grad_(False)
|
||||
self.unet = self.unet.to(self.device)
|
||||
|
||||
# xformers accelerate memory efficient attention
|
||||
if xformers_enable:
|
||||
import xformers
|
||||
|
||||
xformers_version = version.parse(xformers.__version__)
|
||||
if xformers_version == version.parse('0.0.16'):
|
||||
logger.warn(
|
||||
'xFormers 0.0.16 cannot be used for training in some GPUs. '
|
||||
'If you observe problems during training, please update xFormers to at least 0.0.17.'
|
||||
)
|
||||
self.unet.enable_xformers_memory_efficient_attention()
|
||||
|
||||
def tokenize_caption(self, captions):
|
||||
""" Convert caption text to token data.
|
||||
|
||||
|
||||
@@ -75,6 +75,7 @@ if TYPE_CHECKING:
|
||||
DocumentGroundedDialogRerankModel)
|
||||
from .xlm_roberta import XLMRobertaConfig, XLMRobertaModel
|
||||
from .llama import LlamaForTextGeneration, LlamaConfig, LlamaModel, LlamaTokenizer, LlamaTokenizerFast
|
||||
from .llama2 import Llama2ForTextGeneration, Llama2Config, Llama2Model, Llama2Tokenizer, Llama2TokenizerFast
|
||||
|
||||
else:
|
||||
_import_structure = {
|
||||
@@ -170,6 +171,10 @@ else:
|
||||
'LlamaForTextGeneration', 'LlamaConfig', 'LlamaModel',
|
||||
'LlamaTokenizer', 'LlamaTokenizerFast'
|
||||
],
|
||||
'llama2': [
|
||||
'Llama2ForTextGeneration', 'Llama2Config', 'Llama2Model',
|
||||
'Llama2Tokenizer', 'Llama2TokenizerFast'
|
||||
],
|
||||
}
|
||||
|
||||
import sys
|
||||
|
||||
@@ -1,12 +1,13 @@
|
||||
""" ChatGLM model configuration """
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class ChatGLM2Config(PretrainedConfig):
|
||||
model_type = 'chatglm'
|
||||
|
||||
def __init__(self,
|
||||
num_layers=28,
|
||||
@@ -24,7 +25,6 @@ class ChatGLM2Config(PretrainedConfig):
|
||||
post_layer_norm=True,
|
||||
add_bias_linear=False,
|
||||
add_qkv_bias=False,
|
||||
interleaved_qkv=False,
|
||||
bias_dropout_fusion=True,
|
||||
multi_query_attention=False,
|
||||
multi_query_group_num=1,
|
||||
@@ -32,8 +32,11 @@ class ChatGLM2Config(PretrainedConfig):
|
||||
attention_softmax_in_fp32=True,
|
||||
fp32_residual_connection=False,
|
||||
quantization_bit=0,
|
||||
pre_seq_len=None,
|
||||
prefix_projection=False,
|
||||
**kwargs):
|
||||
self.num_layers = num_layers
|
||||
self.vocab_size = padded_vocab_size
|
||||
self.padded_vocab_size = padded_vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.ffn_hidden_size = ffn_hidden_size
|
||||
@@ -55,4 +58,6 @@ class ChatGLM2Config(PretrainedConfig):
|
||||
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
||||
self.fp32_residual_connection = fp32_residual_connection
|
||||
self.quantization_bit = quantization_bit
|
||||
self.pre_seq_len = pre_seq_len
|
||||
self.prefix_projection = prefix_projection
|
||||
super().__init__(**kwargs)
|
||||
|
||||
@@ -1,11 +1,9 @@
|
||||
import base64
|
||||
import bz2
|
||||
import ctypes
|
||||
from functools import partial
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
from torch.nn import Linear
|
||||
from torch.nn.parameter import Parameter
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
@@ -2,10 +2,9 @@
|
||||
|
||||
import copy
|
||||
import math
|
||||
import re
|
||||
import sys
|
||||
import warnings
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
@@ -22,10 +21,11 @@ from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import logging
|
||||
|
||||
from modelscope import Model, TorchModel
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models import MODELS, Model, TorchModel
|
||||
from modelscope.outputs import OutputKeys
|
||||
from modelscope.utils.constant import Tasks
|
||||
from ... import MODELS
|
||||
from .configuration import ChatGLM2Config
|
||||
|
||||
# flags required to enable jit fusion kernels
|
||||
@@ -61,17 +61,50 @@ class InvalidScoreLogitsProcessor(LogitsProcessor):
|
||||
return scores
|
||||
|
||||
|
||||
class PrefixEncoder(torch.nn.Module):
|
||||
"""
|
||||
The torch.nn model to encode the prefix
|
||||
Input shape: (batch-size, prefix-length)
|
||||
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
||||
"""
|
||||
|
||||
def __init__(self, config: ChatGLM2Config):
|
||||
super().__init__()
|
||||
self.prefix_projection = config.prefix_projection
|
||||
if self.prefix_projection:
|
||||
# Use a two-layer MLP to encode the prefix
|
||||
kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
|
||||
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
|
||||
self.trans = torch.nn.Sequential(
|
||||
torch.nn.Linear(kv_size, config.hidden_size), torch.nn.Tanh(),
|
||||
torch.nn.Linear(config.hidden_size, kv_size))
|
||||
else:
|
||||
self.embedding = torch.nn.Embedding(
|
||||
config.pre_seq_len, config.num_layers * config.kv_channels
|
||||
* config.multi_query_group_num * 2)
|
||||
|
||||
def forward(self, prefix: torch.Tensor):
|
||||
if self.prefix_projection:
|
||||
prefix_tokens = self.embedding(prefix)
|
||||
past_key_values = self.trans(prefix_tokens)
|
||||
else:
|
||||
past_key_values = self.embedding(prefix)
|
||||
return past_key_values
|
||||
|
||||
|
||||
def split_tensor_along_last_dim(
|
||||
tensor: torch.Tensor,
|
||||
num_partitions: int,
|
||||
contiguous_split_chunks: bool = False,
|
||||
) -> List[torch.Tensor]:
|
||||
"""Split a tensor along its last dimension.
|
||||
|
||||
Arguments:
|
||||
tensor: input tensor.
|
||||
num_partitions: number of partitions to split the tensor
|
||||
contiguous_split_chunks: If True, make each chunk contiguous
|
||||
in memory.
|
||||
|
||||
Returns:
|
||||
A list of Tensors
|
||||
"""
|
||||
@@ -92,7 +125,7 @@ class RotaryEmbedding(nn.Module):
|
||||
def __init__(self, dim, original_impl=False, device=None, dtype=None):
|
||||
super().__init__()
|
||||
inv_freq = 1.0 / (10000**(
|
||||
torch.arange(0, dim, 2, device=device, dtype=dtype) / dim))
|
||||
torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
|
||||
self.register_buffer('inv_freq', inv_freq)
|
||||
self.dim = dim
|
||||
self.original_impl = original_impl
|
||||
@@ -104,6 +137,7 @@ class RotaryEmbedding(nn.Module):
|
||||
device: torch.device,
|
||||
base: int = 10000):
|
||||
"""Enhanced Transformer with Rotary Position Embedding.
|
||||
|
||||
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
|
||||
transformers/rope/__init__.py. MIT License:
|
||||
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
|
||||
@@ -325,6 +359,7 @@ class CoreAttention(torch.nn.Module):
|
||||
|
||||
class SelfAttention(torch.nn.Module):
|
||||
"""Parallel self-attention layer abstract class.
|
||||
|
||||
Self-attention layer takes input with size [s, b, h]
|
||||
and returns output of the same size.
|
||||
"""
|
||||
@@ -421,9 +456,9 @@ class SelfAttention(torch.nn.Module):
|
||||
self.num_multi_query_groups_per_partition,
|
||||
self.hidden_size_per_attention_head))
|
||||
else:
|
||||
new_tensor_shape = mixed_x_layer.size()[:-1] + (
|
||||
self.num_attention_heads_per_partition, # noqa
|
||||
3 * self.hidden_size_per_attention_head) # noqa
|
||||
new_tensor_shape = mixed_x_layer.size()[:-1] + \
|
||||
(self.num_attention_heads_per_partition, # noqa
|
||||
3 * self.hidden_size_per_attention_head) # noqa
|
||||
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
||||
|
||||
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
||||
@@ -436,11 +471,11 @@ class SelfAttention(torch.nn.Module):
|
||||
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
|
||||
|
||||
# adjust key and value for inference
|
||||
if kv_cache is not None:
|
||||
cache_k, cache_v = kv_cache
|
||||
key_layer = torch.cat((cache_k, key_layer), dim=0)
|
||||
value_layer = torch.cat((cache_v, value_layer), dim=0)
|
||||
if use_cache:
|
||||
if kv_cache is not None:
|
||||
cache_k, cache_v = kv_cache
|
||||
key_layer = torch.cat((cache_k, key_layer), dim=0)
|
||||
value_layer = torch.cat((cache_v, value_layer), dim=0)
|
||||
kv_cache = (key_layer, value_layer)
|
||||
else:
|
||||
kv_cache = None
|
||||
@@ -487,6 +522,7 @@ def _config_to_kwargs(args):
|
||||
|
||||
class MLP(torch.nn.Module):
|
||||
"""MLP.
|
||||
|
||||
MLP will take the input with h hidden state, project it to 4*h
|
||||
hidden dimension, perform nonlinear transformation, and project the
|
||||
state back into h hidden dimension.
|
||||
@@ -530,6 +566,7 @@ class MLP(torch.nn.Module):
|
||||
|
||||
class GLMBlock(torch.nn.Module):
|
||||
"""A single transformer layer.
|
||||
|
||||
Transformer layer takes input with size [s, b, h] and returns an
|
||||
output of the same size.
|
||||
"""
|
||||
@@ -642,6 +679,8 @@ class GLMTransformer(torch.nn.Module):
|
||||
device=device,
|
||||
dtype=config.torch_dtype)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def _get_layer(self, layer_number):
|
||||
return self.layers[layer_number]
|
||||
|
||||
@@ -657,6 +696,13 @@ class GLMTransformer(torch.nn.Module):
|
||||
if not kv_caches:
|
||||
kv_caches = [None for _ in range(self.num_layers)]
|
||||
presents = () if use_cache else None
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
all_self_attentions = None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
for index in range(self.num_layers):
|
||||
@@ -664,13 +710,18 @@ class GLMTransformer(torch.nn.Module):
|
||||
all_hidden_states = all_hidden_states + (hidden_states, )
|
||||
|
||||
layer = self._get_layer(index)
|
||||
|
||||
hidden_states, kv_cache = layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
rotary_pos_emb,
|
||||
kv_cache=kv_caches[index],
|
||||
use_cache=use_cache)
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_ret = torch.utils.checkpoint.checkpoint(
|
||||
layer, hidden_states, attention_mask, rotary_pos_emb,
|
||||
kv_caches[index], use_cache)
|
||||
else:
|
||||
layer_ret = layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
rotary_pos_emb,
|
||||
kv_cache=kv_caches[index],
|
||||
use_cache=use_cache)
|
||||
hidden_states, kv_cache = layer_ret
|
||||
if use_cache:
|
||||
presents = presents + (kv_cache, )
|
||||
|
||||
@@ -724,7 +775,7 @@ class ChatGLMPreTrainedModel(TorchModel, PreTrainedModel):
|
||||
dim=-1) # noqa
|
||||
if padding_mask is not None:
|
||||
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(
|
||||
1) # noqa
|
||||
1)
|
||||
if not past_length and padding_mask is not None:
|
||||
full_attention_mask -= padding_mask.unsqueeze(-1) - 1
|
||||
full_attention_mask = (full_attention_mask < 0.5).bool()
|
||||
@@ -739,7 +790,7 @@ class ChatGLMPreTrainedModel(TorchModel, PreTrainedModel):
|
||||
return position_ids
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if isinstance(module, ChatGLMModel):
|
||||
if isinstance(module, GLMTransformer):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
@classmethod
|
||||
@@ -801,6 +852,9 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
||||
if device is not None:
|
||||
init_kwargs['device'] = device
|
||||
self.embedding = init_method(Embedding, config, **init_kwargs)
|
||||
self.num_layers = config.num_layers
|
||||
self.multi_query_group_num = config.multi_query_group_num
|
||||
self.kv_channels = config.kv_channels
|
||||
|
||||
# Rotary positional embeddings
|
||||
self.seq_length = config.seq_length
|
||||
@@ -821,7 +875,30 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
||||
bias=False,
|
||||
dtype=config.torch_dtype,
|
||||
**init_kwargs)
|
||||
self.gradient_checkpointing = False
|
||||
self.pre_seq_len = config.pre_seq_len
|
||||
self.prefix_projection = config.prefix_projection
|
||||
if self.pre_seq_len is not None:
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
||||
self.prefix_encoder = PrefixEncoder(config)
|
||||
self.dropout = torch.nn.Dropout(0.1)
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embedding.word_embeddings
|
||||
|
||||
def get_prompt(self, batch_size, device, dtype=torch.half):
|
||||
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size,
|
||||
-1).to(device)
|
||||
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
||||
past_key_values = past_key_values.view(batch_size, self.pre_seq_len,
|
||||
self.num_layers * 2,
|
||||
self.multi_query_group_num,
|
||||
self.kv_channels)
|
||||
# seq_len, b, nh, hidden_size
|
||||
past_key_values = self.dropout(past_key_values)
|
||||
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
||||
return past_key_values
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@@ -847,6 +924,21 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embedding(input_ids)
|
||||
|
||||
if self.pre_seq_len is not None:
|
||||
if past_key_values is None:
|
||||
past_key_values = self.get_prompt(
|
||||
batch_size=batch_size,
|
||||
device=input_ids.device,
|
||||
dtype=inputs_embeds.dtype)
|
||||
if attention_mask is not None:
|
||||
attention_mask = torch.cat(
|
||||
[
|
||||
attention_mask.new_ones( # noqa
|
||||
(batch_size, self.pre_seq_len)),
|
||||
attention_mask # noqa
|
||||
], # noqa
|
||||
dim=-1) # noqa
|
||||
|
||||
if full_attention_mask is None:
|
||||
if (attention_mask is not None
|
||||
and not attention_mask.all()) or (past_key_values
|
||||
@@ -923,7 +1015,7 @@ class ChatGLM2ForConditionalGeneration(ChatGLMPreTrainedModel):
|
||||
attention_mask, # noqa
|
||||
attention_mask.new_ones(
|
||||
(attention_mask.shape[0], 1)) # noqa
|
||||
],
|
||||
], # noqa
|
||||
dim=-1) # noqa
|
||||
|
||||
# update position ids
|
||||
@@ -1032,6 +1124,7 @@ class ChatGLM2ForConditionalGeneration(ChatGLMPreTrainedModel):
|
||||
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
||||
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
||||
beam_idx at every generation step.
|
||||
|
||||
Output shares the same memory storage as `past`.
|
||||
"""
|
||||
return tuple((
|
||||
@@ -1048,11 +1141,7 @@ class ChatGLM2ForConditionalGeneration(ChatGLMPreTrainedModel):
|
||||
tokenizer,
|
||||
query: str,
|
||||
history: List[Tuple[str, str]] = None):
|
||||
prompt = ''
|
||||
for i, (old_query, response) in enumerate(history):
|
||||
prompt += '[Round {}]\n\n问:{}\n\n答:{}\n\n'.format(
|
||||
i + 1, old_query, response)
|
||||
prompt += '[Round {}]\n\n问:{}\n\n答:'.format(len(history) + 1, query)
|
||||
prompt = tokenizer.build_prompt(query, history=history)
|
||||
inputs = tokenizer([prompt], return_tensors='pt')
|
||||
inputs = inputs.to(self.device)
|
||||
return inputs
|
||||
@@ -1080,7 +1169,7 @@ class ChatGLM2ForConditionalGeneration(ChatGLMPreTrainedModel):
|
||||
tokenizer,
|
||||
query: str,
|
||||
history: List[Tuple[str, str]] = None,
|
||||
max_length: int = 2048,
|
||||
max_length: int = 8192,
|
||||
num_beams=1,
|
||||
do_sample=True,
|
||||
top_p=0.8,
|
||||
@@ -1115,7 +1204,7 @@ class ChatGLM2ForConditionalGeneration(ChatGLMPreTrainedModel):
|
||||
query: str,
|
||||
history: List[Tuple[str, str]] = None,
|
||||
past_key_values=None,
|
||||
max_length: int = 2048,
|
||||
max_length: int = 8192,
|
||||
do_sample=True,
|
||||
top_p=0.8,
|
||||
temperature=0.8,
|
||||
@@ -1142,6 +1231,8 @@ class ChatGLM2ForConditionalGeneration(ChatGLMPreTrainedModel):
|
||||
tokenizer, query, history=history)
|
||||
if past_key_values is not None:
|
||||
past_length = past_key_values[0][0].shape[0]
|
||||
if self.transformer.pre_seq_len is not None:
|
||||
past_length -= self.transformer.pre_seq_len
|
||||
inputs.position_ids += past_length
|
||||
attention_mask = inputs.attention_mask
|
||||
attention_mask = torch.cat(
|
||||
@@ -1157,12 +1248,13 @@ class ChatGLM2ForConditionalGeneration(ChatGLMPreTrainedModel):
|
||||
outputs, past_key_values = outputs
|
||||
outputs = outputs.tolist()[0][len(inputs['input_ids'][0]):]
|
||||
response = tokenizer.decode(outputs)
|
||||
response = self.process_response(response)
|
||||
new_history = history + [(query, response)]
|
||||
if return_past_key_values:
|
||||
yield response, new_history, past_key_values
|
||||
else:
|
||||
yield response, new_history
|
||||
if response and response[-1] != '<EFBFBD>':
|
||||
response = self.process_response(response)
|
||||
new_history = history + [(query, response)]
|
||||
if return_past_key_values:
|
||||
yield response, new_history, past_key_values
|
||||
else:
|
||||
yield response, new_history
|
||||
|
||||
@torch.no_grad()
|
||||
def stream_generate(
|
||||
@@ -1295,7 +1387,8 @@ class ChatGLM2ForConditionalGeneration(ChatGLMPreTrainedModel):
|
||||
self.transformer.encoder,
|
||||
bits,
|
||||
empty_init=empty_init,
|
||||
device=device)
|
||||
device=device,
|
||||
**kwargs)
|
||||
return self
|
||||
|
||||
def chat(self, input: Dict, tokenizer) -> Dict:
|
||||
|
||||
@@ -1,13 +1,10 @@
|
||||
"""Tokenization classes for ChatGLM."""
|
||||
import os
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
from transformers import PreTrainedTokenizer
|
||||
from transformers.tokenization_utils_base import BatchEncoding, EncodedInput
|
||||
from transformers.utils import PaddingStrategy, logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
from transformers.utils import PaddingStrategy
|
||||
|
||||
|
||||
class SPTokenizer:
|
||||
@@ -21,7 +18,7 @@ class SPTokenizer:
|
||||
self.n_words: int = self.sp_model.vocab_size()
|
||||
self.bos_id: int = self.sp_model.bos_id()
|
||||
self.eos_id: int = self.sp_model.eos_id()
|
||||
self.pad_id: int = self.sp_model.eos_id()
|
||||
self.pad_id: int = self.sp_model.unk_id()
|
||||
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
||||
|
||||
special_tokens = ['[MASK]', '[gMASK]', '[sMASK]', 'sop', 'eop']
|
||||
@@ -62,7 +59,9 @@ class SPTokenizer:
|
||||
|
||||
def convert_id_to_token(self, index):
|
||||
"""Converts an index (integer) in a token (str) using the vocab."""
|
||||
if index in self.index_special_tokens:
|
||||
if index in self.index_special_tokens or index in [
|
||||
self.eos_id, self.bos_id, self.pad_id
|
||||
] or index < 0:
|
||||
return ''
|
||||
return self.sp_model.IdToPiece(index)
|
||||
|
||||
@@ -76,6 +75,7 @@ class ChatGLM2Tokenizer(PreTrainedTokenizer):
|
||||
super().__init__(padding_side=padding_side, **kwargs)
|
||||
self.name = 'GLMTokenizer'
|
||||
|
||||
self.vocab_file = vocab_file
|
||||
self.tokenizer = SPTokenizer(vocab_file)
|
||||
self.special_tokens = {
|
||||
'<bos>': self.tokenizer.bos_id,
|
||||
@@ -91,12 +91,16 @@ class ChatGLM2Tokenizer(PreTrainedTokenizer):
|
||||
|
||||
@property
|
||||
def pad_token(self) -> str:
|
||||
return '</s>'
|
||||
return '<unk>'
|
||||
|
||||
@property
|
||||
def pad_token_id(self):
|
||||
return self.get_command('<pad>')
|
||||
|
||||
@property
|
||||
def eos_token(self) -> str:
|
||||
return '</s>'
|
||||
|
||||
@property
|
||||
def eos_token_id(self):
|
||||
return self.get_command('<eos>')
|
||||
@@ -131,11 +135,13 @@ class ChatGLM2Tokenizer(PreTrainedTokenizer):
|
||||
def save_vocabulary(self, save_directory, filename_prefix=None):
|
||||
"""
|
||||
Save the vocabulary and special tokens file to a directory.
|
||||
|
||||
Args:
|
||||
save_directory (`str`):
|
||||
The directory in which to save the vocabulary.
|
||||
filename_prefix (`str`, *optional*):
|
||||
An optional prefix to add to the named of the saved files.
|
||||
|
||||
Returns:
|
||||
`Tuple(str)`: Paths to the files saved.
|
||||
"""
|
||||
@@ -157,6 +163,16 @@ class ChatGLM2Tokenizer(PreTrainedTokenizer):
|
||||
prefix_tokens = [self.get_command('[gMASK]'), self.get_command('sop')]
|
||||
return prefix_tokens
|
||||
|
||||
def build_prompt(self, query, history=None):
|
||||
if history is None:
|
||||
history = []
|
||||
prompt = ''
|
||||
for i, (old_query, response) in enumerate(history):
|
||||
prompt += '[Round {}]\n\n问:{}\n\n答:{}\n\n'.format(
|
||||
i + 1, old_query, response)
|
||||
prompt += '[Round {}]\n\n问:{}\n\n答:'.format(len(history) + 1, query)
|
||||
return prompt
|
||||
|
||||
def build_inputs_with_special_tokens(
|
||||
self,
|
||||
token_ids_0: List[int],
|
||||
@@ -164,13 +180,16 @@ class ChatGLM2Tokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
||||
adding special tokens. A BERT sequence has the following format:
|
||||
|
||||
- single sequence: `[CLS] X [SEP]`
|
||||
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
||||
|
||||
Args:
|
||||
token_ids_0 (`List[int]`):
|
||||
List of IDs to which the special tokens will be added.
|
||||
token_ids_1 (`List[int]`, *optional*):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
||||
"""
|
||||
@@ -192,16 +211,19 @@ class ChatGLM2Tokenizer(PreTrainedTokenizer):
|
||||
) -> dict:
|
||||
"""
|
||||
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
||||
|
||||
Args:
|
||||
encoded_inputs:
|
||||
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
||||
max_length: maximum length of the returned list and optionally padding length (see below).
|
||||
Will truncate by taking into account the special tokens.
|
||||
padding_strategy: PaddingStrategy to use for padding.
|
||||
|
||||
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
||||
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
||||
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
||||
The tokenizer padding sides are defined in self.padding_side:
|
||||
|
||||
- 'left': pads on the left of the sequences
|
||||
- 'right': pads on the right of the sequences
|
||||
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
||||
|
||||
29
modelscope/models/nlp/llama2/__init__.py
Normal file
29
modelscope/models/nlp/llama2/__init__.py
Normal file
@@ -0,0 +1,29 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from modelscope.utils.import_utils import LazyImportModule
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .configuration import Llama2Config
|
||||
from .text_generation import Llama2ForTextGeneration
|
||||
from .backbone import Llama2Model
|
||||
from .tokenization import Llama2Tokenizer
|
||||
from .tokenization_fast import Llama2TokenizerFast
|
||||
else:
|
||||
_import_structure = {
|
||||
'configuration': ['Llama2Config'],
|
||||
'text_generation': ['Llama2ForTextGeneration'],
|
||||
'backbone': ['Llama2Model'],
|
||||
'tokenization': ['Llama2Tokenizer'],
|
||||
'tokenization_fast': ['Llama2TokenizerFast'],
|
||||
}
|
||||
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = LazyImportModule(
|
||||
__name__,
|
||||
globals()['__file__'],
|
||||
_import_structure,
|
||||
module_spec=__spec__,
|
||||
extra_objects={},
|
||||
)
|
||||
667
modelscope/models/nlp/llama2/backbone.py
Executable file
667
modelscope/models/nlp/llama2/backbone.py
Executable file
@@ -0,0 +1,667 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" PyTorch LLaMA model."""
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import math
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
|
||||
from modelscope import TorchModel, Model
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.logger import get_logger
|
||||
from .configuration import Llama2Config
|
||||
from ... import MODELS
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
_CONFIG_FOR_DOC = 'Llama2Config'
|
||||
|
||||
|
||||
# This file is mainly copied from the llama code of transformers
|
||||
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
||||
def _make_causal_mask(
|
||||
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
||||
):
|
||||
"""
|
||||
Make causal mask used for bi-directional self-attention.
|
||||
"""
|
||||
bsz, tgt_len = input_ids_shape
|
||||
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
||||
mask_cond = torch.arange(mask.size(-1), device=device)
|
||||
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
||||
mask = mask.to(dtype)
|
||||
|
||||
if past_key_values_length > 0:
|
||||
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
||||
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
||||
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
||||
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
||||
"""
|
||||
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||||
"""
|
||||
bsz, src_len = mask.size()
|
||||
tgt_len = tgt_len if tgt_len is not None else src_len
|
||||
|
||||
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||
|
||||
inverted_mask = 1.0 - expanded_mask
|
||||
|
||||
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
||||
|
||||
|
||||
class LlamaRMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
"""
|
||||
LlamaRMSNorm is equivalent to T5LayerNorm
|
||||
"""
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states.to(input_dtype)
|
||||
|
||||
|
||||
class LlamaRotaryEmbedding(torch.nn.Module):
|
||||
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
||||
super().__init__()
|
||||
|
||||
self.dim = dim
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.base = base
|
||||
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
||||
self.register_buffer("inv_freq", inv_freq)
|
||||
|
||||
# Build here to make `torch.jit.trace` work.
|
||||
self._set_cos_sin_cache(
|
||||
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
||||
)
|
||||
|
||||
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
||||
self.max_seq_len_cached = seq_len
|
||||
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
||||
|
||||
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
||||
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
||||
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
||||
|
||||
def forward(self, x, seq_len=None):
|
||||
# x: [bs, num_attention_heads, seq_len, head_size]
|
||||
if seq_len > self.max_seq_len_cached:
|
||||
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
||||
|
||||
return (
|
||||
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
||||
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
||||
)
|
||||
|
||||
|
||||
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
||||
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
||||
|
||||
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
||||
self.scaling_factor = scaling_factor
|
||||
super().__init__(dim, max_position_embeddings, base, device)
|
||||
|
||||
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
||||
self.max_seq_len_cached = seq_len
|
||||
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
||||
t = t / self.scaling_factor
|
||||
|
||||
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
||||
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
||||
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
||||
|
||||
|
||||
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
||||
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
||||
|
||||
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
||||
self.scaling_factor = scaling_factor
|
||||
super().__init__(dim, max_position_embeddings, base, device)
|
||||
|
||||
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
||||
self.max_seq_len_cached = seq_len
|
||||
|
||||
if seq_len > self.max_position_embeddings:
|
||||
base = self.base * (
|
||||
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
||||
) ** (self.dim / (self.dim - 2))
|
||||
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
||||
self.register_buffer("inv_freq", inv_freq)
|
||||
|
||||
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
||||
|
||||
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
||||
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
||||
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
"""Rotates half the hidden dims of the input."""
|
||||
x1 = x[..., : x.shape[-1] // 2]
|
||||
x2 = x[..., x.shape[-1] // 2 :]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
||||
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
||||
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
class LlamaMLP(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.pretraining_tp = config.pretraining_tp
|
||||
self.hidden_size = config.hidden_size
|
||||
self.intermediate_size = config.intermediate_size
|
||||
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||||
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||||
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||||
self.act_fn = ACT2FN[config.hidden_act]
|
||||
|
||||
def forward(self, x):
|
||||
if self.pretraining_tp > 1:
|
||||
slice = self.intermediate_size // self.pretraining_tp
|
||||
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
||||
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
||||
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
||||
|
||||
gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
|
||||
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
|
||||
|
||||
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
||||
down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)]
|
||||
down_proj = sum(down_proj)
|
||||
else:
|
||||
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
||||
|
||||
return down_proj
|
||||
|
||||
|
||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
"""
|
||||
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
||||
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
||||
"""
|
||||
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
||||
if n_rep == 1:
|
||||
return hidden_states
|
||||
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
||||
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
||||
|
||||
|
||||
class LlamaAttention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
def __init__(self, config: Llama2Config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_size = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
self.num_key_value_heads = config.num_key_value_heads
|
||||
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
||||
self.pretraining_tp = config.pretraining_tp
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
|
||||
if (self.head_dim * self.num_heads) != self.hidden_size:
|
||||
raise ValueError(
|
||||
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||||
f" and `num_heads`: {self.num_heads})."
|
||||
)
|
||||
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
||||
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
||||
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
||||
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
||||
self._init_rope()
|
||||
|
||||
def _init_rope(self):
|
||||
if self.config.rope_scaling is None:
|
||||
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
||||
else:
|
||||
scaling_type = self.config.rope_scaling["type"]
|
||||
scaling_factor = self.config.rope_scaling["factor"]
|
||||
if scaling_type == "linear":
|
||||
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
||||
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
||||
)
|
||||
elif scaling_type == "dynamic":
|
||||
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
||||
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
||||
|
||||
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||||
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
if self.pretraining_tp > 1:
|
||||
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
|
||||
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
|
||||
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
||||
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
||||
|
||||
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
|
||||
query_states = torch.cat(query_states, dim=-1)
|
||||
|
||||
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
|
||||
key_states = torch.cat(key_states, dim=-1)
|
||||
|
||||
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
|
||||
value_states = torch.cat(value_states, dim=-1)
|
||||
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
||||
|
||||
if past_key_value is not None:
|
||||
# reuse k, v, self_attention
|
||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
|
||||
past_key_value = (key_states, value_states) if use_cache else None
|
||||
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
raise ValueError(
|
||||
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
||||
f" {attn_weights.size()}"
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||
raise ValueError(
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
raise ValueError(
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||||
f" {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
if self.pretraining_tp > 1:
|
||||
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
|
||||
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
|
||||
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
|
||||
else:
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
class LlamaDecoderLayer(nn.Module):
|
||||
def __init__(self, config: Llama2Config):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.self_attn = LlamaAttention(config=config)
|
||||
self.mlp = LlamaMLP(config)
|
||||
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
||||
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||||
(see `past_key_values`).
|
||||
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||||
"""
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
|
||||
# Self Attention
|
||||
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
outputs = (hidden_states,)
|
||||
|
||||
if output_attentions:
|
||||
outputs += (self_attn_weights,)
|
||||
|
||||
if use_cache:
|
||||
outputs += (present_key_value,)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class LlamaPreTrainedModel(TorchModel, PreTrainedModel):
|
||||
config_class = Llama2Config
|
||||
base_model_prefix = "model"
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["LlamaDecoderLayer"]
|
||||
_skip_keys_device_placement = "past_key_values"
|
||||
|
||||
def __init__(self, config, **kwargs):
|
||||
super().__init__(config.name_or_path, **kwargs)
|
||||
super(Model, self).__init__(config)
|
||||
|
||||
def _init_weights(self, module):
|
||||
std = self.config.initializer_range
|
||||
if isinstance(module, nn.Linear):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Embedding):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if isinstance(module, LlamaModel):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
@classmethod
|
||||
def _instantiate(cls, **kwargs):
|
||||
"""Instantiate the model.
|
||||
|
||||
Args:
|
||||
kwargs: Input args.
|
||||
model_dir: The model dir used to load the checkpoint and the label information.
|
||||
num_labels: An optional arg to tell the model how many classes to initialize.
|
||||
Method will call utils.parse_label_mapping if num_labels not supplied.
|
||||
If num_labels is not found, the model will use the default setting (2 classes).
|
||||
|
||||
Returns:
|
||||
The loaded model, which is initialized by transformers.PreTrainedModel.from_pretrained
|
||||
"""
|
||||
|
||||
model_dir = kwargs.pop('model_dir', None)
|
||||
if model_dir is None:
|
||||
config = Llama2Config(**kwargs)
|
||||
model = cls(config)
|
||||
else:
|
||||
model = super(Model, cls).from_pretrained(
|
||||
pretrained_model_name_or_path=model_dir, **kwargs)
|
||||
model.model_dir = model_dir
|
||||
return model
|
||||
|
||||
|
||||
@MODELS.register_module(Tasks.backbone, module_name=Models.llama2)
|
||||
class Llama2Model(LlamaPreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: Llama2Config
|
||||
"""
|
||||
|
||||
def __init__(self, config: Llama2Config):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||||
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||||
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embed_tokens = value
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
||||
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
||||
# create causal mask
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
combined_attention_mask = None
|
||||
if input_shape[-1] > 1:
|
||||
combined_attention_mask = _make_causal_mask(
|
||||
input_shape,
|
||||
inputs_embeds.dtype,
|
||||
device=inputs_embeds.device,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
||||
inputs_embeds.device
|
||||
)
|
||||
combined_attention_mask = (
|
||||
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
||||
)
|
||||
|
||||
return combined_attention_mask
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
|
||||
if past_key_values is not None:
|
||||
past_key_values_length = past_key_values[0][0].shape[2]
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
|
||||
if position_ids is None:
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
position_ids = torch.arange(
|
||||
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
||||
)
|
||||
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||
else:
|
||||
position_ids = position_ids.view(-1, seq_length).long()
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
# embed positions
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(
|
||||
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
||||
)
|
||||
attention_mask = self._prepare_decoder_attention_mask(
|
||||
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
for idx, decoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, output_attentions, None)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(decoder_layer),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
None,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
161
modelscope/models/nlp/llama2/configuration.py
Normal file
161
modelscope/models/nlp/llama2/configuration.py
Normal file
@@ -0,0 +1,161 @@
|
||||
# coding=utf-8
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" LLaMA model configuration"""
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from modelscope.utils.logger import get_logger
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
||||
|
||||
|
||||
class Llama2Config(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the LLaMA-7B.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 32000):
|
||||
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`LlamaModel`]
|
||||
hidden_size (`int`, *optional*, defaults to 4096):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 11008):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
num_key_value_heads (`int`, *optional*):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||||
`num_attention_heads`.
|
||||
pretraining_tp (`int`, *optional*, defaults to `1`):
|
||||
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
||||
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
||||
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
||||
issue](https://github.com/pytorch/pytorch/issues/76232).
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
rope_scaling (`Dict`, *optional*):
|
||||
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling
|
||||
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
||||
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
||||
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
||||
these scaling strategies behave:
|
||||
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
||||
experimental feature, subject to breaking API changes in future versions.
|
||||
"""
|
||||
model_type = "llama"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=32000,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=None,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=2048,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=0,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
pretraining_tp=1,
|
||||
tie_word_embeddings=False,
|
||||
rope_scaling=None,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.pretraining_tp = pretraining_tp
|
||||
self.use_cache = use_cache
|
||||
self.rope_scaling = rope_scaling
|
||||
self._rope_scaling_validation()
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def _rope_scaling_validation(self):
|
||||
"""
|
||||
Validate the `rope_scaling` configuration.
|
||||
"""
|
||||
if self.rope_scaling is None:
|
||||
return
|
||||
|
||||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
||||
raise ValueError(
|
||||
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
|
||||
f"got {self.rope_scaling}"
|
||||
)
|
||||
rope_scaling_type = self.rope_scaling.get("type", None)
|
||||
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
||||
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
||||
raise ValueError(
|
||||
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
||||
)
|
||||
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
||||
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
|
||||
182
modelscope/models/nlp/llama2/text_generation.py
Normal file
182
modelscope/models/nlp/llama2/text_generation.py
Normal file
@@ -0,0 +1,182 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.utils.constant import Tasks
|
||||
from .backbone import LlamaPreTrainedModel, Llama2Model
|
||||
from ... import MODELS
|
||||
|
||||
|
||||
# This file is mainly copied from the llama code of transformers
|
||||
@MODELS.register_module(Tasks.text_generation, module_name=Models.llama2)
|
||||
class Llama2ForTextGeneration(LlamaPreTrainedModel):
|
||||
_tied_weights_keys = ["lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = Llama2Model(config)
|
||||
self.pretraining_tp = config.pretraining_tp
|
||||
self.vocab_size = config.vocab_size
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.embed_tokens = value
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
r"""
|
||||
Args:
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
if self.pretraining_tp > 1:
|
||||
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.pretraining_tp, dim=0)
|
||||
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.pretraining_tp)]
|
||||
logits = torch.cat(logits, dim=-1)
|
||||
else:
|
||||
logits = self.lm_head(hidden_states)
|
||||
logits = logits.float()
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||||
shift_labels = shift_labels.view(-1)
|
||||
# Enable model parallelism
|
||||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
||||
):
|
||||
if past_key_values:
|
||||
input_ids = input_ids[:, -1:]
|
||||
|
||||
position_ids = kwargs.get("position_ids", None)
|
||||
if attention_mask is not None and position_ids is None:
|
||||
# create position_ids on the fly for batch generation
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
if past_key_values:
|
||||
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
"position_ids": position_ids,
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
@staticmethod
|
||||
def _reorder_cache(past_key_values, beam_idx):
|
||||
reordered_past = ()
|
||||
for layer_past in past_key_values:
|
||||
reordered_past += (
|
||||
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
||||
)
|
||||
return reordered_past
|
||||
393
modelscope/models/nlp/llama2/tokenization.py
Normal file
393
modelscope/models/nlp/llama2/tokenization.py
Normal file
@@ -0,0 +1,393 @@
|
||||
# coding=utf-8
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tokenization classes for LLaMA."""
|
||||
import os
|
||||
from shutil import copyfile
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
||||
|
||||
import sentencepiece as spm
|
||||
|
||||
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
||||
from modelscope.utils.logger import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.pipelines.conversational import Conversation
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {
|
||||
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model",
|
||||
},
|
||||
"tokenizer_file": {
|
||||
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json",
|
||||
},
|
||||
}
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
"hf-internal-testing/llama-tokenizer": 2048,
|
||||
}
|
||||
SPIECE_UNDERLINE = "▁"
|
||||
|
||||
B_INST, E_INST = "[INST]", "[/INST]"
|
||||
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
||||
|
||||
# fmt: off
|
||||
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your\
|
||||
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
|
||||
that your responses are socially unbiased and positive in nature.
|
||||
|
||||
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not\
|
||||
correct. If you don't know the answer to a question, please don't share false information."""
|
||||
# fmt: on
|
||||
|
||||
|
||||
class Llama2Tokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
|
||||
no padding token in the original model.
|
||||
|
||||
Args:
|
||||
vocab_file (`str`):
|
||||
Path to the vocabulary file.
|
||||
legacy (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the `legacy` behaviour of the tokenizer should be used. Legacy is before the merge of #24622
|
||||
which includes fixes to properly handle tokens that appear after special tokens. A simple example:
|
||||
|
||||
- `legacy=True`:
|
||||
```python
|
||||
>>> from transformers import T5Tokenizer
|
||||
|
||||
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=True)
|
||||
>>> tokenizer.encode("Hello <extra_id_0>.")
|
||||
[8774, 32099, 3, 5, 1]
|
||||
```
|
||||
- `legacy=False`:
|
||||
```python
|
||||
>>> from transformers import T5Tokenizer
|
||||
|
||||
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False)
|
||||
>>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here
|
||||
[8774, 32099, 5, 1]
|
||||
```
|
||||
Checkout the pull request and the issue [here](https://github.com/huggingface/transformers/pull/24565) for
|
||||
more details.
|
||||
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
model_input_names = ["input_ids", "attention_mask"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
unk_token="<unk>",
|
||||
bos_token="<s>",
|
||||
eos_token="</s>",
|
||||
pad_token=None,
|
||||
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
||||
add_bos_token=True,
|
||||
add_eos_token=False,
|
||||
clean_up_tokenization_spaces=False,
|
||||
legacy=True,
|
||||
**kwargs,
|
||||
):
|
||||
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
||||
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
||||
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
||||
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
||||
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
||||
super().__init__(
|
||||
bos_token=bos_token,
|
||||
eos_token=eos_token,
|
||||
unk_token=unk_token,
|
||||
pad_token=pad_token,
|
||||
add_bos_token=add_bos_token,
|
||||
add_eos_token=add_eos_token,
|
||||
sp_model_kwargs=self.sp_model_kwargs,
|
||||
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||||
legacy=legacy,
|
||||
**kwargs,
|
||||
)
|
||||
if legacy:
|
||||
logger.warning_once(
|
||||
f"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to"
|
||||
" read the related pull request available at https://github.com/huggingface/transformers/pull/24565"
|
||||
)
|
||||
self.legacy = legacy
|
||||
self.vocab_file = vocab_file
|
||||
self.add_bos_token = add_bos_token
|
||||
self.add_eos_token = add_eos_token
|
||||
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||||
self.sp_model.Load(vocab_file)
|
||||
|
||||
def __getstate__(self):
|
||||
state = self.__dict__.copy()
|
||||
state["sp_model"] = None
|
||||
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
||||
return state
|
||||
|
||||
def __setstate__(self, d):
|
||||
self.__dict__ = d
|
||||
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||||
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
"""Returns vocab size"""
|
||||
return self.sp_model.get_piece_size()
|
||||
|
||||
def get_vocab(self):
|
||||
"""Returns vocab as a dict"""
|
||||
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
||||
vocab.update(self.added_tokens_encoder)
|
||||
return vocab
|
||||
|
||||
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
|
||||
def tokenize(self, text, **kwargs) -> List[str]:
|
||||
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
|
||||
# the beginning of the text
|
||||
if not self.legacy:
|
||||
text = SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " ")
|
||||
return super().tokenize(text, **kwargs)
|
||||
|
||||
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
|
||||
def _tokenize(self, text):
|
||||
"""
|
||||
Returns a tokenized string.
|
||||
|
||||
Since the sentencepiece internal model always adds a SPIECE_UNDERLINE, at the beginning of the provided text,
|
||||
we need to remove it by hand when the current text is a subsequence. This happens whenever the `self.tokenize`
|
||||
function is called with specials tokens: the input is split on the special tokens, and each subsequence is
|
||||
passed to `_tokenize`. Thus if a subsequence did not start with a `" "` or SPIECE_UNDERLINE, we have to remove
|
||||
the extra `SPIECE_UNDERLINE` prepended.
|
||||
"""
|
||||
if not self.legacy:
|
||||
is_first = text.startswith(SPIECE_UNDERLINE)
|
||||
if is_first:
|
||||
text = text[1:]
|
||||
|
||||
tokens = self.sp_model.encode(text, out_type=str)
|
||||
|
||||
if not self.legacy and not is_first and not text.startswith(" ") and tokens[0].startswith(SPIECE_UNDERLINE):
|
||||
tokens = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:]
|
||||
return tokens
|
||||
|
||||
def _convert_token_to_id(self, token):
|
||||
"""Converts a token (str) in an id using the vocab."""
|
||||
return self.sp_model.piece_to_id(token)
|
||||
|
||||
def _convert_id_to_token(self, index):
|
||||
"""Converts an index (integer) in a token (str) using the vocab."""
|
||||
token = self.sp_model.IdToPiece(index)
|
||||
return token
|
||||
|
||||
def convert_tokens_to_string(self, tokens):
|
||||
"""Converts a sequence of tokens (string) in a single string."""
|
||||
current_sub_tokens = []
|
||||
out_string = ""
|
||||
prev_is_special = False
|
||||
for i, token in enumerate(tokens):
|
||||
# make sure that special tokens are not decoded using sentencepiece model
|
||||
if token in self.all_special_tokens:
|
||||
if not prev_is_special and i != 0:
|
||||
out_string += " "
|
||||
out_string += self.sp_model.decode(current_sub_tokens) + token
|
||||
prev_is_special = True
|
||||
current_sub_tokens = []
|
||||
else:
|
||||
current_sub_tokens.append(token)
|
||||
prev_is_special = False
|
||||
out_string += self.sp_model.decode(current_sub_tokens)
|
||||
return out_string
|
||||
|
||||
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||||
"""
|
||||
Save the vocabulary and special tokens file to a directory.
|
||||
|
||||
Args:
|
||||
save_directory (`str`):
|
||||
The directory in which to save the vocabulary.
|
||||
|
||||
Returns:
|
||||
`Tuple(str)`: Paths to the files saved.
|
||||
"""
|
||||
if not os.path.isdir(save_directory):
|
||||
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||||
return
|
||||
out_vocab_file = os.path.join(
|
||||
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||||
)
|
||||
|
||||
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
elif not os.path.isfile(self.vocab_file):
|
||||
with open(out_vocab_file, "wb") as fi:
|
||||
content_spiece_model = self.sp_model.serialized_model_proto()
|
||||
fi.write(content_spiece_model)
|
||||
|
||||
return (out_vocab_file,)
|
||||
|
||||
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
||||
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
||||
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
||||
|
||||
output = bos_token_id + token_ids_0 + eos_token_id
|
||||
|
||||
if token_ids_1 is not None:
|
||||
output = output + bos_token_id + token_ids_1 + eos_token_id
|
||||
|
||||
return output
|
||||
|
||||
def get_special_tokens_mask(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
||||
) -> List[int]:
|
||||
"""
|
||||
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
||||
special tokens using the tokenizer `prepare_for_model` method.
|
||||
|
||||
Args:
|
||||
token_ids_0 (`List[int]`):
|
||||
List of IDs.
|
||||
token_ids_1 (`List[int]`, *optional*):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not the token list is already formatted with special tokens for the model.
|
||||
|
||||
Returns:
|
||||
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||||
"""
|
||||
if already_has_special_tokens:
|
||||
return super().get_special_tokens_mask(
|
||||
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
||||
)
|
||||
|
||||
bos_token_id = [1] if self.add_bos_token else []
|
||||
eos_token_id = [1] if self.add_eos_token else []
|
||||
|
||||
if token_ids_1 is None:
|
||||
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
||||
return (
|
||||
bos_token_id
|
||||
+ ([0] * len(token_ids_0))
|
||||
+ eos_token_id
|
||||
+ bos_token_id
|
||||
+ ([0] * len(token_ids_1))
|
||||
+ eos_token_id
|
||||
)
|
||||
|
||||
def create_token_type_ids_from_sequences(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
||||
sequence pair mask has the following format:
|
||||
|
||||
```
|
||||
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
||||
| first sequence | second sequence |
|
||||
```
|
||||
|
||||
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
||||
|
||||
Args:
|
||||
token_ids_0 (`List[int]`):
|
||||
List of ids.
|
||||
token_ids_1 (`List[int]`, *optional*):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
||||
"""
|
||||
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
||||
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
||||
|
||||
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
||||
|
||||
if token_ids_1 is not None:
|
||||
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
||||
|
||||
return output
|
||||
|
||||
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
|
||||
"""Builds the input ids for a conversation.
|
||||
This is the format used in the provided examples. System prompts should be manually added at the beginning of
|
||||
the conversation. If no system prompt is given, the `DEFAULT_SYSTEM_PROMPT` will be used.
|
||||
```
|
||||
<bos>[INST] B_SYS SytemPrompt E_SYS Prompt [/INST] Answer <eos>
|
||||
<bos>[INST] Prompt [/INST] Answer <eos>
|
||||
<bos>[INST] Prompt [/INST]
|
||||
```
|
||||
|
||||
If you want to use your own system prompt, make sure to use both `B_SYS` and `E_SYS` use the following:
|
||||
```python
|
||||
>>> from transformers import Conversation
|
||||
|
||||
>>> Conversation(
|
||||
... "<<SYS>>\n Only answer with emojis, and charades\n<</SYS>>\n\nHow can I build a house in 10 septs?"
|
||||
... )
|
||||
```
|
||||
Args:
|
||||
conversation (`Conversation`):
|
||||
Conversation to build input ids for.
|
||||
Returns:
|
||||
`List[int]`:
|
||||
Input ids for the conversation.
|
||||
"""
|
||||
dialogue = list(conversation.iter_texts())
|
||||
if not all([is_user for is_user, msg in dialogue[::2]]) or not all(
|
||||
[not is_user for is_user, msg in dialogue[1::2]]
|
||||
):
|
||||
raise ValueError(
|
||||
"The model only supports 'user' and 'assistant' roles, starting with user and alternating (u/a/u/a/u...)"
|
||||
)
|
||||
|
||||
dialog_tokens: List[int] = []
|
||||
if len(conversation.past_user_inputs) > 0:
|
||||
if not conversation.past_user_inputs[0].startswith(B_SYS) or E_SYS not in conversation.past_user_inputs[0]:
|
||||
conversation.past_user_inputs[0] = (
|
||||
B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + conversation.past_user_inputs[0]
|
||||
)
|
||||
elif not dialogue[0][1].startswith(B_SYS) or E_SYS not in dialogue[0][1]:
|
||||
dialogue[0] = (dialogue[0][0], B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + dialogue[0][1])
|
||||
|
||||
dialog_tokens += sum(
|
||||
[
|
||||
[self.bos_token_id]
|
||||
+ self.encode(
|
||||
f"{B_INST} {(prompt[1]).strip()} {E_INST} {(answer[1]).strip()} ", add_special_tokens=False
|
||||
)
|
||||
+ [self.eos_token_id]
|
||||
for prompt, answer in zip(dialogue[::2], dialogue[1::2])
|
||||
],
|
||||
[],
|
||||
)
|
||||
if not (dialogue[-1][0]):
|
||||
raise ValueError(f"Last message must be from user, got {dialogue[-1]['role']}")
|
||||
dialog_tokens += [self.bos_token_id] + self.encode(
|
||||
f"{B_INST} {(dialogue[-1][1]).strip()} {E_INST}", add_special_tokens=False
|
||||
)
|
||||
return dialog_tokens
|
||||
249
modelscope/models/nlp/llama2/tokenization_fast.py
Normal file
249
modelscope/models/nlp/llama2/tokenization_fast.py
Normal file
@@ -0,0 +1,249 @@
|
||||
# coding=utf-8
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
# Copyright 2020 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
from shutil import copyfile
|
||||
from typing import TYPE_CHECKING, Optional, Tuple
|
||||
|
||||
from tokenizers import processors
|
||||
|
||||
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
||||
from transformers.utils import is_sentencepiece_available, logging
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.pipelines.conversational import Conversation
|
||||
|
||||
require_version("tokenizers>=0.13.3")
|
||||
|
||||
if is_sentencepiece_available():
|
||||
from .tokenization import Llama2Tokenizer
|
||||
else:
|
||||
Llama2Tokenizer = None
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
|
||||
|
||||
B_INST, E_INST = "[INST]", "[/INST]"
|
||||
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
||||
|
||||
# fmt: off
|
||||
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your\
|
||||
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
|
||||
that your responses are socially unbiased and positive in nature.
|
||||
|
||||
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not\
|
||||
correct. If you don't know the answer to a question, please don't share false information."""
|
||||
# fmt: on
|
||||
|
||||
|
||||
class Llama2TokenizerFast(PreTrainedTokenizerFast):
|
||||
"""
|
||||
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding.
|
||||
|
||||
This uses notably ByteFallback and no normalization.
|
||||
|
||||
```
|
||||
from transformers import LlamaTokenizerFast
|
||||
|
||||
tokenizer = LlaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
|
||||
tokenizer.encode("Hello this is a test")
|
||||
>>> [1, 15043, 445, 338, 263, 1243]
|
||||
```
|
||||
|
||||
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
|
||||
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
|
||||
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
|
||||
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
|
||||
|
||||
|
||||
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
||||
refer to this superclass for more information regarding those methods.
|
||||
|
||||
Args:
|
||||
vocab_file (`str`):
|
||||
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
|
||||
contains the vocabulary necessary to instantiate a tokenizer.
|
||||
tokenizer_file (`str`):
|
||||
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
|
||||
contains everything needed to load the tokenizer.
|
||||
|
||||
clean_up_tokenization_spaces (`str`, *optional*, defaults to `False`):
|
||||
Wether to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra
|
||||
spaces.
|
||||
|
||||
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
||||
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
||||
|
||||
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
||||
The end of sequence token.
|
||||
|
||||
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
||||
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||||
token instead.
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
slow_tokenizer_class = Llama2Tokenizer
|
||||
padding_side = "left"
|
||||
model_input_names = ["input_ids", "attention_mask"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file=None,
|
||||
tokenizer_file=None,
|
||||
clean_up_tokenization_spaces=False,
|
||||
unk_token="<unk>",
|
||||
bos_token="<s>",
|
||||
eos_token="</s>",
|
||||
add_bos_token=True,
|
||||
add_eos_token=False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
vocab_file=vocab_file,
|
||||
tokenizer_file=tokenizer_file,
|
||||
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||||
unk_token=unk_token,
|
||||
bos_token=bos_token,
|
||||
eos_token=eos_token,
|
||||
**kwargs,
|
||||
)
|
||||
self._add_bos_token = add_bos_token
|
||||
self._add_eos_token = add_eos_token
|
||||
self.update_post_processor()
|
||||
|
||||
self.vocab_file = vocab_file
|
||||
self.can_save_slow_tokenizer = False if not self.vocab_file else True
|
||||
|
||||
def update_post_processor(self):
|
||||
"""
|
||||
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
||||
"""
|
||||
bos = self.bos_token
|
||||
bos_token_id = self.bos_token_id
|
||||
|
||||
eos = self.eos_token
|
||||
eos_token_id = self.eos_token_id
|
||||
|
||||
single = f"{(bos+':0 ') * self.add_bos_token}$A:0{(' '+eos+':0') * self.add_eos_token}"
|
||||
pair = f"{single}{(' '+bos+':1') * self.add_bos_token} $B:1{(' '+eos+':1') * self.add_eos_token}"
|
||||
|
||||
special_tokens = []
|
||||
if self.add_bos_token:
|
||||
special_tokens.append((bos, bos_token_id))
|
||||
if self.add_eos_token:
|
||||
special_tokens.append((eos, eos_token_id))
|
||||
self._tokenizer.post_processor = processors.TemplateProcessing(
|
||||
single=single, pair=pair, special_tokens=special_tokens
|
||||
)
|
||||
|
||||
@property
|
||||
def add_eos_token(self):
|
||||
return self._add_eos_token
|
||||
|
||||
@property
|
||||
def add_bos_token(self):
|
||||
return self._add_bos_token
|
||||
|
||||
@add_eos_token.setter
|
||||
def add_eos_token(self, value):
|
||||
self._add_eos_token = value
|
||||
self.update_post_processor()
|
||||
|
||||
@add_bos_token.setter
|
||||
def add_bos_token(self, value):
|
||||
self._add_bos_token = value
|
||||
self.update_post_processor()
|
||||
|
||||
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||||
if not self.can_save_slow_tokenizer:
|
||||
raise ValueError(
|
||||
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
||||
"tokenizer."
|
||||
)
|
||||
|
||||
if not os.path.isdir(save_directory):
|
||||
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||||
return
|
||||
out_vocab_file = os.path.join(
|
||||
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||||
)
|
||||
|
||||
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
|
||||
return (out_vocab_file,)
|
||||
|
||||
def _build_conversation_input_ids(self, conversation: "Conversation"):
|
||||
"""Builds the input ids for a conversation.
|
||||
This is the format used in the provided examples. System prompts should be manually added at the beginning of
|
||||
the conversation. If no system prompt is given, the `DEFAULT_SYSTEM_PROMPT` will be used.
|
||||
```
|
||||
<bos>[INST] B_SYS SytemPrompt E_SYS Prompt [/INST] Answer <eos>
|
||||
<bos>[INST] Prompt [/INST] Answer <eos>
|
||||
<bos>[INST] Prompt [/INST]
|
||||
```
|
||||
|
||||
If you want to use your own system prompt, make sure to use both `B_SYS` and `E_SYS` use the following:
|
||||
```python
|
||||
>>> from transformers import Conversation
|
||||
|
||||
>>> Conversation(
|
||||
... "<<SYS>>\n Only answer with emojis, and charades\n<</SYS>>\n\nHow can I build a house in 10 septs?"
|
||||
... )
|
||||
```
|
||||
Args:
|
||||
conversation (`Conversation`):
|
||||
Conversation to build input ids for.
|
||||
Returns:
|
||||
`List[int]`:
|
||||
Input ids for the conversation.
|
||||
"""
|
||||
dialogue = list(conversation.iter_texts())
|
||||
if not all([is_user for is_user, msg in dialogue[::2]]) or not all(
|
||||
[not is_user for is_user, msg in dialogue[1::2]]
|
||||
):
|
||||
raise ValueError(
|
||||
"The model only supports 'user' and 'assistant' roles, starting with user and alternating (u/a/u/a/u...)"
|
||||
)
|
||||
|
||||
dialog_tokens = []
|
||||
if len(conversation.past_user_inputs) > 0:
|
||||
if not conversation.past_user_inputs[0].startswith(B_SYS) or E_SYS not in conversation.past_user_inputs[0]:
|
||||
conversation.past_user_inputs[0] = (
|
||||
B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + conversation.past_user_inputs[0]
|
||||
)
|
||||
elif not dialogue[0][1].startswith(B_SYS) or E_SYS not in dialogue[0][1]:
|
||||
dialogue[0] = (dialogue[0][0], B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + dialogue[0][1])
|
||||
|
||||
dialog_tokens += sum(
|
||||
[
|
||||
[self.bos_token_id]
|
||||
+ self.encode(
|
||||
f"{B_INST} {(prompt[1]).strip()} {E_INST} {(answer[1]).strip()} ", add_special_tokens=False
|
||||
)
|
||||
+ [self.eos_token_id]
|
||||
for prompt, answer in zip(dialogue[::2], dialogue[1::2])
|
||||
],
|
||||
[],
|
||||
)
|
||||
if not (dialogue[-1][0]):
|
||||
raise ValueError(f"Last message must be from user, got {dialogue[-1]['role']}")
|
||||
dialog_tokens += [self.bos_token_id] + self.encode(
|
||||
f"{B_INST} {(dialogue[-1][1]).strip()} {E_INST}", add_special_tokens=False
|
||||
)
|
||||
return dialog_tokens
|
||||
@@ -3,6 +3,7 @@
|
||||
import os
|
||||
|
||||
from modelscope.msdatasets.ms_dataset import MsDataset
|
||||
from modelscope.utils.constant import DownloadMode
|
||||
|
||||
|
||||
class ASRDataset(MsDataset):
|
||||
@@ -29,11 +30,14 @@ class ASRDataset(MsDataset):
|
||||
return data_list
|
||||
|
||||
@classmethod
|
||||
def load(cls,
|
||||
dataset_name,
|
||||
namespace='speech_asr',
|
||||
train_set='train',
|
||||
dev_set='validation'):
|
||||
def load(
|
||||
cls,
|
||||
dataset_name,
|
||||
namespace='speech_asr',
|
||||
train_set='train',
|
||||
dev_set='validation',
|
||||
download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS,
|
||||
):
|
||||
if os.path.exists(dataset_name):
|
||||
data_dir = dataset_name
|
||||
ds_dict = {}
|
||||
@@ -43,6 +47,10 @@ class ASRDataset(MsDataset):
|
||||
return ds_dict
|
||||
else:
|
||||
from modelscope.msdatasets import MsDataset
|
||||
|
||||
ds_dict = MsDataset.load(
|
||||
dataset_name=dataset_name, namespace=namespace)
|
||||
dataset_name=dataset_name,
|
||||
namespace=namespace,
|
||||
download_mode=download_mode,
|
||||
)
|
||||
return ds_dict
|
||||
|
||||
@@ -223,11 +223,23 @@ class CsvDatasetBuilder(csv.Csv):
|
||||
if field_name.endswith(':FILE'):
|
||||
transform_fields.append(field_name)
|
||||
|
||||
base_extracted_dir = self.split_path_dict.get(split_name, '')
|
||||
base_extracted_dir: Union[str, list] = self.split_path_dict.get(
|
||||
split_name, '')
|
||||
for field_name in transform_fields:
|
||||
if base_extracted_dir:
|
||||
if isinstance(base_extracted_dir,
|
||||
list) and len(base_extracted_dir) > 0:
|
||||
if df.shape[0] != len(base_extracted_dir):
|
||||
logger.error(
|
||||
f"Number of lines in meta-csv file for split '{split_name}' ({df.shape[0]}) "
|
||||
f'does not match number of data-files({len(base_extracted_dir)})!'
|
||||
)
|
||||
else:
|
||||
df[field_name] = base_extracted_dir
|
||||
elif isinstance(base_extracted_dir, str) and base_extracted_dir:
|
||||
df[field_name] = df[field_name].apply(
|
||||
lambda x: os.path.join(base_extracted_dir, x))
|
||||
else:
|
||||
logger.warning(f'Nothing to do for field {field_name}')
|
||||
|
||||
pa_data = pa.Table.from_pandas(df)
|
||||
return Dataset(arrow_table=pa_data)
|
||||
|
||||
@@ -93,7 +93,7 @@ class TimestampPipeline(Pipeline):
|
||||
|
||||
def __call__(self,
|
||||
audio_in: Union[str, bytes],
|
||||
text_in: str = None,
|
||||
text_in: str,
|
||||
audio_fs: int = None,
|
||||
recog_type: str = None,
|
||||
audio_format: str = None,
|
||||
|
||||
@@ -15,7 +15,7 @@ class DiffusersPipeline(Pipeline):
|
||||
"""
|
||||
use `model` to create a diffusers pipeline
|
||||
Args:
|
||||
model: model id on modelscope hub.
|
||||
model: model id on modelscope hub or local dir.
|
||||
device: str = 'gpu'
|
||||
"""
|
||||
|
||||
|
||||
@@ -146,7 +146,8 @@ class _DiffuersChineseStableDiffusionPipeline(StableDiffusionPipeline):
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt=None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None):
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
lora_scale: Optional[float] = None):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
@@ -169,7 +170,14 @@ class _DiffuersChineseStableDiffusionPipeline(StableDiffusionPipeline):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
lora_scale (`float`, *optional*):
|
||||
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
||||
"""
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
||||
self._lora_scale = lora_scale
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
|
||||
@@ -6,8 +6,7 @@ import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision.transforms as transforms
|
||||
from diffusers import \
|
||||
StableDiffusionPipeline as DiffuserStableDiffusionPipeline
|
||||
from diffusers import DiffusionPipeline
|
||||
from PIL import Image
|
||||
|
||||
from modelscope.metainfo import Pipelines
|
||||
@@ -35,7 +34,7 @@ class StableDiffusionPipeline(DiffusersPipeline):
|
||||
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
# load pipeline
|
||||
torch_type = torch.float16 if self.device == 'cuda' else torch.float32
|
||||
self.pipeline = DiffuserStableDiffusionPipeline.from_pretrained(
|
||||
self.pipeline = DiffusionPipeline.from_pretrained(
|
||||
model, torch_dtype=torch_type)
|
||||
self.pipeline = self.pipeline.to(self.device)
|
||||
# load lora moudle to unet
|
||||
@@ -48,6 +47,60 @@ class StableDiffusionPipeline(DiffusersPipeline):
|
||||
|
||||
def forward(self, inputs: Dict[str, Any],
|
||||
**forward_params) -> Dict[str, Any]:
|
||||
"""
|
||||
Inputs Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The width in pixels of the generated image.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.5):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
||||
plain tuple.
|
||||
callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. The function will be
|
||||
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||||
called at every step.
|
||||
"""
|
||||
if not isinstance(inputs, dict):
|
||||
raise ValueError(
|
||||
f'Expected the input to be a dictionary, but got {type(input)}'
|
||||
@@ -57,7 +110,20 @@ class StableDiffusionPipeline(DiffusersPipeline):
|
||||
raise ValueError('input should contain "text", but not found')
|
||||
|
||||
images = self.pipeline(
|
||||
inputs['text'], num_inference_steps=30, guidance_scale=7.5)
|
||||
prompt=inputs.get('text'),
|
||||
height=inputs.get('height'),
|
||||
width=inputs.get('width'),
|
||||
num_inference_steps=inputs.get('num_inference_steps', 50),
|
||||
guidance_scale=inputs.get('guidance_scale', 7.5),
|
||||
negative_prompt=inputs.get('negative_prompt'),
|
||||
num_images_per_prompt=inputs.get('num_images_per_prompt', 1),
|
||||
eta=inputs.get('eta', 0.0),
|
||||
generator=inputs.get('generator'),
|
||||
latents=inputs.get('latents'),
|
||||
output_type=inputs.get('output_type', 'pil'),
|
||||
return_dict=inputs.get('return_dict', True),
|
||||
callback=inputs.get('callback'),
|
||||
callback_steps=inputs.get('callback_steps', 1))
|
||||
|
||||
return images
|
||||
|
||||
|
||||
@@ -50,6 +50,7 @@ class CheckpointHook(Hook):
|
||||
hub_revision (str): Which branch to push the model to, default is `master`.
|
||||
upload_strategy (str): The action adopted when the previous uploading is not done
|
||||
and the next one is coming, can be `cancel` or `wait`.
|
||||
save_trainer_state (bool): Save the trainer state for continue training, default True.
|
||||
kwargs:
|
||||
by_epoch (bool): Same with `save_strategy`, but has a higher priority, legacy argument.
|
||||
output_sub_dir (str): The folder under the `save_dir` to save the output checkpoint for inference.
|
||||
@@ -75,6 +76,7 @@ class CheckpointHook(Hook):
|
||||
private_hub: Optional[bool] = True,
|
||||
hub_revision: Optional[str] = DEFAULT_REPOSITORY_REVISION,
|
||||
upload_strategy: Optional[str] = UploadStrategy.cancel,
|
||||
save_trainer_state: Optional[bool] = True,
|
||||
**kwargs):
|
||||
self.interval = interval
|
||||
self.save_dir = save_dir
|
||||
@@ -97,6 +99,7 @@ class CheckpointHook(Hook):
|
||||
self.private_hub = private_hub
|
||||
self.hub_revision = hub_revision
|
||||
self.upload_strategy = upload_strategy
|
||||
self.save_trainer_state = save_trainer_state
|
||||
self.tag = -1
|
||||
self.is_model_id = None
|
||||
self.max_checkpoint_num = None
|
||||
@@ -219,7 +222,8 @@ class CheckpointHook(Hook):
|
||||
checkpoint_path_prefix = os.path.join(self.save_dir, prefix)
|
||||
meta = self._create_training_state(trainer)
|
||||
self.processor.save_checkpoints(trainer, checkpoint_path_prefix,
|
||||
self.output_dir, meta)
|
||||
self.output_dir, meta,
|
||||
self.save_trainer_state)
|
||||
self.save_evaluate_results(trainer)
|
||||
self.history_checkpoints.append(checkpoint_path_prefix)
|
||||
self._remove_obsolete_checkpoints(trainer)
|
||||
@@ -399,7 +403,8 @@ class BestCkptSaverHook(CheckpointHook):
|
||||
self._best_ckpt_file = checkpoint_path_prefix
|
||||
meta = self._create_training_state(trainer)
|
||||
self.processor.save_checkpoints(trainer, checkpoint_path_prefix,
|
||||
self.output_dir, meta)
|
||||
self.output_dir, meta,
|
||||
self.save_trainer_state)
|
||||
self.save_evaluate_results(trainer)
|
||||
self.history_checkpoints.add(checkpoint_path_prefix)
|
||||
self._remove_obsolete_checkpoints(trainer)
|
||||
|
||||
@@ -104,7 +104,8 @@ class CheckpointProcessor:
|
||||
trainer,
|
||||
checkpoint_path_prefix,
|
||||
output_dir,
|
||||
meta=None):
|
||||
meta=None,
|
||||
save_optimizers=True):
|
||||
"""Save the state dict for trainer and model.
|
||||
|
||||
This is a strategic function which can be registered by other hook's function.
|
||||
@@ -115,13 +116,15 @@ class CheckpointProcessor:
|
||||
like: /tmp/test/epoch_0
|
||||
output_dir(`str`): The output dir for inference.
|
||||
meta: (`dict`): The meta info needed to be saved into files.
|
||||
save_optimizers: (`bool`): Do save the optimizers state
|
||||
"""
|
||||
model = trainer.unwrap_module(trainer.model)
|
||||
_model_file, _train_state_file = self._get_state_file_name(
|
||||
checkpoint_path_prefix)
|
||||
|
||||
# Save pth file without model state_dict
|
||||
self.save_trainer_state(trainer, model, _train_state_file, meta)
|
||||
self.save_trainer_state(trainer, model, _train_state_file, meta,
|
||||
save_optimizers)
|
||||
self.save_model_state(model, _model_file)
|
||||
self.link(model, _model_file, output_dir)
|
||||
|
||||
@@ -175,7 +178,8 @@ class CheckpointProcessor:
|
||||
'changing to copy the bin file, this may use more disk space.')
|
||||
shutil.copyfile(src_file, dest_file)
|
||||
|
||||
def save_trainer_state(self, trainer, model, train_state_file, meta):
|
||||
def save_trainer_state(self, trainer, model, train_state_file, meta,
|
||||
save_optimizers):
|
||||
"""Save the trainer state, including optimizer/lr_scheduler's state dict, random states etc.
|
||||
|
||||
Args:
|
||||
@@ -183,12 +187,13 @@ class CheckpointProcessor:
|
||||
model: The model instance.
|
||||
train_state_file: The target file name for saving trainer states.
|
||||
meta: Some extra meta info.
|
||||
save_optimizers: Save optimizers state or not.
|
||||
"""
|
||||
save_checkpoint(
|
||||
model,
|
||||
train_state_file,
|
||||
trainer.optimizer,
|
||||
trainer.lr_scheduler,
|
||||
trainer.optimizer if save_optimizers else None,
|
||||
trainer.lr_scheduler if save_optimizers else None,
|
||||
meta=meta,
|
||||
with_model=False)
|
||||
|
||||
|
||||
@@ -156,7 +156,8 @@ class DeepspeedProcessor(CheckpointProcessor, LrSchedulerProcessor,
|
||||
trainer,
|
||||
checkpoint_path_prefix,
|
||||
output_dir,
|
||||
meta=None):
|
||||
meta=None,
|
||||
save_optimizers=True):
|
||||
model = trainer.unwrap_module(trainer.model)
|
||||
_train_state_file = checkpoint_path_prefix + self.rank_name(
|
||||
) + CheckpointProcessor.TRAINER_STATE_SUFFIX
|
||||
|
||||
@@ -57,7 +57,8 @@ class MpuProcessor(CheckpointProcessor):
|
||||
trainer,
|
||||
checkpoint_path_prefix,
|
||||
output_dir,
|
||||
meta=None):
|
||||
meta=None,
|
||||
save_optimizers=True):
|
||||
model = trainer.unwrap_module(trainer.model)
|
||||
_train_state_file = checkpoint_path_prefix + self.rank_name(
|
||||
) + CheckpointProcessor.TRAINER_STATE_SUFFIX
|
||||
@@ -65,8 +66,8 @@ class MpuProcessor(CheckpointProcessor):
|
||||
save_checkpoint(
|
||||
model,
|
||||
_train_state_file,
|
||||
trainer.optimizer,
|
||||
trainer.lr_scheduler,
|
||||
trainer.optimizer if save_optimizers else None,
|
||||
trainer.lr_scheduler if save_optimizers else None,
|
||||
meta=meta,
|
||||
with_model=False)
|
||||
|
||||
|
||||
@@ -41,7 +41,8 @@ class DreamboothCheckpointProcessor(CheckpointProcessor):
|
||||
trainer,
|
||||
checkpoint_path_prefix,
|
||||
output_dir,
|
||||
meta=None):
|
||||
meta=None,
|
||||
save_optimizers=True):
|
||||
"""Save the state dict for dreambooth model.
|
||||
"""
|
||||
pipeline_args = {}
|
||||
|
||||
@@ -21,7 +21,8 @@ class LoraDiffusionCheckpointProcessor(CheckpointProcessor):
|
||||
trainer,
|
||||
checkpoint_path_prefix,
|
||||
output_dir,
|
||||
meta=None):
|
||||
meta=None,
|
||||
save_optimizers=True):
|
||||
"""Save the state dict for lora tune model.
|
||||
"""
|
||||
trainer.model.unet = trainer.model.unet.to(torch.float32)
|
||||
|
||||
@@ -168,3 +168,9 @@ TAMING_IMPORT_ERROR = """
|
||||
{0} requires the timm library but it was not found in your environment. You can install it with pip:
|
||||
`pip install taming-transformers-rom1504`
|
||||
"""
|
||||
|
||||
# docstyle-ignore
|
||||
XFORMERS_IMPORT_ERROR = """
|
||||
{0} requires the timm library but it was not found in your environment. You can install it with pip:
|
||||
`pip install xformers>=0.0.17`
|
||||
"""
|
||||
|
||||
@@ -306,6 +306,7 @@ REQUIREMENTS_MAAPING = OrderedDict([
|
||||
('mpi4py', (is_package_available('mpi4py'), MPI4PY_IMPORT_ERROR)),
|
||||
('open_clip', (is_package_available('open_clip'), OPENCLIP_IMPORT_ERROR)),
|
||||
('taming', (is_package_available('taming'), TAMING_IMPORT_ERROR)),
|
||||
('xformers', (is_package_available('xformers'), XFORMERS_IMPORT_ERROR)),
|
||||
])
|
||||
|
||||
SYSTEM_PACKAGE = set(['os', 'sys', 'typing'])
|
||||
|
||||
@@ -25,7 +25,7 @@ def get_logger(log_file: Optional[str] = None,
|
||||
|
||||
logger_name = __name__.split('.')[0]
|
||||
logger = logging.getLogger(logger_name)
|
||||
|
||||
logger.propagate = False
|
||||
if logger_name in init_loggers:
|
||||
add_file_handler_if_needed(logger, log_file, file_mode, log_level)
|
||||
return logger
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
accelerate
|
||||
cloudpickle
|
||||
decord>=0.6.0
|
||||
diffusers==0.15.0
|
||||
diffusers==0.18.0
|
||||
fairseq
|
||||
ftfy>=6.0.3
|
||||
librosa==0.9.2
|
||||
|
||||
@@ -21,7 +21,7 @@ ignore-words-list = patten,nd,ty,mot,hist,formating,winn,gool,datas,wan,confids
|
||||
[flake8]
|
||||
max-line-length = 120
|
||||
select = B,C,E,F,P,T4,W,B9
|
||||
ignore = F401,F405,F821,W503,E251
|
||||
ignore = F401,F403,F405,F821,W503,E251
|
||||
exclude = docs/src,*.pyi,.git
|
||||
|
||||
[darglint]
|
||||
|
||||
@@ -35,7 +35,7 @@ class TestLoraDiffusionTrainer(unittest.TestCase):
|
||||
shutil.rmtree(self.tmp_dir)
|
||||
super().tearDown()
|
||||
|
||||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_lora_diffusion_train(self):
|
||||
model_id = 'AI-ModelScope/stable-diffusion-v1-5'
|
||||
model_revision = 'v1.0.9'
|
||||
@@ -67,7 +67,7 @@ class TestLoraDiffusionTrainer(unittest.TestCase):
|
||||
results_files = os.listdir(self.tmp_dir)
|
||||
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
||||
|
||||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_lora_diffusion_eval(self):
|
||||
model_id = 'AI-ModelScope/stable-diffusion-v1-5'
|
||||
model_revision = 'v1.0.9'
|
||||
|
||||
Reference in New Issue
Block a user