mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 16:27:45 +01:00
90 lines
2.9 KiB
Python
90 lines
2.9 KiB
Python
# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from modelscope.metainfo import Trainers
|
|
from modelscope.msdatasets import MsDataset
|
|
from modelscope.trainers import build_trainer
|
|
from modelscope.utils.constant import DownloadMode
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class TestLoraDiffusionTrainer(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
|
|
self.train_dataset = MsDataset.load(
|
|
'buptwq/lora-stable-diffusion-finetune',
|
|
split='train',
|
|
download_mode=DownloadMode.FORCE_REDOWNLOAD)
|
|
self.eval_dataset = MsDataset.load(
|
|
'buptwq/lora-stable-diffusion-finetune',
|
|
split='validation',
|
|
download_mode=DownloadMode.FORCE_REDOWNLOAD)
|
|
|
|
self.max_epochs = 5
|
|
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmp_dir)
|
|
super().tearDown()
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_lora_diffusion_train(self):
|
|
model_id = 'AI-ModelScope/stable-diffusion-v1-5'
|
|
model_revision = 'v1.0.9'
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.train.max_epochs = self.max_epochs
|
|
cfg.train.lr_scheduler = {
|
|
'type': 'LambdaLR',
|
|
'lr_lambda': lambda _: 1,
|
|
'last_epoch': -1
|
|
}
|
|
cfg.train.optimizer.lr = 1e-4
|
|
return cfg
|
|
|
|
kwargs = dict(
|
|
model=model_id,
|
|
model_revision=model_revision,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.eval_dataset,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
|
|
trainer = build_trainer(
|
|
name=Trainers.lora_diffusion, default_args=kwargs)
|
|
trainer.train()
|
|
result = trainer.evaluate()
|
|
print(f'Lora-diffusion train output: {result}.')
|
|
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_lora_diffusion_eval(self):
|
|
model_id = 'AI-ModelScope/stable-diffusion-v1-5'
|
|
model_revision = 'v1.0.9'
|
|
|
|
kwargs = dict(
|
|
model=model_id,
|
|
model_revision=model_revision,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=None,
|
|
eval_dataset=self.eval_dataset)
|
|
|
|
trainer = build_trainer(
|
|
name=Trainers.lora_diffusion, default_args=kwargs)
|
|
result = trainer.evaluate()
|
|
print(f'Lora-diffusion eval output: {result}.')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|