mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 16:27:45 +01:00
1816 lines
296 KiB
Plaintext
1816 lines
296 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Baichuan + Lora + Agent\n",
|
||
"baichuan-7B是由百川智能开发的一个开源的大规模预训练模型。基于Transformer结构,在大约1.2万亿tokens上训练的70亿参数模型,支持中英双语,上下文窗口长度为4096。在标准的中文和英文权威benchmark(C-EVAL/MMLU)上均取得同尺寸最好的效果。"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"1. Ref: https://modelscope.cn/models/baichuan-inc/baichuan-7B/summary\n",
|
||
"2. 以下脚本可以在2*A10环境下正常运行, 大概占用40G显存\n",
|
||
"3. python>=3.8"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 配置实验环境"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# !pip install modelscope\n",
|
||
"# !pip install numpy pandas matplotlib scikit-learn\n",
|
||
"# !pip install transformers datasets\n",
|
||
"# !conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia\n",
|
||
"# !pip install tqdm tensorboard torchmetrics sentencepiece charset_normalizer accelerate\n",
|
||
"\n",
|
||
"# !pip install numpy -U # Resolve torchmetrics dependencies and update numpy"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"[2023-07-02 17:24:09,391] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/home/hackathon/miniconda3/envs/hackathon/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
||
" from .autonotebook import tqdm as notebook_tqdm\n",
|
||
"2023-07-02 17:24:09,870 - modelscope - INFO - PyTorch version 2.0.1 Found.\n",
|
||
"2023-07-02 17:24:09,871 - modelscope - INFO - Loading ast index from /home/hackathon/.cache/modelscope/ast_indexer\n",
|
||
"2023-07-02 17:24:09,895 - modelscope - INFO - Loading done! Current index file version is 1.6.2, with md5 ddf811ee982377c1357284a2bfda3dec and a total number of 861 components indexed\n",
|
||
"2023-07-02 17:24:10,570 - modelscope - INFO - [0, 1]\n",
|
||
"2023-07-02 17:24:10,719 - modelscope - INFO - Using device: cuda:0,1\n",
|
||
"2023-07-02 17:24:10,720 - modelscope - INFO - Global seed set to 42\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from _common import *\n",
|
||
"device_ids = [0, 1]\n",
|
||
"select_device(device_ids)\n",
|
||
"_ = seed_everything(42)"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 导入Model, Tokenizer"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2023-07-02 17:24:11,036 - modelscope - INFO - Model revision not specified, use default: master in development mode\n",
|
||
"2023-07-02 17:24:11,037 - modelscope - INFO - Development mode use revision: master\n",
|
||
"2023-07-02 17:24:11,364 - modelscope - INFO - model_config: BaiChuanConfig {\n",
|
||
" \"architectures\": [\n",
|
||
" \"BaiChuanForCausalLM\"\n",
|
||
" ],\n",
|
||
" \"auto_map\": {\n",
|
||
" \"AutoConfig\": \"configuration_baichuan.BaiChuanConfig\",\n",
|
||
" \"AutoModelForCausalLM\": \"modeling_baichuan.BaiChuanForCausalLM\"\n",
|
||
" },\n",
|
||
" \"bos_token_id\": 1,\n",
|
||
" \"eos_token_id\": 2,\n",
|
||
" \"hidden_act\": \"silu\",\n",
|
||
" \"hidden_size\": 4096,\n",
|
||
" \"initializer_range\": 0.02,\n",
|
||
" \"intermediate_size\": 11008,\n",
|
||
" \"max_position_embeddings\": 4096,\n",
|
||
" \"model_type\": \"baichuan\",\n",
|
||
" \"num_attention_heads\": 32,\n",
|
||
" \"num_hidden_layers\": 32,\n",
|
||
" \"pad_token_id\": 0,\n",
|
||
" \"rms_norm_eps\": 1e-06,\n",
|
||
" \"tie_word_embeddings\": false,\n",
|
||
" \"torch_dtype\": \"float16\",\n",
|
||
" \"transformers_version\": \"4.30.2\",\n",
|
||
" \"use_cache\": true,\n",
|
||
" \"vocab_size\": 64000\n",
|
||
"}\n",
|
||
"\n",
|
||
"The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function.\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"WORK_DIR = 'runs/baichuan'\n",
|
||
"LORA_TARGET_MODULES = ['W_pack']\n",
|
||
"#\n",
|
||
"model_dir = snapshot_download('baichuan-inc/baichuan-7B', 'v1.0.5')\n",
|
||
"model, tokenizer = get_baichuan7B_model_tokenizer(model_dir)\n",
|
||
"#\n",
|
||
"GRADIENT_CHECKPOINTING = True\n",
|
||
"if GRADIENT_CHECKPOINTING:\n",
|
||
" model.gradient_checkpointing_enable()\n",
|
||
" model.enable_input_require_grads()"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 准备Lora"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2023-07-02 17:24:21,741 - modelscope - INFO - lora_config: LoRAConfig(rank=8, replace_modules=['W_pack'], lora_alpha=32, lora_dropout=0.1, merge_weights=True, use_merged_linear=False, enable_lora=None, fan_in_fan_out=False, bias='none', only_lora_trainable=True, pretrained_weights=None)\n",
|
||
"2023-07-02 17:24:36,360 - modelscope - INFO - model.embed_tokens.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,360 - modelscope - INFO - model.layers.0.self_attn.W_pack.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,361 - modelscope - INFO - model.layers.0.self_attn.W_pack.lora_A: requires_grad=True\n",
|
||
"2023-07-02 17:24:36,361 - modelscope - INFO - model.layers.0.self_attn.W_pack.lora_B: requires_grad=True\n",
|
||
"2023-07-02 17:24:36,361 - modelscope - INFO - model.layers.0.self_attn.o_proj.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,362 - modelscope - INFO - model.layers.0.mlp.gate_proj.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,362 - modelscope - INFO - model.layers.0.mlp.down_proj.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,363 - modelscope - INFO - model.layers.0.mlp.up_proj.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,363 - modelscope - INFO - model.layers.0.input_layernorm.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,363 - modelscope - INFO - model.layers.0.post_attention_layernorm.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,363 - modelscope - INFO - model.layers.1.self_attn.W_pack.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,364 - modelscope - INFO - model.layers.1.self_attn.W_pack.lora_A: requires_grad=True\n",
|
||
"2023-07-02 17:24:36,364 - modelscope - INFO - model.layers.1.self_attn.W_pack.lora_B: requires_grad=True\n",
|
||
"2023-07-02 17:24:36,364 - modelscope - INFO - model.layers.1.self_attn.o_proj.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,364 - modelscope - INFO - model.layers.1.mlp.gate_proj.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,365 - modelscope - INFO - model.layers.1.mlp.down_proj.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,365 - modelscope - INFO - model.layers.1.mlp.up_proj.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,365 - modelscope - INFO - model.layers.1.input_layernorm.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,365 - modelscope - INFO - model.layers.1.post_attention_layernorm.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,365 - modelscope - INFO - model.layers.2.self_attn.W_pack.weight: requires_grad=False\n",
|
||
"2023-07-02 17:24:36,366 - modelscope - INFO - ...\n",
|
||
"2023-07-02 17:24:36,368 - modelscope - INFO - BaiChuanForCausalLM: 7004.7539M Params (4.1943M Trainable), 33.5565M Buffers.\n",
|
||
"2023-07-02 17:24:36,370 - modelscope - INFO - device: cuda:0, dtype: torch.float16\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"BaiChuanForCausalLM(\n",
|
||
" (model): Model(\n",
|
||
" (embed_tokens): Embedding(64000, 4096, padding_idx=0)\n",
|
||
" (layers): ModuleList(\n",
|
||
" (0-31): 32 x DecoderLayer(\n",
|
||
" (self_attn): Attention(\n",
|
||
" (W_pack): Linear(\n",
|
||
" in_features=4096, out_features=12288, bias=False\n",
|
||
" (lora_dropout): Dropout(p=0.1, inplace=False)\n",
|
||
" )\n",
|
||
" (o_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
||
" (rotary_emb): RotaryEmbedding()\n",
|
||
" )\n",
|
||
" (mlp): MLP(\n",
|
||
" (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
|
||
" (down_proj): Linear(in_features=11008, out_features=4096, bias=False)\n",
|
||
" (up_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
|
||
" (act_fn): SiLUActivation()\n",
|
||
" )\n",
|
||
" (input_layernorm): RMSNorm()\n",
|
||
" (post_attention_layernorm): RMSNorm()\n",
|
||
" )\n",
|
||
" )\n",
|
||
" (norm): RMSNorm()\n",
|
||
" )\n",
|
||
" (lm_head): Linear(in_features=4096, out_features=64000, bias=False)\n",
|
||
")"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"LORA_RANK = 8\n",
|
||
"LORA_ALPHA = 32\n",
|
||
"LORA_DROPOUT_P = 0.1\n",
|
||
"lora_config = LoRAConfig(\n",
|
||
" replace_modules=LORA_TARGET_MODULES,\n",
|
||
" rank=LORA_RANK,\n",
|
||
" lora_alpha=LORA_ALPHA,\n",
|
||
" lora_dropout=LORA_DROPOUT_P)\n",
|
||
"logger.info(f'lora_config: {lora_config}')\n",
|
||
"Swift.prepare_model(model, lora_config)\n",
|
||
"#\n",
|
||
"show_freeze_layers(model)\n",
|
||
"print_model_info(model)\n",
|
||
"_p = list(model.parameters())[100]\n",
|
||
"logger.info(f'device: {_p.device}, dtype: {_p.dtype}')\n",
|
||
"model.bfloat16()"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 导入Dataset"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"100%|██████████| 5036/5036 [00:12<00:00, 398.82it/s]\n",
|
||
"100%|██████████| 285/285 [00:00<00:00, 383.15it/s]\n",
|
||
"2023-07-02 17:24:49,863 - modelscope - INFO - Dataset Token Length: 958.649707±371.357483, min=44.000000, max=2045.000000, size=4953\n",
|
||
"2023-07-02 17:24:49,864 - modelscope - INFO - Dataset Token Length: 993.447653±337.821458, min=75.000000, max=1946.000000, size=277\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"[INPUT_IDS] 你是达摩院的ModelScopeGPT(魔搭助手),你是个大语言模型, 是2023年达摩院的工程师训练得到的。你有多种能力,可以通过插件集成魔搭社区的模型api来回复用户的问题,还能解答用户使用模型遇到的问题和模型知识相关问答。1. {\"plugin_name\": \"modelscope_text-ie\", \"plugin_owner\": \"ModelScopeGPT\", \"plugin_type\": \"default\", \"plugin_schema_for_model\": {\"name\": \"modelscope_text-ie\", \"description\": \"针对中文的文本,根据schema要抽取的内容,找出其中对应信息,并用json格式展示\", \"url\": \"http://109.199.101.10:1485/\", \"paths\": [{\"name\": \"modelscope_text-ie\", \"model_id\": \"/damo/nlp_structbert_siamese-uie_chinese-base\", \"method\": \"post\", \"description\": \"针对中文的文本,根据schema要抽取的内容,找出其中对应信息,并用json格式展示\", \"parameters\": [{\"name\": \"text\", \"description\": \"用户输入的文本\", \"required\": \"True\"}, {\"name\": \"schema\", \"description\": \"要抽取信息的json表示\", \"required\": \"True\"}]}]}}\n",
|
||
"\n",
|
||
"2. {\"plugin_name\": \"modelscope_text-ie\", \"plugin_owner\": \"ModelScopeGPT\", \"plugin_type\": \"default\", \"plugin_schema_for_model\": {\"name\": \"modelscope_text-ie\", \"description\": \"针对中文的文本,根据schema要抽取的内容,找出其中对应信息,并用json格式展示\", \"url\": \"http://9.32.64.200:5873/\", \"paths\": [{\"name\": \"modelscope_text-ie\", \"model_id\": \"/damo/nlp_structbert_siamese-uie_chinese-base\", \"method\": \"post\", \"description\": \"针对中文的文本,根据schema要抽取的内容,找出其中对应信息,并用json格式展示\", \"parameters\": [{\"name\": \"text\", \"description\": \"用户输入的文本\", \"required\": \"True\"}, {\"name\": \"schema\", \"description\": \"要抽取信息的json表示\", \"required\": \"True\"}]}]}}\n",
|
||
"\n",
|
||
"3. {\"plugin_name\": \"modelscope_text-ie\", \"plugin_owner\": \"ModelScopeGPT\", \"plugin_type\": \"default\", \"plugin_schema_for_model\": {\"name\": \"modelscope_text-ie\", \"description\": \"针对中文的文本,根据schema要抽取的内容,找出其中对应信息,并用json格式展示\", \"url\": \"http://54.149.78.185:3979/\", \"paths\": [{\"name\": \"modelscope_text-ie\", \"model_id\": \"/damo/nlp_structbert_siamese-uie_chinese-base\", \"method\": \"post\", \"description\": \"针对中文的文本,根据schema要抽取的内容,找出其中对应信息,并用json格式展示\", \"parameters\": [{\"name\": \"text\", \"description\": \"用户输入的文本\", \"required\": \"True\"}, {\"name\": \"schema\", \"description\": \"要抽取信息的json表示\", \"required\": \"True\"}]}]}} \n",
|
||
"\n",
|
||
"### 用户\n",
|
||
"按照给定的schema抽取出下面文本对应的信息\n",
|
||
"schema:{\"人物\": null, \"地理位置\": null, \"组织机构\": null}\n",
|
||
"近日,美国政府宣布将对中国1000多种商品加征关税,并威胁进一步加征关税。 \n",
|
||
"\n",
|
||
"### 助手\n",
|
||
"<s> <|startofthink|>```JSON\n",
|
||
"{\"api_name\": \"modelscope_text-ie\", \"url\": \"http://9.32.64.200:5873/damo/nlp_structbert_siamese-uie_chinese-base\", \"parameters\": {\"text\": \"近日,美国政府宣布将对中国1000多种商品加征关税,并威胁进一步加征关税。\", \"schema\": \"{\\\"人物\\\": null, \\\"地理位置\\\": null, \\\"组织机构\\\": null}\"}}\n",
|
||
"```<|endofthink|>\n",
|
||
"\n",
|
||
"<|startofexec|>```JSON\n",
|
||
"{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}\n",
|
||
"```<|endofexec|>\n",
|
||
"信息抽取结果:{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}。我使用的模型是ModelScope的'damo/nlp_structbert_siamese-uie_chinese-base'模型。这是一个基于StructBERT预训练模型微调训练的通用信息抽取模型。</s>\n",
|
||
"\n",
|
||
"[LABLES] <unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><s> <|startofthink|>```JSON\n",
|
||
"{\"api_name\": \"modelscope_text-ie\", \"url\": \"http://9.32.64.200:5873/damo/nlp_structbert_siamese-uie_chinese-base\", \"parameters\": {\"text\": \"近日,美国政府宣布将对中国1000多种商品加征关税,并威胁进一步加征关税。\", \"schema\": \"{\\\"人物\\\": null, \\\"地理位置\\\": null, \\\"组织机构\\\": null}\"}}\n",
|
||
"```<|endofthink|>\n",
|
||
"\n",
|
||
"<|startofexec|>```JSON\n",
|
||
"{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}\n",
|
||
"```<|endofexec|>\n",
|
||
"信息抽取结果:{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}。我使用的模型是ModelScope的'damo/nlp_structbert_siamese-uie_chinese-base'模型。这是一个基于StructBERT预训练模型微调训练的通用信息抽取模型。</s>\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"tokenize_function = partial(tokenize_function, tokenizer=tokenizer)\n",
|
||
"train_dataset = make_dataset('train', tokenize_function)\n",
|
||
"val_dataset = make_dataset('validation', tokenize_function)\n",
|
||
"# Data analysis\n",
|
||
"stat_dataset(train_dataset)\n",
|
||
"stat_dataset(val_dataset)\n",
|
||
"data_collate_fn = partial(data_collate_fn, tokenizer=tokenizer)\n",
|
||
"print_examples(train_dataset[0], tokenizer)"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 配置Config"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2023-07-02 17:24:49,892 - modelscope - INFO - work_dir: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"cfg_file = os.path.join(model_dir, 'configuration.json')\n",
|
||
"#\n",
|
||
"BATCH_SIZE = 1\n",
|
||
"MAX_EPOCHS = 1\n",
|
||
"T_max = get_T_max(len(train_dataset), BATCH_SIZE, MAX_EPOCHS, True)\n",
|
||
"WORK_DIR = get_work_dir(WORK_DIR)\n",
|
||
"EVAL_INTERVAL = 200\n",
|
||
"CONFIG = Config({\n",
|
||
" 'train': {\n",
|
||
" 'dataloader': {\n",
|
||
" 'batch_size_per_gpu': BATCH_SIZE,\n",
|
||
" 'workers_per_gpu': 1,\n",
|
||
" 'shuffle': True,\n",
|
||
" 'drop_last': True,\n",
|
||
" 'pin_memory': True\n",
|
||
" },\n",
|
||
" 'max_epochs': MAX_EPOCHS,\n",
|
||
" 'work_dir': WORK_DIR,\n",
|
||
" 'optimizer': {\n",
|
||
" 'type': 'AdamW',\n",
|
||
" 'lr': 1e-4,\n",
|
||
" 'weight_decay': 0.01,\n",
|
||
" 'options': {\n",
|
||
" 'cumulative_iters': 16, 'grad_clip': {\n",
|
||
" 'norm_type': 2,\n",
|
||
" 'max_norm': 2.0\n",
|
||
" }\n",
|
||
" }\n",
|
||
" },\n",
|
||
" 'lr_scheduler': {\n",
|
||
" 'type': 'CosineAnnealingLR',\n",
|
||
" 'T_max': T_max,\n",
|
||
" 'eta_min': 1e-5,\n",
|
||
" 'options': {\n",
|
||
" 'by_epoch': False,\n",
|
||
" 'warmup': {\n",
|
||
" 'type': 'LinearWarmup',\n",
|
||
" 'warmup_ratio': 0.1,\n",
|
||
" 'warmup_iters': 200\n",
|
||
" }\n",
|
||
" }\n",
|
||
" },\n",
|
||
" 'hooks': [\n",
|
||
" {'type': 'CheckpointHook', 'by_epoch': False, 'interval': EVAL_INTERVAL, 'max_checkpoint_num': 1},\n",
|
||
" {'type': 'EvaluationHook', 'by_epoch': False, 'interval': EVAL_INTERVAL},\n",
|
||
" {'type': 'BestCkptSaverHook',\n",
|
||
" 'metric_key': 'acc',\n",
|
||
" 'save_best': True, 'rule': 'max', 'max_checkpoint_num': 1},\n",
|
||
" {'type': 'TextLoggerHook',\n",
|
||
" 'by_epoch': True, # Whether EpochBasedTrainer is used\n",
|
||
" 'interval': 5},\n",
|
||
" {'type': 'TensorboardHook', 'by_epoch': False, 'interval': 5}\n",
|
||
" ]\n",
|
||
" },\n",
|
||
" 'evaluation': {\n",
|
||
" 'dataloader': {\n",
|
||
" 'batch_size_per_gpu': BATCH_SIZE,\n",
|
||
" 'workers_per_gpu': 1,\n",
|
||
" 'shuffle': False,\n",
|
||
" 'drop_last': False,\n",
|
||
" 'pin_memory': True\n",
|
||
" },\n",
|
||
" 'metrics': [\n",
|
||
" {'type': 'my_metric', 'vocab_size': tokenizer.vocab_size}\n",
|
||
" ]\n",
|
||
" }\n",
|
||
"})"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 微调"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2023-07-02 17:24:49,903 - modelscope - INFO - ==========================Training Config Start==========================\n",
|
||
"2023-07-02 17:24:49,904 - modelscope - INFO - {\n",
|
||
" \"framework\": \"pytorch\",\n",
|
||
" \"task\": \"text-generation\",\n",
|
||
" \"model\": {\n",
|
||
" \"type\": \"Baichuan-7B\"\n",
|
||
" },\n",
|
||
" \"pipeline\": {\n",
|
||
" \"type\": \"Baichuan-7B-text-generation-pipe\"\n",
|
||
" },\n",
|
||
" \"allow_remote\": true,\n",
|
||
" \"train\": {\n",
|
||
" \"hooks\": [\n",
|
||
" {\n",
|
||
" \"type\": \"TensorboardHook\",\n",
|
||
" \"by_epoch\": false,\n",
|
||
" \"interval\": 5\n",
|
||
" }\n",
|
||
" ],\n",
|
||
" \"dataloader\": {\n",
|
||
" \"batch_size_per_gpu\": 1,\n",
|
||
" \"workers_per_gpu\": 1,\n",
|
||
" \"shuffle\": true,\n",
|
||
" \"drop_last\": true,\n",
|
||
" \"pin_memory\": true\n",
|
||
" },\n",
|
||
" \"max_epochs\": 1,\n",
|
||
" \"work_dir\": \"/home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449\",\n",
|
||
" \"optimizer\": {\n",
|
||
" \"type\": \"AdamW\",\n",
|
||
" \"lr\": 0.0001,\n",
|
||
" \"weight_decay\": 0.01,\n",
|
||
" \"options\": {\n",
|
||
" \"cumulative_iters\": 16,\n",
|
||
" \"grad_clip\": {\n",
|
||
" \"norm_type\": 2,\n",
|
||
" \"max_norm\": 2.0\n",
|
||
" }\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"lr_scheduler\": {\n",
|
||
" \"type\": \"CosineAnnealingLR\",\n",
|
||
" \"T_max\": 4953,\n",
|
||
" \"eta_min\": 1e-05,\n",
|
||
" \"options\": {\n",
|
||
" \"by_epoch\": false,\n",
|
||
" \"warmup\": {\n",
|
||
" \"type\": \"LinearWarmup\",\n",
|
||
" \"warmup_ratio\": 0.1,\n",
|
||
" \"warmup_iters\": 200\n",
|
||
" }\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"checkpoint\": {\n",
|
||
" \"period\": {\n",
|
||
" \"by_epoch\": false,\n",
|
||
" \"interval\": 200,\n",
|
||
" \"max_checkpoint_num\": 1\n",
|
||
" },\n",
|
||
" \"best\": {\n",
|
||
" \"metric_key\": \"acc\",\n",
|
||
" \"save_best\": true,\n",
|
||
" \"rule\": \"max\",\n",
|
||
" \"max_checkpoint_num\": 1\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"logging\": {\n",
|
||
" \"by_epoch\": true,\n",
|
||
" \"interval\": 5\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"evaluation\": {\n",
|
||
" \"dataloader\": {\n",
|
||
" \"batch_size_per_gpu\": 1,\n",
|
||
" \"workers_per_gpu\": 1,\n",
|
||
" \"shuffle\": false,\n",
|
||
" \"drop_last\": false,\n",
|
||
" \"pin_memory\": true\n",
|
||
" },\n",
|
||
" \"metrics\": [\n",
|
||
" {\n",
|
||
" \"type\": \"my_metric\",\n",
|
||
" \"vocab_size\": 64000\n",
|
||
" }\n",
|
||
" ],\n",
|
||
" \"period\": {\n",
|
||
" \"by_epoch\": false,\n",
|
||
" \"interval\": 200\n",
|
||
" }\n",
|
||
" }\n",
|
||
"}\n",
|
||
"2023-07-02 17:24:49,904 - modelscope - INFO - ===========================Training Config End===========================\n",
|
||
"2023-07-02 17:24:49,905 - modelscope - WARNING - ('OPTIMIZER', 'default', 'AdamW') not found in ast index file\n",
|
||
"2023-07-02 17:24:49,906 - modelscope - WARNING - ('LR_SCHEDULER', 'default', 'CosineAnnealingLR') not found in ast index file\n",
|
||
"2023-07-02 17:24:49,907 - modelscope - INFO - Stage: before_run:\n",
|
||
" (ABOVE_NORMAL) OptimizerHook \n",
|
||
" (LOW ) LrSchedulerHook \n",
|
||
" (LOW ) BestCkptSaverHook \n",
|
||
" (LOW ) CheckpointHook \n",
|
||
" (VERY_LOW ) TextLoggerHook \n",
|
||
" (VERY_LOW ) TensorboardHook \n",
|
||
" -------------------- \n",
|
||
"Stage: before_train_epoch:\n",
|
||
" (LOW ) LrSchedulerHook \n",
|
||
" -------------------- \n",
|
||
"Stage: before_train_iter:\n",
|
||
" (ABOVE_NORMAL) OptimizerHook \n",
|
||
" -------------------- \n",
|
||
"Stage: after_train_iter:\n",
|
||
" (ABOVE_NORMAL) OptimizerHook \n",
|
||
" (NORMAL ) EvaluationHook \n",
|
||
" (LOW ) LrSchedulerHook \n",
|
||
" (LOW ) BestCkptSaverHook \n",
|
||
" (LOW ) CheckpointHook \n",
|
||
" (VERY_LOW ) TextLoggerHook \n",
|
||
" (VERY_LOW ) TensorboardHook \n",
|
||
" -------------------- \n",
|
||
"Stage: after_train_epoch:\n",
|
||
" (NORMAL ) EvaluationHook \n",
|
||
" (LOW ) LrSchedulerHook \n",
|
||
" (LOW ) BestCkptSaverHook \n",
|
||
" (LOW ) CheckpointHook \n",
|
||
" (VERY_LOW ) TextLoggerHook \n",
|
||
" (VERY_LOW ) TensorboardHook \n",
|
||
" -------------------- \n",
|
||
"Stage: after_val_epoch:\n",
|
||
" (VERY_LOW ) TextLoggerHook \n",
|
||
" (VERY_LOW ) TensorboardHook \n",
|
||
" -------------------- \n",
|
||
"Stage: after_run:\n",
|
||
" (LOW ) BestCkptSaverHook \n",
|
||
" (LOW ) CheckpointHook \n",
|
||
" (VERY_LOW ) TensorboardHook \n",
|
||
" -------------------- \n",
|
||
"2023-07-02 17:24:49,913 - modelscope - INFO - Checkpoints will be saved to /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449\n",
|
||
"2023-07-02 17:24:49,916 - modelscope - INFO - Checkpoints will be saved to /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449\n",
|
||
"2023-07-02 17:24:49,917 - modelscope - INFO - Text logs will be saved to /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449\n",
|
||
"2023-07-02 17:24:49,917 - modelscope - INFO - tensorboard files will be saved to /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/tensorboard_output\n",
|
||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...\n",
|
||
"2023-07-02 17:24:55,315 - modelscope - INFO - epoch [1][5/4953]\tlr: 1.000e-05, memory: 7084, loss: 5.2094\n",
|
||
"2023-07-02 17:24:59,926 - modelscope - INFO - epoch [1][10/4953]\tlr: 1.000e-05, memory: 7084, loss: 1.9516\n",
|
||
"2023-07-02 17:25:05,112 - modelscope - INFO - epoch [1][15/4953]\tlr: 1.000e-05, memory: 7504, loss: 1.8344\n",
|
||
"2023-07-02 17:25:13,131 - modelscope - INFO - epoch [1][20/4953]\tlr: 1.225e-05, memory: 8075, loss: 3.3937\n",
|
||
"2023-07-02 17:25:19,098 - modelscope - INFO - epoch [1][25/4953]\tlr: 1.450e-05, memory: 8102, loss: 1.8047\n",
|
||
"2023-07-02 17:25:25,763 - modelscope - INFO - epoch [1][30/4953]\tlr: 1.675e-05, memory: 8102, loss: 1.5594\n",
|
||
"2023-07-02 17:25:33,888 - modelscope - INFO - epoch [1][35/4953]\tlr: 1.900e-05, memory: 8293, loss: 1.5852\n",
|
||
"2023-07-02 17:25:39,548 - modelscope - INFO - epoch [1][40/4953]\tlr: 2.125e-05, memory: 8293, loss: 1.7828\n",
|
||
"2023-07-02 17:25:44,599 - modelscope - INFO - epoch [1][45/4953]\tlr: 2.350e-05, memory: 8293, loss: 5.5922\n",
|
||
"2023-07-02 17:25:49,692 - modelscope - INFO - epoch [1][50/4953]\tlr: 2.575e-05, memory: 8293, loss: 2.6641\n",
|
||
"2023-07-02 17:25:56,104 - modelscope - INFO - epoch [1][55/4953]\tlr: 2.800e-05, memory: 8742, loss: 2.2344\n",
|
||
"2023-07-02 17:26:04,765 - modelscope - INFO - epoch [1][60/4953]\tlr: 3.025e-05, memory: 8742, loss: 1.7320\n",
|
||
"2023-07-02 17:26:10,288 - modelscope - INFO - epoch [1][65/4953]\tlr: 3.250e-05, memory: 8742, loss: 5.0578\n",
|
||
"2023-07-02 17:26:14,998 - modelscope - INFO - epoch [1][70/4953]\tlr: 3.475e-05, memory: 8742, loss: 4.0109\n",
|
||
"2023-07-02 17:26:21,600 - modelscope - INFO - epoch [1][75/4953]\tlr: 3.700e-05, memory: 8742, loss: 1.7266\n",
|
||
"2023-07-02 17:26:26,920 - modelscope - INFO - epoch [1][80/4953]\tlr: 3.925e-05, memory: 8742, loss: 2.9578\n",
|
||
"2023-07-02 17:26:32,447 - modelscope - INFO - epoch [1][85/4953]\tlr: 4.150e-05, memory: 8742, loss: 5.8422\n",
|
||
"2023-07-02 17:26:38,768 - modelscope - INFO - epoch [1][90/4953]\tlr: 4.375e-05, memory: 8742, loss: 1.8719\n",
|
||
"2023-07-02 17:26:45,955 - modelscope - INFO - epoch [1][95/4953]\tlr: 4.600e-05, memory: 8742, loss: 1.4359\n",
|
||
"2023-07-02 17:26:50,324 - modelscope - INFO - epoch [1][100/4953]\tlr: 4.825e-05, memory: 8742, loss: 5.6125\n",
|
||
"2023-07-02 17:26:58,123 - modelscope - INFO - epoch [1][105/4953]\tlr: 5.050e-05, memory: 8742, loss: 2.9656\n",
|
||
"2023-07-02 17:27:04,523 - modelscope - INFO - epoch [1][110/4953]\tlr: 5.275e-05, memory: 8742, loss: 1.7484\n",
|
||
"2023-07-02 17:27:09,550 - modelscope - INFO - epoch [1][115/4953]\tlr: 5.500e-05, memory: 8742, loss: 2.7133\n",
|
||
"2023-07-02 17:27:17,037 - modelscope - INFO - epoch [1][120/4953]\tlr: 5.725e-05, memory: 8742, loss: 1.9953\n",
|
||
"2023-07-02 17:27:22,364 - modelscope - INFO - epoch [1][125/4953]\tlr: 5.950e-05, memory: 8742, loss: 4.4578\n",
|
||
"2023-07-02 17:27:26,915 - modelscope - INFO - epoch [1][130/4953]\tlr: 6.175e-05, memory: 8742, loss: 4.4344\n",
|
||
"2023-07-02 17:27:34,586 - modelscope - INFO - epoch [1][135/4953]\tlr: 6.400e-05, memory: 8742, loss: 1.6328\n",
|
||
"2023-07-02 17:27:41,580 - modelscope - INFO - epoch [1][140/4953]\tlr: 6.625e-05, memory: 8742, loss: 3.9422\n",
|
||
"2023-07-02 17:27:47,073 - modelscope - INFO - epoch [1][145/4953]\tlr: 6.850e-05, memory: 8742, loss: 2.0562\n",
|
||
"2023-07-02 17:27:53,069 - modelscope - INFO - epoch [1][150/4953]\tlr: 7.075e-05, memory: 8742, loss: 1.8477\n",
|
||
"2023-07-02 17:27:58,364 - modelscope - INFO - epoch [1][155/4953]\tlr: 7.300e-05, memory: 8742, loss: 4.5445\n",
|
||
"2023-07-02 17:28:05,747 - modelscope - INFO - epoch [1][160/4953]\tlr: 7.525e-05, memory: 8742, loss: 4.0109\n",
|
||
"2023-07-02 17:28:12,108 - modelscope - INFO - epoch [1][165/4953]\tlr: 7.750e-05, memory: 8742, loss: 2.0578\n",
|
||
"2023-07-02 17:28:17,145 - modelscope - INFO - epoch [1][170/4953]\tlr: 7.975e-05, memory: 8742, loss: 1.9109\n",
|
||
"2023-07-02 17:28:23,027 - modelscope - INFO - epoch [1][175/4953]\tlr: 8.200e-05, memory: 8742, loss: 3.2410\n",
|
||
"2023-07-02 17:28:27,778 - modelscope - INFO - epoch [1][180/4953]\tlr: 8.425e-05, memory: 8742, loss: 2.9000\n",
|
||
"2023-07-02 17:28:34,508 - modelscope - INFO - epoch [1][185/4953]\tlr: 8.650e-05, memory: 8742, loss: 1.6062\n",
|
||
"2023-07-02 17:28:40,560 - modelscope - INFO - epoch [1][190/4953]\tlr: 8.875e-05, memory: 8742, loss: 1.5594\n",
|
||
"2023-07-02 17:28:46,479 - modelscope - INFO - epoch [1][195/4953]\tlr: 9.100e-05, memory: 8742, loss: 1.9875\n",
|
||
"2023-07-02 17:28:53,324 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 17:31:08,796 - modelscope - INFO - Saving checkpoint at 200 iter\n",
|
||
"2023-07-02 17:31:08,837 - modelscope - INFO - Saving checkpoint at 200 iter\n",
|
||
"2023-07-02 17:31:08,875 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8742, evaluation/acc: 0.7108, evaluation/loss: 2.4241, loss: 1.8062\n",
|
||
"2023-07-02 17:31:15,472 - modelscope - INFO - epoch [1][205/4953]\tlr: 9.550e-05, memory: 8742, loss: 1.9172\n",
|
||
"2023-07-02 17:31:21,195 - modelscope - INFO - epoch [1][210/4953]\tlr: 9.775e-05, memory: 8742, loss: 2.5586\n",
|
||
"2023-07-02 17:31:26,642 - modelscope - INFO - epoch [1][215/4953]\tlr: 1.000e-04, memory: 8742, loss: 2.1422\n",
|
||
"2023-07-02 17:31:32,941 - modelscope - INFO - epoch [1][220/4953]\tlr: 9.998e-05, memory: 8742, loss: 2.8609\n",
|
||
"2023-07-02 17:31:37,465 - modelscope - INFO - epoch [1][225/4953]\tlr: 9.996e-05, memory: 8742, loss: 1.9953\n",
|
||
"2023-07-02 17:31:42,190 - modelscope - INFO - epoch [1][230/4953]\tlr: 9.994e-05, memory: 8742, loss: 1.8422\n",
|
||
"2023-07-02 17:31:49,617 - modelscope - INFO - epoch [1][235/4953]\tlr: 9.992e-05, memory: 8742, loss: 1.8328\n",
|
||
"2023-07-02 17:31:54,582 - modelscope - INFO - epoch [1][240/4953]\tlr: 9.990e-05, memory: 8742, loss: 2.5031\n",
|
||
"2023-07-02 17:32:03,094 - modelscope - INFO - epoch [1][245/4953]\tlr: 9.988e-05, memory: 8742, loss: 3.4578\n",
|
||
"2023-07-02 17:32:09,110 - modelscope - INFO - epoch [1][250/4953]\tlr: 9.986e-05, memory: 8742, loss: 3.1359\n",
|
||
"2023-07-02 17:32:14,901 - modelscope - INFO - epoch [1][255/4953]\tlr: 9.984e-05, memory: 8742, loss: 3.4672\n",
|
||
"2023-07-02 17:32:21,012 - modelscope - INFO - epoch [1][260/4953]\tlr: 9.982e-05, memory: 8742, loss: 1.3734\n",
|
||
"2023-07-02 17:32:26,921 - modelscope - INFO - epoch [1][265/4953]\tlr: 9.979e-05, memory: 8742, loss: 1.7055\n",
|
||
"2023-07-02 17:32:33,958 - modelscope - INFO - epoch [1][270/4953]\tlr: 9.977e-05, memory: 8933, loss: 4.9609\n",
|
||
"2023-07-02 17:32:39,555 - modelscope - INFO - epoch [1][275/4953]\tlr: 9.975e-05, memory: 8933, loss: 3.0906\n",
|
||
"2023-07-02 17:32:45,339 - modelscope - INFO - epoch [1][280/4953]\tlr: 9.972e-05, memory: 8933, loss: 3.2016\n",
|
||
"2023-07-02 17:32:51,159 - modelscope - INFO - epoch [1][285/4953]\tlr: 9.970e-05, memory: 8933, loss: 3.4461\n",
|
||
"2023-07-02 17:32:57,166 - modelscope - INFO - epoch [1][290/4953]\tlr: 9.967e-05, memory: 8933, loss: 1.9609\n",
|
||
"2023-07-02 17:33:06,217 - modelscope - INFO - epoch [1][295/4953]\tlr: 9.965e-05, memory: 8933, loss: 1.9680\n",
|
||
"2023-07-02 17:33:12,393 - modelscope - INFO - epoch [1][300/4953]\tlr: 9.962e-05, memory: 8933, loss: 1.5422\n",
|
||
"2023-07-02 17:33:17,688 - modelscope - INFO - epoch [1][305/4953]\tlr: 9.960e-05, memory: 8933, loss: 2.6953\n",
|
||
"2023-07-02 17:33:21,863 - modelscope - INFO - epoch [1][310/4953]\tlr: 9.957e-05, memory: 8933, loss: 3.0094\n",
|
||
"2023-07-02 17:33:27,411 - modelscope - INFO - epoch [1][315/4953]\tlr: 9.954e-05, memory: 8933, loss: 1.9156\n",
|
||
"2023-07-02 17:33:33,136 - modelscope - INFO - epoch [1][320/4953]\tlr: 9.952e-05, memory: 8933, loss: 1.9672\n",
|
||
"2023-07-02 17:33:38,217 - modelscope - INFO - epoch [1][325/4953]\tlr: 9.949e-05, memory: 8933, loss: 4.3375\n",
|
||
"2023-07-02 17:33:44,012 - modelscope - INFO - epoch [1][330/4953]\tlr: 9.946e-05, memory: 8933, loss: 1.8797\n",
|
||
"2023-07-02 17:33:49,670 - modelscope - INFO - epoch [1][335/4953]\tlr: 9.943e-05, memory: 8933, loss: 3.0969\n",
|
||
"2023-07-02 17:33:55,428 - modelscope - INFO - epoch [1][340/4953]\tlr: 9.940e-05, memory: 8933, loss: 3.2477\n",
|
||
"2023-07-02 17:34:02,117 - modelscope - INFO - epoch [1][345/4953]\tlr: 9.937e-05, memory: 8933, loss: 2.7969\n",
|
||
"2023-07-02 17:34:08,037 - modelscope - INFO - epoch [1][350/4953]\tlr: 9.934e-05, memory: 8933, loss: 2.3578\n",
|
||
"2023-07-02 17:34:13,172 - modelscope - INFO - epoch [1][355/4953]\tlr: 9.931e-05, memory: 8933, loss: 2.0656\n",
|
||
"2023-07-02 17:34:19,283 - modelscope - INFO - epoch [1][360/4953]\tlr: 9.928e-05, memory: 8933, loss: 1.8438\n",
|
||
"2023-07-02 17:34:25,323 - modelscope - INFO - epoch [1][365/4953]\tlr: 9.925e-05, memory: 8933, loss: 2.1828\n",
|
||
"2023-07-02 17:34:31,845 - modelscope - INFO - epoch [1][370/4953]\tlr: 9.922e-05, memory: 8933, loss: 2.0234\n",
|
||
"2023-07-02 17:34:40,587 - modelscope - INFO - epoch [1][375/4953]\tlr: 9.919e-05, memory: 8933, loss: 2.3086\n",
|
||
"2023-07-02 17:34:45,650 - modelscope - INFO - epoch [1][380/4953]\tlr: 9.915e-05, memory: 8933, loss: 3.6734\n",
|
||
"2023-07-02 17:34:51,009 - modelscope - INFO - epoch [1][385/4953]\tlr: 9.912e-05, memory: 8933, loss: 1.3594\n",
|
||
"2023-07-02 17:34:57,229 - modelscope - INFO - epoch [1][390/4953]\tlr: 9.909e-05, memory: 8933, loss: 2.3117\n",
|
||
"2023-07-02 17:35:03,231 - modelscope - INFO - epoch [1][395/4953]\tlr: 9.905e-05, memory: 8933, loss: 1.4961\n",
|
||
"2023-07-02 17:35:08,373 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.05it/s]\n",
|
||
"2023-07-02 17:37:23,763 - modelscope - INFO - Saving checkpoint at 400 iter\n",
|
||
"2023-07-02 17:37:23,803 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_200\n",
|
||
"2023-07-02 17:37:23,807 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8933, evaluation/acc: 0.7079, evaluation/loss: 2.1381, loss: 1.9438\n",
|
||
"2023-07-02 17:37:28,880 - modelscope - INFO - epoch [1][405/4953]\tlr: 9.898e-05, memory: 8933, loss: 3.1016\n",
|
||
"2023-07-02 17:37:35,463 - modelscope - INFO - epoch [1][410/4953]\tlr: 9.895e-05, memory: 8933, loss: 2.5531\n",
|
||
"2023-07-02 17:37:41,349 - modelscope - INFO - epoch [1][415/4953]\tlr: 9.891e-05, memory: 8933, loss: 2.2984\n",
|
||
"2023-07-02 17:37:47,522 - modelscope - INFO - epoch [1][420/4953]\tlr: 9.888e-05, memory: 8933, loss: 1.5930\n",
|
||
"2023-07-02 17:37:54,150 - modelscope - INFO - epoch [1][425/4953]\tlr: 9.884e-05, memory: 8933, loss: 2.2938\n",
|
||
"2023-07-02 17:37:59,915 - modelscope - INFO - epoch [1][430/4953]\tlr: 9.880e-05, memory: 8933, loss: 2.5562\n",
|
||
"2023-07-02 17:38:07,433 - modelscope - INFO - epoch [1][435/4953]\tlr: 9.877e-05, memory: 8933, loss: 1.5555\n",
|
||
"2023-07-02 17:38:14,761 - modelscope - INFO - epoch [1][440/4953]\tlr: 9.873e-05, memory: 8933, loss: 2.9109\n",
|
||
"2023-07-02 17:38:19,100 - modelscope - INFO - epoch [1][445/4953]\tlr: 9.869e-05, memory: 8933, loss: 1.6234\n",
|
||
"2023-07-02 17:38:24,534 - modelscope - INFO - epoch [1][450/4953]\tlr: 9.865e-05, memory: 8933, loss: 2.2734\n",
|
||
"2023-07-02 17:38:31,059 - modelscope - INFO - epoch [1][455/4953]\tlr: 9.861e-05, memory: 8933, loss: 1.3438\n",
|
||
"2023-07-02 17:38:37,366 - modelscope - INFO - epoch [1][460/4953]\tlr: 9.857e-05, memory: 8933, loss: 1.8469\n",
|
||
"2023-07-02 17:38:43,640 - modelscope - INFO - epoch [1][465/4953]\tlr: 9.853e-05, memory: 8933, loss: 1.7102\n",
|
||
"2023-07-02 17:38:48,102 - modelscope - INFO - epoch [1][470/4953]\tlr: 9.849e-05, memory: 8933, loss: 2.1500\n",
|
||
"2023-07-02 17:38:52,751 - modelscope - INFO - epoch [1][475/4953]\tlr: 9.845e-05, memory: 8933, loss: 2.4086\n",
|
||
"2023-07-02 17:38:59,938 - modelscope - INFO - epoch [1][480/4953]\tlr: 9.841e-05, memory: 8933, loss: 1.1828\n",
|
||
"2023-07-02 17:39:06,061 - modelscope - INFO - epoch [1][485/4953]\tlr: 9.837e-05, memory: 8933, loss: 1.0625\n",
|
||
"2023-07-02 17:39:13,230 - modelscope - INFO - epoch [1][490/4953]\tlr: 9.832e-05, memory: 8933, loss: 1.5750\n",
|
||
"2023-07-02 17:39:19,107 - modelscope - INFO - epoch [1][495/4953]\tlr: 9.828e-05, memory: 8933, loss: 1.9844\n",
|
||
"2023-07-02 17:39:27,177 - modelscope - INFO - epoch [1][500/4953]\tlr: 9.824e-05, memory: 8933, loss: 1.7211\n",
|
||
"2023-07-02 17:39:31,312 - modelscope - INFO - epoch [1][505/4953]\tlr: 9.819e-05, memory: 8933, loss: 2.9953\n",
|
||
"2023-07-02 17:39:37,871 - modelscope - INFO - epoch [1][510/4953]\tlr: 9.815e-05, memory: 8933, loss: 1.7234\n",
|
||
"2023-07-02 17:39:42,983 - modelscope - INFO - epoch [1][515/4953]\tlr: 9.811e-05, memory: 8933, loss: 3.3328\n",
|
||
"2023-07-02 17:39:50,299 - modelscope - INFO - epoch [1][520/4953]\tlr: 9.806e-05, memory: 8933, loss: 1.1523\n",
|
||
"2023-07-02 17:39:57,449 - modelscope - INFO - epoch [1][525/4953]\tlr: 9.802e-05, memory: 8933, loss: 2.2969\n",
|
||
"2023-07-02 17:40:03,936 - modelscope - INFO - epoch [1][530/4953]\tlr: 9.797e-05, memory: 8933, loss: 2.0359\n",
|
||
"2023-07-02 17:40:10,017 - modelscope - INFO - epoch [1][535/4953]\tlr: 9.792e-05, memory: 8933, loss: 2.2484\n",
|
||
"2023-07-02 17:40:15,110 - modelscope - INFO - epoch [1][540/4953]\tlr: 9.788e-05, memory: 8933, loss: 2.5000\n",
|
||
"2023-07-02 17:40:22,837 - modelscope - INFO - epoch [1][545/4953]\tlr: 9.783e-05, memory: 8933, loss: 1.6344\n",
|
||
"2023-07-02 17:40:27,326 - modelscope - INFO - epoch [1][550/4953]\tlr: 9.778e-05, memory: 8933, loss: 1.9516\n",
|
||
"2023-07-02 17:40:32,836 - modelscope - INFO - epoch [1][555/4953]\tlr: 9.774e-05, memory: 8933, loss: 2.7078\n",
|
||
"2023-07-02 17:40:38,900 - modelscope - INFO - epoch [1][560/4953]\tlr: 9.769e-05, memory: 8933, loss: 2.9023\n",
|
||
"2023-07-02 17:40:44,092 - modelscope - INFO - epoch [1][565/4953]\tlr: 9.764e-05, memory: 8933, loss: 3.7687\n",
|
||
"2023-07-02 17:40:51,182 - modelscope - INFO - epoch [1][570/4953]\tlr: 9.759e-05, memory: 8933, loss: 2.8531\n",
|
||
"2023-07-02 17:40:56,580 - modelscope - INFO - epoch [1][575/4953]\tlr: 9.754e-05, memory: 8933, loss: 1.8938\n",
|
||
"2023-07-02 17:41:04,432 - modelscope - INFO - epoch [1][580/4953]\tlr: 9.749e-05, memory: 8933, loss: 1.4187\n",
|
||
"2023-07-02 17:41:11,299 - modelscope - INFO - epoch [1][585/4953]\tlr: 9.744e-05, memory: 8933, loss: 2.2406\n",
|
||
"2023-07-02 17:41:17,405 - modelscope - INFO - epoch [1][590/4953]\tlr: 9.739e-05, memory: 8933, loss: 3.2250\n",
|
||
"2023-07-02 17:41:23,093 - modelscope - INFO - epoch [1][595/4953]\tlr: 9.734e-05, memory: 8933, loss: 1.5625\n",
|
||
"2023-07-02 17:41:29,552 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.05it/s]\n",
|
||
"2023-07-02 17:43:44,919 - modelscope - INFO - Saving checkpoint at 600 iter\n",
|
||
"2023-07-02 17:43:44,959 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter200_acc0.7107985615730286\n",
|
||
"2023-07-02 17:43:44,963 - modelscope - INFO - Saving checkpoint at 600 iter\n",
|
||
"2023-07-02 17:43:45,002 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_400\n",
|
||
"2023-07-02 17:43:45,006 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8933, evaluation/acc: 0.7199, evaluation/loss: 1.9766, loss: 1.2516\n",
|
||
"2023-07-02 17:43:50,488 - modelscope - INFO - epoch [1][605/4953]\tlr: 9.723e-05, memory: 8933, loss: 1.8469\n",
|
||
"2023-07-02 17:43:56,664 - modelscope - INFO - epoch [1][610/4953]\tlr: 9.718e-05, memory: 8933, loss: 1.5445\n",
|
||
"2023-07-02 17:44:02,529 - modelscope - INFO - epoch [1][615/4953]\tlr: 9.713e-05, memory: 8933, loss: 1.8422\n",
|
||
"2023-07-02 17:44:07,376 - modelscope - INFO - epoch [1][620/4953]\tlr: 9.707e-05, memory: 8933, loss: 2.4242\n",
|
||
"2023-07-02 17:44:12,991 - modelscope - INFO - epoch [1][625/4953]\tlr: 9.702e-05, memory: 8933, loss: 1.8070\n",
|
||
"2023-07-02 17:44:17,716 - modelscope - INFO - epoch [1][630/4953]\tlr: 9.697e-05, memory: 8933, loss: 2.0000\n",
|
||
"2023-07-02 17:44:22,023 - modelscope - INFO - epoch [1][635/4953]\tlr: 9.691e-05, memory: 8933, loss: 1.3898\n",
|
||
"2023-07-02 17:44:27,160 - modelscope - INFO - epoch [1][640/4953]\tlr: 9.686e-05, memory: 8933, loss: 1.6227\n",
|
||
"2023-07-02 17:44:33,519 - modelscope - INFO - epoch [1][645/4953]\tlr: 9.680e-05, memory: 8933, loss: 1.6672\n",
|
||
"2023-07-02 17:44:40,193 - modelscope - INFO - epoch [1][650/4953]\tlr: 9.674e-05, memory: 8933, loss: 1.4438\n",
|
||
"2023-07-02 17:44:44,906 - modelscope - INFO - epoch [1][655/4953]\tlr: 9.669e-05, memory: 8933, loss: 1.6648\n",
|
||
"2023-07-02 17:44:49,519 - modelscope - INFO - epoch [1][660/4953]\tlr: 9.663e-05, memory: 8933, loss: 1.2945\n",
|
||
"2023-07-02 17:44:55,845 - modelscope - INFO - epoch [1][665/4953]\tlr: 9.657e-05, memory: 8933, loss: 1.5773\n",
|
||
"2023-07-02 17:45:02,184 - modelscope - INFO - epoch [1][670/4953]\tlr: 9.652e-05, memory: 8933, loss: 1.8625\n",
|
||
"2023-07-02 17:45:05,554 - modelscope - INFO - epoch [1][675/4953]\tlr: 9.646e-05, memory: 8933, loss: 1.7039\n",
|
||
"2023-07-02 17:45:10,948 - modelscope - INFO - epoch [1][680/4953]\tlr: 9.640e-05, memory: 8933, loss: 2.0211\n",
|
||
"2023-07-02 17:45:15,605 - modelscope - INFO - epoch [1][685/4953]\tlr: 9.634e-05, memory: 8933, loss: 1.5969\n",
|
||
"2023-07-02 17:45:19,449 - modelscope - INFO - epoch [1][690/4953]\tlr: 9.628e-05, memory: 8933, loss: 1.7523\n",
|
||
"2023-07-02 17:45:26,684 - modelscope - INFO - epoch [1][695/4953]\tlr: 9.622e-05, memory: 8933, loss: 1.0891\n",
|
||
"2023-07-02 17:45:32,244 - modelscope - INFO - epoch [1][700/4953]\tlr: 9.616e-05, memory: 8933, loss: 1.9469\n",
|
||
"2023-07-02 17:45:37,894 - modelscope - INFO - epoch [1][705/4953]\tlr: 9.610e-05, memory: 8933, loss: 2.0938\n",
|
||
"2023-07-02 17:45:43,345 - modelscope - INFO - epoch [1][710/4953]\tlr: 9.604e-05, memory: 8933, loss: 2.7961\n",
|
||
"2023-07-02 17:45:49,260 - modelscope - INFO - epoch [1][715/4953]\tlr: 9.598e-05, memory: 8933, loss: 1.4719\n",
|
||
"2023-07-02 17:45:56,740 - modelscope - INFO - epoch [1][720/4953]\tlr: 9.592e-05, memory: 8992, loss: 2.2742\n",
|
||
"2023-07-02 17:46:00,368 - modelscope - INFO - epoch [1][725/4953]\tlr: 9.585e-05, memory: 8992, loss: 2.5391\n",
|
||
"2023-07-02 17:46:06,793 - modelscope - INFO - epoch [1][730/4953]\tlr: 9.579e-05, memory: 8992, loss: 1.0074\n",
|
||
"2023-07-02 17:46:13,010 - modelscope - INFO - epoch [1][735/4953]\tlr: 9.573e-05, memory: 8992, loss: 1.9289\n",
|
||
"2023-07-02 17:46:19,044 - modelscope - INFO - epoch [1][740/4953]\tlr: 9.567e-05, memory: 8992, loss: 1.7352\n",
|
||
"2023-07-02 17:46:26,858 - modelscope - INFO - epoch [1][745/4953]\tlr: 9.560e-05, memory: 8992, loss: 1.6711\n",
|
||
"2023-07-02 17:46:32,975 - modelscope - INFO - epoch [1][750/4953]\tlr: 9.554e-05, memory: 8992, loss: 2.0008\n",
|
||
"2023-07-02 17:46:41,458 - modelscope - INFO - epoch [1][755/4953]\tlr: 9.547e-05, memory: 8992, loss: 1.4602\n",
|
||
"2023-07-02 17:46:45,793 - modelscope - INFO - epoch [1][760/4953]\tlr: 9.541e-05, memory: 8992, loss: 3.6859\n",
|
||
"2023-07-02 17:46:50,447 - modelscope - INFO - epoch [1][765/4953]\tlr: 9.534e-05, memory: 8992, loss: 2.0977\n",
|
||
"2023-07-02 17:46:56,543 - modelscope - INFO - epoch [1][770/4953]\tlr: 9.528e-05, memory: 8992, loss: 1.6078\n",
|
||
"2023-07-02 17:47:02,551 - modelscope - INFO - epoch [1][775/4953]\tlr: 9.521e-05, memory: 8992, loss: 2.8766\n",
|
||
"2023-07-02 17:47:09,599 - modelscope - INFO - epoch [1][780/4953]\tlr: 9.514e-05, memory: 8992, loss: 2.9023\n",
|
||
"2023-07-02 17:47:15,456 - modelscope - INFO - epoch [1][785/4953]\tlr: 9.508e-05, memory: 8992, loss: 1.2570\n",
|
||
"2023-07-02 17:47:22,689 - modelscope - INFO - epoch [1][790/4953]\tlr: 9.501e-05, memory: 8992, loss: 1.7406\n",
|
||
"2023-07-02 17:47:28,263 - modelscope - INFO - epoch [1][795/4953]\tlr: 9.494e-05, memory: 8992, loss: 1.9820\n",
|
||
"2023-07-02 17:47:34,260 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:16<00:00, 2.04it/s]\n",
|
||
"2023-07-02 17:49:50,358 - modelscope - INFO - Saving checkpoint at 800 iter\n",
|
||
"2023-07-02 17:49:50,399 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter600_acc0.7198567390441895\n",
|
||
"2023-07-02 17:49:50,403 - modelscope - INFO - Saving checkpoint at 800 iter\n",
|
||
"2023-07-02 17:49:50,442 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_600\n",
|
||
"2023-07-02 17:49:50,447 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8992, evaluation/acc: 0.7412, evaluation/loss: 1.8238, loss: 1.3484\n",
|
||
"2023-07-02 17:49:56,027 - modelscope - INFO - epoch [1][805/4953]\tlr: 9.481e-05, memory: 8992, loss: 1.9234\n",
|
||
"2023-07-02 17:50:02,709 - modelscope - INFO - epoch [1][810/4953]\tlr: 9.474e-05, memory: 8992, loss: 1.3625\n",
|
||
"2023-07-02 17:50:05,927 - modelscope - INFO - epoch [1][815/4953]\tlr: 9.467e-05, memory: 8992, loss: 3.0219\n",
|
||
"2023-07-02 17:50:11,744 - modelscope - INFO - epoch [1][820/4953]\tlr: 9.460e-05, memory: 8992, loss: 1.4125\n",
|
||
"2023-07-02 17:50:17,173 - modelscope - INFO - epoch [1][825/4953]\tlr: 9.453e-05, memory: 8992, loss: 2.7422\n",
|
||
"2023-07-02 17:50:20,860 - modelscope - INFO - epoch [1][830/4953]\tlr: 9.446e-05, memory: 8992, loss: 2.2609\n",
|
||
"2023-07-02 17:50:26,716 - modelscope - INFO - epoch [1][835/4953]\tlr: 9.439e-05, memory: 8992, loss: 2.0391\n",
|
||
"2023-07-02 17:50:33,433 - modelscope - INFO - epoch [1][840/4953]\tlr: 9.431e-05, memory: 8992, loss: 1.2227\n",
|
||
"2023-07-02 17:50:38,310 - modelscope - INFO - epoch [1][845/4953]\tlr: 9.424e-05, memory: 8992, loss: 2.3312\n",
|
||
"2023-07-02 17:50:42,956 - modelscope - INFO - epoch [1][850/4953]\tlr: 9.417e-05, memory: 8992, loss: 1.8562\n",
|
||
"2023-07-02 17:50:48,973 - modelscope - INFO - epoch [1][855/4953]\tlr: 9.410e-05, memory: 8992, loss: 1.5039\n",
|
||
"2023-07-02 17:50:52,835 - modelscope - INFO - epoch [1][860/4953]\tlr: 9.402e-05, memory: 8992, loss: 2.6664\n",
|
||
"2023-07-02 17:50:59,665 - modelscope - INFO - epoch [1][865/4953]\tlr: 9.395e-05, memory: 8992, loss: 1.1352\n",
|
||
"2023-07-02 17:51:05,311 - modelscope - INFO - epoch [1][870/4953]\tlr: 9.388e-05, memory: 8992, loss: 0.9805\n",
|
||
"2023-07-02 17:51:10,329 - modelscope - INFO - epoch [1][875/4953]\tlr: 9.380e-05, memory: 8992, loss: 1.9438\n",
|
||
"2023-07-02 17:51:15,416 - modelscope - INFO - epoch [1][880/4953]\tlr: 9.373e-05, memory: 8992, loss: 1.5938\n",
|
||
"2023-07-02 17:51:18,285 - modelscope - INFO - epoch [1][885/4953]\tlr: 9.365e-05, memory: 8992, loss: 3.1656\n",
|
||
"2023-07-02 17:51:23,293 - modelscope - INFO - epoch [1][890/4953]\tlr: 9.358e-05, memory: 8992, loss: 1.3336\n",
|
||
"2023-07-02 17:51:29,054 - modelscope - INFO - epoch [1][895/4953]\tlr: 9.350e-05, memory: 8992, loss: 1.9094\n",
|
||
"2023-07-02 17:51:34,572 - modelscope - INFO - epoch [1][900/4953]\tlr: 9.343e-05, memory: 8992, loss: 2.2406\n",
|
||
"2023-07-02 17:51:40,191 - modelscope - INFO - epoch [1][905/4953]\tlr: 9.335e-05, memory: 8992, loss: 1.1078\n",
|
||
"2023-07-02 17:51:49,310 - modelscope - INFO - epoch [1][910/4953]\tlr: 9.327e-05, memory: 8992, loss: 1.4352\n",
|
||
"2023-07-02 17:51:53,688 - modelscope - INFO - epoch [1][915/4953]\tlr: 9.320e-05, memory: 8992, loss: 2.3406\n",
|
||
"2023-07-02 17:51:58,710 - modelscope - INFO - epoch [1][920/4953]\tlr: 9.312e-05, memory: 8992, loss: 1.6012\n",
|
||
"2023-07-02 17:52:04,686 - modelscope - INFO - epoch [1][925/4953]\tlr: 9.304e-05, memory: 8992, loss: 1.7086\n",
|
||
"2023-07-02 17:52:12,123 - modelscope - INFO - epoch [1][930/4953]\tlr: 9.296e-05, memory: 8992, loss: 1.3492\n",
|
||
"2023-07-02 17:52:15,935 - modelscope - INFO - epoch [1][935/4953]\tlr: 9.288e-05, memory: 8992, loss: 1.4781\n",
|
||
"2023-07-02 17:52:20,994 - modelscope - INFO - epoch [1][940/4953]\tlr: 9.280e-05, memory: 8992, loss: 2.1047\n",
|
||
"2023-07-02 17:52:28,615 - modelscope - INFO - epoch [1][945/4953]\tlr: 9.272e-05, memory: 8992, loss: 1.2547\n",
|
||
"2023-07-02 17:52:34,278 - modelscope - INFO - epoch [1][950/4953]\tlr: 9.264e-05, memory: 8992, loss: 1.7332\n",
|
||
"2023-07-02 17:52:40,908 - modelscope - INFO - epoch [1][955/4953]\tlr: 9.256e-05, memory: 8992, loss: 1.2336\n",
|
||
"2023-07-02 17:52:45,957 - modelscope - INFO - epoch [1][960/4953]\tlr: 9.248e-05, memory: 8992, loss: 1.3078\n",
|
||
"2023-07-02 17:52:51,185 - modelscope - INFO - epoch [1][965/4953]\tlr: 9.240e-05, memory: 8992, loss: 2.4461\n",
|
||
"2023-07-02 17:52:56,088 - modelscope - INFO - epoch [1][970/4953]\tlr: 9.232e-05, memory: 8992, loss: 2.0934\n",
|
||
"2023-07-02 17:53:00,822 - modelscope - INFO - epoch [1][975/4953]\tlr: 9.224e-05, memory: 8992, loss: 1.5676\n",
|
||
"2023-07-02 17:53:04,695 - modelscope - INFO - epoch [1][980/4953]\tlr: 9.216e-05, memory: 8992, loss: 2.7031\n",
|
||
"2023-07-02 17:53:09,760 - modelscope - INFO - epoch [1][985/4953]\tlr: 9.207e-05, memory: 8992, loss: 1.9406\n",
|
||
"2023-07-02 17:53:14,950 - modelscope - INFO - epoch [1][990/4953]\tlr: 9.199e-05, memory: 8992, loss: 1.9484\n",
|
||
"2023-07-02 17:53:20,534 - modelscope - INFO - epoch [1][995/4953]\tlr: 9.191e-05, memory: 8992, loss: 3.2953\n",
|
||
"2023-07-02 17:53:25,342 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:16<00:00, 2.04it/s]\n",
|
||
"2023-07-02 17:55:41,348 - modelscope - INFO - Saving checkpoint at 1000 iter\n",
|
||
"2023-07-02 17:55:41,389 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter800_acc0.7412243485450745\n",
|
||
"2023-07-02 17:55:41,393 - modelscope - INFO - Saving checkpoint at 1000 iter\n",
|
||
"2023-07-02 17:55:41,431 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_800\n",
|
||
"2023-07-02 17:55:41,435 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8992, evaluation/acc: 0.7551, evaluation/loss: 1.6418, loss: 2.1023\n",
|
||
"2023-07-02 17:55:48,321 - modelscope - INFO - epoch [1][1005/4953]\tlr: 9.174e-05, memory: 8992, loss: 0.9020\n",
|
||
"2023-07-02 17:55:52,978 - modelscope - INFO - epoch [1][1010/4953]\tlr: 9.166e-05, memory: 8992, loss: 2.8094\n",
|
||
"2023-07-02 17:55:59,951 - modelscope - INFO - epoch [1][1015/4953]\tlr: 9.157e-05, memory: 8992, loss: 1.5145\n",
|
||
"2023-07-02 17:56:06,752 - modelscope - INFO - epoch [1][1020/4953]\tlr: 9.149e-05, memory: 8992, loss: 1.2547\n",
|
||
"2023-07-02 17:56:13,123 - modelscope - INFO - epoch [1][1025/4953]\tlr: 9.140e-05, memory: 8992, loss: 1.5836\n",
|
||
"2023-07-02 17:56:18,535 - modelscope - INFO - epoch [1][1030/4953]\tlr: 9.132e-05, memory: 8992, loss: 1.5500\n",
|
||
"2023-07-02 17:56:23,898 - modelscope - INFO - epoch [1][1035/4953]\tlr: 9.123e-05, memory: 8992, loss: 1.1477\n",
|
||
"2023-07-02 17:56:29,262 - modelscope - INFO - epoch [1][1040/4953]\tlr: 9.114e-05, memory: 8992, loss: 1.8488\n",
|
||
"2023-07-02 17:56:36,281 - modelscope - INFO - epoch [1][1045/4953]\tlr: 9.106e-05, memory: 8992, loss: 1.7969\n",
|
||
"2023-07-02 17:56:42,786 - modelscope - INFO - epoch [1][1050/4953]\tlr: 9.097e-05, memory: 8992, loss: 1.0703\n",
|
||
"2023-07-02 17:56:48,367 - modelscope - INFO - epoch [1][1055/4953]\tlr: 9.088e-05, memory: 8992, loss: 1.5227\n",
|
||
"2023-07-02 17:56:53,185 - modelscope - INFO - epoch [1][1060/4953]\tlr: 9.079e-05, memory: 8992, loss: 2.5859\n",
|
||
"2023-07-02 17:56:59,040 - modelscope - INFO - epoch [1][1065/4953]\tlr: 9.070e-05, memory: 8992, loss: 1.4641\n",
|
||
"2023-07-02 17:57:05,006 - modelscope - INFO - epoch [1][1070/4953]\tlr: 9.062e-05, memory: 8992, loss: 0.9602\n",
|
||
"2023-07-02 17:57:08,833 - modelscope - INFO - epoch [1][1075/4953]\tlr: 9.053e-05, memory: 8992, loss: 2.7281\n",
|
||
"2023-07-02 17:57:15,081 - modelscope - INFO - epoch [1][1080/4953]\tlr: 9.044e-05, memory: 8992, loss: 0.8438\n",
|
||
"2023-07-02 17:57:19,054 - modelscope - INFO - epoch [1][1085/4953]\tlr: 9.035e-05, memory: 8992, loss: 2.0336\n",
|
||
"2023-07-02 17:57:27,789 - modelscope - INFO - epoch [1][1090/4953]\tlr: 9.026e-05, memory: 8992, loss: 1.0059\n",
|
||
"2023-07-02 17:57:32,658 - modelscope - INFO - epoch [1][1095/4953]\tlr: 9.017e-05, memory: 8992, loss: 1.4187\n",
|
||
"2023-07-02 17:57:37,809 - modelscope - INFO - epoch [1][1100/4953]\tlr: 9.008e-05, memory: 8992, loss: 1.8813\n",
|
||
"2023-07-02 17:57:44,029 - modelscope - INFO - epoch [1][1105/4953]\tlr: 8.999e-05, memory: 8992, loss: 1.2219\n",
|
||
"2023-07-02 17:57:49,772 - modelscope - INFO - epoch [1][1110/4953]\tlr: 8.989e-05, memory: 8992, loss: 1.0527\n",
|
||
"2023-07-02 17:57:53,867 - modelscope - INFO - epoch [1][1115/4953]\tlr: 8.980e-05, memory: 8992, loss: 1.7289\n",
|
||
"2023-07-02 17:57:59,243 - modelscope - INFO - epoch [1][1120/4953]\tlr: 8.971e-05, memory: 8992, loss: 2.4305\n",
|
||
"2023-07-02 17:58:08,887 - modelscope - INFO - epoch [1][1125/4953]\tlr: 8.962e-05, memory: 8992, loss: 0.7469\n",
|
||
"2023-07-02 17:58:16,138 - modelscope - INFO - epoch [1][1130/4953]\tlr: 8.952e-05, memory: 8992, loss: 1.7727\n",
|
||
"2023-07-02 17:58:23,930 - modelscope - INFO - epoch [1][1135/4953]\tlr: 8.943e-05, memory: 8992, loss: 2.0129\n",
|
||
"2023-07-02 17:58:30,185 - modelscope - INFO - epoch [1][1140/4953]\tlr: 8.934e-05, memory: 8992, loss: 2.9025\n",
|
||
"2023-07-02 17:58:36,114 - modelscope - INFO - epoch [1][1145/4953]\tlr: 8.924e-05, memory: 8992, loss: 1.8898\n",
|
||
"2023-07-02 17:58:42,583 - modelscope - INFO - epoch [1][1150/4953]\tlr: 8.915e-05, memory: 8992, loss: 1.6789\n",
|
||
"2023-07-02 17:58:47,491 - modelscope - INFO - epoch [1][1155/4953]\tlr: 8.905e-05, memory: 8992, loss: 1.5578\n",
|
||
"2023-07-02 17:58:51,182 - modelscope - INFO - epoch [1][1160/4953]\tlr: 8.896e-05, memory: 8992, loss: 2.6266\n",
|
||
"2023-07-02 17:58:56,692 - modelscope - INFO - epoch [1][1165/4953]\tlr: 8.886e-05, memory: 8992, loss: 1.8508\n",
|
||
"2023-07-02 17:59:01,780 - modelscope - INFO - epoch [1][1170/4953]\tlr: 8.877e-05, memory: 8992, loss: 1.7000\n",
|
||
"2023-07-02 17:59:05,790 - modelscope - INFO - epoch [1][1175/4953]\tlr: 8.867e-05, memory: 8992, loss: 2.2281\n",
|
||
"2023-07-02 17:59:10,420 - modelscope - INFO - epoch [1][1180/4953]\tlr: 8.858e-05, memory: 8992, loss: 2.2180\n",
|
||
"2023-07-02 17:59:15,762 - modelscope - INFO - epoch [1][1185/4953]\tlr: 8.848e-05, memory: 8992, loss: 1.2668\n",
|
||
"2023-07-02 17:59:20,930 - modelscope - INFO - epoch [1][1190/4953]\tlr: 8.838e-05, memory: 8992, loss: 1.8664\n",
|
||
"2023-07-02 17:59:27,122 - modelscope - INFO - epoch [1][1195/4953]\tlr: 8.828e-05, memory: 8992, loss: 2.4109\n",
|
||
"2023-07-02 17:59:32,910 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 18:01:48,692 - modelscope - INFO - Saving checkpoint at 1200 iter\n",
|
||
"2023-07-02 18:01:48,732 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter1000_acc0.7551158666610718\n",
|
||
"2023-07-02 18:01:48,736 - modelscope - INFO - Saving checkpoint at 1200 iter\n",
|
||
"2023-07-02 18:01:48,775 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_1000\n",
|
||
"2023-07-02 18:01:48,780 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8992, evaluation/acc: 0.7694, evaluation/loss: 1.5234, loss: 1.7117\n",
|
||
"2023-07-02 18:01:56,354 - modelscope - INFO - epoch [1][1205/4953]\tlr: 8.809e-05, memory: 8992, loss: 1.2402\n",
|
||
"2023-07-02 18:02:00,660 - modelscope - INFO - epoch [1][1210/4953]\tlr: 8.799e-05, memory: 8992, loss: 1.9062\n",
|
||
"2023-07-02 18:02:04,421 - modelscope - INFO - epoch [1][1215/4953]\tlr: 8.789e-05, memory: 8992, loss: 1.4750\n",
|
||
"2023-07-02 18:02:10,614 - modelscope - INFO - epoch [1][1220/4953]\tlr: 8.779e-05, memory: 8992, loss: 1.0879\n",
|
||
"2023-07-02 18:02:16,579 - modelscope - INFO - epoch [1][1225/4953]\tlr: 8.769e-05, memory: 8992, loss: 1.9461\n",
|
||
"2023-07-02 18:02:23,602 - modelscope - INFO - epoch [1][1230/4953]\tlr: 8.759e-05, memory: 8992, loss: 2.3242\n",
|
||
"2023-07-02 18:02:31,155 - modelscope - INFO - epoch [1][1235/4953]\tlr: 8.749e-05, memory: 8992, loss: 1.9867\n",
|
||
"2023-07-02 18:02:36,373 - modelscope - INFO - epoch [1][1240/4953]\tlr: 8.739e-05, memory: 8992, loss: 2.1641\n",
|
||
"2023-07-02 18:02:41,792 - modelscope - INFO - epoch [1][1245/4953]\tlr: 8.729e-05, memory: 8992, loss: 1.9109\n",
|
||
"2023-07-02 18:02:49,746 - modelscope - INFO - epoch [1][1250/4953]\tlr: 8.719e-05, memory: 8992, loss: 0.7258\n",
|
||
"2023-07-02 18:02:54,809 - modelscope - INFO - epoch [1][1255/4953]\tlr: 8.709e-05, memory: 8992, loss: 1.7203\n",
|
||
"2023-07-02 18:03:02,266 - modelscope - INFO - epoch [1][1260/4953]\tlr: 8.699e-05, memory: 8992, loss: 1.3533\n",
|
||
"2023-07-02 18:03:10,570 - modelscope - INFO - epoch [1][1265/4953]\tlr: 8.689e-05, memory: 8992, loss: 1.6199\n",
|
||
"2023-07-02 18:03:17,332 - modelscope - INFO - epoch [1][1270/4953]\tlr: 8.679e-05, memory: 8992, loss: 1.4033\n",
|
||
"2023-07-02 18:03:24,075 - modelscope - INFO - epoch [1][1275/4953]\tlr: 8.668e-05, memory: 8992, loss: 1.3773\n",
|
||
"2023-07-02 18:03:31,046 - modelscope - INFO - epoch [1][1280/4953]\tlr: 8.658e-05, memory: 8992, loss: 1.3973\n",
|
||
"2023-07-02 18:03:37,326 - modelscope - INFO - epoch [1][1285/4953]\tlr: 8.648e-05, memory: 8992, loss: 1.6422\n",
|
||
"2023-07-02 18:03:42,789 - modelscope - INFO - epoch [1][1290/4953]\tlr: 8.637e-05, memory: 8992, loss: 1.8156\n",
|
||
"2023-07-02 18:03:49,191 - modelscope - INFO - epoch [1][1295/4953]\tlr: 8.627e-05, memory: 8992, loss: 0.8660\n",
|
||
"2023-07-02 18:03:57,916 - modelscope - INFO - epoch [1][1300/4953]\tlr: 8.617e-05, memory: 8992, loss: 1.4477\n",
|
||
"2023-07-02 18:04:04,809 - modelscope - INFO - epoch [1][1305/4953]\tlr: 8.606e-05, memory: 8992, loss: 0.7375\n",
|
||
"2023-07-02 18:04:12,169 - modelscope - INFO - epoch [1][1310/4953]\tlr: 8.596e-05, memory: 8992, loss: 0.4646\n",
|
||
"2023-07-02 18:04:17,928 - modelscope - INFO - epoch [1][1315/4953]\tlr: 8.585e-05, memory: 8992, loss: 1.6566\n",
|
||
"2023-07-02 18:04:26,868 - modelscope - INFO - epoch [1][1320/4953]\tlr: 8.575e-05, memory: 8992, loss: 1.0375\n",
|
||
"2023-07-02 18:04:32,785 - modelscope - INFO - epoch [1][1325/4953]\tlr: 8.564e-05, memory: 8992, loss: 1.1785\n",
|
||
"2023-07-02 18:04:36,876 - modelscope - INFO - epoch [1][1330/4953]\tlr: 8.553e-05, memory: 8992, loss: 2.0953\n",
|
||
"2023-07-02 18:04:43,149 - modelscope - INFO - epoch [1][1335/4953]\tlr: 8.543e-05, memory: 8992, loss: 1.4941\n",
|
||
"2023-07-02 18:04:48,128 - modelscope - INFO - epoch [1][1340/4953]\tlr: 8.532e-05, memory: 8992, loss: 2.3219\n",
|
||
"2023-07-02 18:04:54,519 - modelscope - INFO - epoch [1][1345/4953]\tlr: 8.521e-05, memory: 8992, loss: 1.7479\n",
|
||
"2023-07-02 18:05:00,734 - modelscope - INFO - epoch [1][1350/4953]\tlr: 8.511e-05, memory: 8992, loss: 2.5168\n",
|
||
"2023-07-02 18:05:07,571 - modelscope - INFO - epoch [1][1355/4953]\tlr: 8.500e-05, memory: 8992, loss: 1.5414\n",
|
||
"2023-07-02 18:05:13,130 - modelscope - INFO - epoch [1][1360/4953]\tlr: 8.489e-05, memory: 8992, loss: 1.8086\n",
|
||
"2023-07-02 18:05:22,837 - modelscope - INFO - epoch [1][1365/4953]\tlr: 8.478e-05, memory: 8992, loss: 1.1250\n",
|
||
"2023-07-02 18:05:28,381 - modelscope - INFO - epoch [1][1370/4953]\tlr: 8.468e-05, memory: 8992, loss: 1.2740\n",
|
||
"2023-07-02 18:05:34,762 - modelscope - INFO - epoch [1][1375/4953]\tlr: 8.457e-05, memory: 8992, loss: 1.6906\n",
|
||
"2023-07-02 18:05:40,998 - modelscope - INFO - epoch [1][1380/4953]\tlr: 8.446e-05, memory: 8992, loss: 2.1523\n",
|
||
"2023-07-02 18:05:48,330 - modelscope - INFO - epoch [1][1385/4953]\tlr: 8.435e-05, memory: 8992, loss: 0.6824\n",
|
||
"2023-07-02 18:05:52,136 - modelscope - INFO - epoch [1][1390/4953]\tlr: 8.424e-05, memory: 8992, loss: 1.8422\n",
|
||
"2023-07-02 18:05:58,132 - modelscope - INFO - epoch [1][1395/4953]\tlr: 8.413e-05, memory: 8992, loss: 0.8705\n",
|
||
"2023-07-02 18:06:04,317 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 18:08:20,133 - modelscope - INFO - Saving checkpoint at 1400 iter\n",
|
||
"2023-07-02 18:08:20,173 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter1200_acc0.7693551182746887\n",
|
||
"2023-07-02 18:08:20,177 - modelscope - INFO - Saving checkpoint at 1400 iter\n",
|
||
"2023-07-02 18:08:20,216 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_1200\n",
|
||
"2023-07-02 18:08:20,220 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8992, evaluation/acc: 0.7789, evaluation/loss: 1.4656, loss: 1.8477\n",
|
||
"2023-07-02 18:08:25,847 - modelscope - INFO - epoch [1][1405/4953]\tlr: 8.391e-05, memory: 8992, loss: 1.5250\n",
|
||
"2023-07-02 18:08:32,815 - modelscope - INFO - epoch [1][1410/4953]\tlr: 8.380e-05, memory: 8992, loss: 1.2430\n",
|
||
"2023-07-02 18:08:38,362 - modelscope - INFO - epoch [1][1415/4953]\tlr: 8.369e-05, memory: 8992, loss: 1.4227\n",
|
||
"2023-07-02 18:08:43,312 - modelscope - INFO - epoch [1][1420/4953]\tlr: 8.358e-05, memory: 8992, loss: 1.3088\n",
|
||
"2023-07-02 18:08:50,596 - modelscope - INFO - epoch [1][1425/4953]\tlr: 8.346e-05, memory: 8992, loss: 1.0277\n",
|
||
"2023-07-02 18:08:55,317 - modelscope - INFO - epoch [1][1430/4953]\tlr: 8.335e-05, memory: 8992, loss: 2.0480\n",
|
||
"2023-07-02 18:08:58,994 - modelscope - INFO - epoch [1][1435/4953]\tlr: 8.324e-05, memory: 8992, loss: 3.0969\n",
|
||
"2023-07-02 18:09:04,894 - modelscope - INFO - epoch [1][1440/4953]\tlr: 8.313e-05, memory: 8992, loss: 0.7141\n",
|
||
"2023-07-02 18:09:10,621 - modelscope - INFO - epoch [1][1445/4953]\tlr: 8.301e-05, memory: 8992, loss: 1.7031\n",
|
||
"2023-07-02 18:09:15,960 - modelscope - INFO - epoch [1][1450/4953]\tlr: 8.290e-05, memory: 8992, loss: 1.5277\n",
|
||
"2023-07-02 18:09:21,781 - modelscope - INFO - epoch [1][1455/4953]\tlr: 8.279e-05, memory: 8992, loss: 1.7842\n",
|
||
"2023-07-02 18:09:29,051 - modelscope - INFO - epoch [1][1460/4953]\tlr: 8.267e-05, memory: 8992, loss: 2.1768\n",
|
||
"2023-07-02 18:09:33,405 - modelscope - INFO - epoch [1][1465/4953]\tlr: 8.256e-05, memory: 8992, loss: 1.9969\n",
|
||
"2023-07-02 18:09:38,454 - modelscope - INFO - epoch [1][1470/4953]\tlr: 8.245e-05, memory: 8992, loss: 1.6043\n",
|
||
"2023-07-02 18:09:44,266 - modelscope - INFO - epoch [1][1475/4953]\tlr: 8.233e-05, memory: 8992, loss: 0.7842\n",
|
||
"2023-07-02 18:09:49,575 - modelscope - INFO - epoch [1][1480/4953]\tlr: 8.222e-05, memory: 8992, loss: 1.6766\n",
|
||
"2023-07-02 18:09:56,773 - modelscope - INFO - epoch [1][1485/4953]\tlr: 8.210e-05, memory: 8992, loss: 1.1123\n",
|
||
"2023-07-02 18:10:05,054 - modelscope - INFO - epoch [1][1490/4953]\tlr: 8.199e-05, memory: 9058, loss: 1.3289\n",
|
||
"2023-07-02 18:10:10,678 - modelscope - INFO - epoch [1][1495/4953]\tlr: 8.187e-05, memory: 9058, loss: 1.6414\n",
|
||
"2023-07-02 18:10:16,694 - modelscope - INFO - epoch [1][1500/4953]\tlr: 8.176e-05, memory: 9058, loss: 0.8203\n",
|
||
"2023-07-02 18:10:24,675 - modelscope - INFO - epoch [1][1505/4953]\tlr: 8.164e-05, memory: 9058, loss: 0.8189\n",
|
||
"2023-07-02 18:10:30,053 - modelscope - INFO - epoch [1][1510/4953]\tlr: 8.152e-05, memory: 9058, loss: 1.1646\n",
|
||
"2023-07-02 18:10:36,537 - modelscope - INFO - epoch [1][1515/4953]\tlr: 8.141e-05, memory: 9058, loss: 1.1387\n",
|
||
"2023-07-02 18:10:42,304 - modelscope - INFO - epoch [1][1520/4953]\tlr: 8.129e-05, memory: 9058, loss: 1.4477\n",
|
||
"2023-07-02 18:10:46,424 - modelscope - INFO - epoch [1][1525/4953]\tlr: 8.117e-05, memory: 9058, loss: 3.0531\n",
|
||
"2023-07-02 18:10:51,264 - modelscope - INFO - epoch [1][1530/4953]\tlr: 8.106e-05, memory: 9058, loss: 2.3023\n",
|
||
"2023-07-02 18:10:59,103 - modelscope - INFO - epoch [1][1535/4953]\tlr: 8.094e-05, memory: 9058, loss: 0.6086\n",
|
||
"2023-07-02 18:11:04,295 - modelscope - INFO - epoch [1][1540/4953]\tlr: 8.082e-05, memory: 9058, loss: 1.3912\n",
|
||
"2023-07-02 18:11:09,436 - modelscope - INFO - epoch [1][1545/4953]\tlr: 8.070e-05, memory: 9058, loss: 2.1668\n",
|
||
"2023-07-02 18:11:16,921 - modelscope - INFO - epoch [1][1550/4953]\tlr: 8.058e-05, memory: 9058, loss: 0.4180\n",
|
||
"2023-07-02 18:11:22,852 - modelscope - INFO - epoch [1][1555/4953]\tlr: 8.047e-05, memory: 9058, loss: 1.4855\n",
|
||
"2023-07-02 18:11:27,748 - modelscope - INFO - epoch [1][1560/4953]\tlr: 8.035e-05, memory: 9058, loss: 2.0650\n",
|
||
"2023-07-02 18:11:30,906 - modelscope - INFO - epoch [1][1565/4953]\tlr: 8.023e-05, memory: 9058, loss: 2.8250\n",
|
||
"2023-07-02 18:11:38,069 - modelscope - INFO - epoch [1][1570/4953]\tlr: 8.011e-05, memory: 9058, loss: 1.6609\n",
|
||
"2023-07-02 18:11:44,626 - modelscope - INFO - epoch [1][1575/4953]\tlr: 7.999e-05, memory: 9058, loss: 1.0016\n",
|
||
"2023-07-02 18:11:49,164 - modelscope - INFO - epoch [1][1580/4953]\tlr: 7.987e-05, memory: 9058, loss: 2.2371\n",
|
||
"2023-07-02 18:11:53,217 - modelscope - INFO - epoch [1][1585/4953]\tlr: 7.975e-05, memory: 9058, loss: 2.7695\n",
|
||
"2023-07-02 18:11:59,930 - modelscope - INFO - epoch [1][1590/4953]\tlr: 7.963e-05, memory: 9058, loss: 2.2398\n",
|
||
"2023-07-02 18:12:04,671 - modelscope - INFO - epoch [1][1595/4953]\tlr: 7.951e-05, memory: 9058, loss: 0.7875\n",
|
||
"2023-07-02 18:12:10,417 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 18:14:26,308 - modelscope - INFO - Saving checkpoint at 1600 iter\n",
|
||
"2023-07-02 18:14:26,349 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter1400_acc0.7789175510406494\n",
|
||
"2023-07-02 18:14:26,353 - modelscope - INFO - Saving checkpoint at 1600 iter\n",
|
||
"2023-07-02 18:14:26,392 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_1400\n",
|
||
"2023-07-02 18:14:26,396 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9058, evaluation/acc: 0.7892, evaluation/loss: 1.4188, loss: 2.1477\n",
|
||
"2023-07-02 18:14:31,893 - modelscope - INFO - epoch [1][1605/4953]\tlr: 7.927e-05, memory: 9058, loss: 0.7930\n",
|
||
"2023-07-02 18:14:37,157 - modelscope - INFO - epoch [1][1610/4953]\tlr: 7.914e-05, memory: 9058, loss: 1.6867\n",
|
||
"2023-07-02 18:14:41,163 - modelscope - INFO - epoch [1][1615/4953]\tlr: 7.902e-05, memory: 9058, loss: 1.3123\n",
|
||
"2023-07-02 18:14:46,222 - modelscope - INFO - epoch [1][1620/4953]\tlr: 7.890e-05, memory: 9058, loss: 1.9320\n",
|
||
"2023-07-02 18:14:50,200 - modelscope - INFO - epoch [1][1625/4953]\tlr: 7.878e-05, memory: 9058, loss: 2.3531\n",
|
||
"2023-07-02 18:14:55,640 - modelscope - INFO - epoch [1][1630/4953]\tlr: 7.866e-05, memory: 9058, loss: 2.1230\n",
|
||
"2023-07-02 18:15:00,591 - modelscope - INFO - epoch [1][1635/4953]\tlr: 7.853e-05, memory: 9058, loss: 1.2672\n",
|
||
"2023-07-02 18:15:06,311 - modelscope - INFO - epoch [1][1640/4953]\tlr: 7.841e-05, memory: 9058, loss: 1.8948\n",
|
||
"2023-07-02 18:15:12,067 - modelscope - INFO - epoch [1][1645/4953]\tlr: 7.829e-05, memory: 9058, loss: 1.9506\n",
|
||
"2023-07-02 18:15:18,834 - modelscope - INFO - epoch [1][1650/4953]\tlr: 7.817e-05, memory: 9058, loss: 0.8719\n",
|
||
"2023-07-02 18:15:24,490 - modelscope - INFO - epoch [1][1655/4953]\tlr: 7.804e-05, memory: 9058, loss: 0.7850\n",
|
||
"2023-07-02 18:15:30,533 - modelscope - INFO - epoch [1][1660/4953]\tlr: 7.792e-05, memory: 9058, loss: 1.0324\n",
|
||
"2023-07-02 18:15:39,715 - modelscope - INFO - epoch [1][1665/4953]\tlr: 7.779e-05, memory: 9058, loss: 0.8568\n",
|
||
"2023-07-02 18:15:46,536 - modelscope - INFO - epoch [1][1670/4953]\tlr: 7.767e-05, memory: 9058, loss: 1.5828\n",
|
||
"2023-07-02 18:15:50,976 - modelscope - INFO - epoch [1][1675/4953]\tlr: 7.755e-05, memory: 9058, loss: 1.5391\n",
|
||
"2023-07-02 18:15:56,272 - modelscope - INFO - epoch [1][1680/4953]\tlr: 7.742e-05, memory: 9058, loss: 1.6117\n",
|
||
"2023-07-02 18:16:04,187 - modelscope - INFO - epoch [1][1685/4953]\tlr: 7.730e-05, memory: 9058, loss: 0.4076\n",
|
||
"2023-07-02 18:16:08,882 - modelscope - INFO - epoch [1][1690/4953]\tlr: 7.717e-05, memory: 9058, loss: 1.3816\n",
|
||
"2023-07-02 18:16:16,150 - modelscope - INFO - epoch [1][1695/4953]\tlr: 7.705e-05, memory: 9058, loss: 1.9426\n",
|
||
"2023-07-02 18:16:20,599 - modelscope - INFO - epoch [1][1700/4953]\tlr: 7.692e-05, memory: 9058, loss: 2.4797\n",
|
||
"2023-07-02 18:16:26,001 - modelscope - INFO - epoch [1][1705/4953]\tlr: 7.679e-05, memory: 9058, loss: 1.3273\n",
|
||
"2023-07-02 18:16:32,374 - modelscope - INFO - epoch [1][1710/4953]\tlr: 7.667e-05, memory: 9058, loss: 0.9286\n",
|
||
"2023-07-02 18:16:39,243 - modelscope - INFO - epoch [1][1715/4953]\tlr: 7.654e-05, memory: 9058, loss: 1.3732\n",
|
||
"2023-07-02 18:16:44,919 - modelscope - INFO - epoch [1][1720/4953]\tlr: 7.642e-05, memory: 9058, loss: 1.2824\n",
|
||
"2023-07-02 18:16:47,647 - modelscope - INFO - epoch [1][1725/4953]\tlr: 7.629e-05, memory: 9058, loss: 2.0891\n",
|
||
"2023-07-02 18:16:53,984 - modelscope - INFO - epoch [1][1730/4953]\tlr: 7.616e-05, memory: 9058, loss: 0.5539\n",
|
||
"2023-07-02 18:16:58,439 - modelscope - INFO - epoch [1][1735/4953]\tlr: 7.604e-05, memory: 9058, loss: 1.4975\n",
|
||
"2023-07-02 18:17:03,726 - modelscope - INFO - epoch [1][1740/4953]\tlr: 7.591e-05, memory: 9058, loss: 1.6102\n",
|
||
"2023-07-02 18:17:08,657 - modelscope - INFO - epoch [1][1745/4953]\tlr: 7.578e-05, memory: 9058, loss: 1.6957\n",
|
||
"2023-07-02 18:17:13,371 - modelscope - INFO - epoch [1][1750/4953]\tlr: 7.565e-05, memory: 9058, loss: 1.5684\n",
|
||
"2023-07-02 18:17:17,513 - modelscope - INFO - epoch [1][1755/4953]\tlr: 7.553e-05, memory: 9058, loss: 2.9000\n",
|
||
"2023-07-02 18:17:24,347 - modelscope - INFO - epoch [1][1760/4953]\tlr: 7.540e-05, memory: 9058, loss: 1.5227\n",
|
||
"2023-07-02 18:17:28,183 - modelscope - INFO - epoch [1][1765/4953]\tlr: 7.527e-05, memory: 9058, loss: 2.3375\n",
|
||
"2023-07-02 18:17:35,427 - modelscope - INFO - epoch [1][1770/4953]\tlr: 7.514e-05, memory: 9058, loss: 1.0623\n",
|
||
"2023-07-02 18:17:39,708 - modelscope - INFO - epoch [1][1775/4953]\tlr: 7.501e-05, memory: 9058, loss: 1.5977\n",
|
||
"2023-07-02 18:17:45,757 - modelscope - INFO - epoch [1][1780/4953]\tlr: 7.488e-05, memory: 9058, loss: 1.0781\n",
|
||
"2023-07-02 18:17:49,525 - modelscope - INFO - epoch [1][1785/4953]\tlr: 7.475e-05, memory: 9058, loss: 1.6547\n",
|
||
"2023-07-02 18:17:55,072 - modelscope - INFO - epoch [1][1790/4953]\tlr: 7.463e-05, memory: 9058, loss: 1.4458\n",
|
||
"2023-07-02 18:18:01,439 - modelscope - INFO - epoch [1][1795/4953]\tlr: 7.450e-05, memory: 9058, loss: 1.0096\n",
|
||
"2023-07-02 18:18:06,478 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 18:20:22,335 - modelscope - INFO - Saving checkpoint at 1800 iter\n",
|
||
"2023-07-02 18:20:22,375 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter1600_acc0.7891753911972046\n",
|
||
"2023-07-02 18:20:22,379 - modelscope - INFO - Saving checkpoint at 1800 iter\n",
|
||
"2023-07-02 18:20:22,417 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_1600\n",
|
||
"2023-07-02 18:20:22,422 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9058, evaluation/acc: 0.7967, evaluation/loss: 1.3701, loss: 0.9414\n",
|
||
"2023-07-02 18:20:28,163 - modelscope - INFO - epoch [1][1805/4953]\tlr: 7.424e-05, memory: 9058, loss: 1.7404\n",
|
||
"2023-07-02 18:20:32,265 - modelscope - INFO - epoch [1][1810/4953]\tlr: 7.411e-05, memory: 9058, loss: 1.5176\n",
|
||
"2023-07-02 18:20:38,772 - modelscope - INFO - epoch [1][1815/4953]\tlr: 7.398e-05, memory: 9058, loss: 0.9519\n",
|
||
"2023-07-02 18:20:44,819 - modelscope - INFO - epoch [1][1820/4953]\tlr: 7.385e-05, memory: 9058, loss: 1.2756\n",
|
||
"2023-07-02 18:20:50,296 - modelscope - INFO - epoch [1][1825/4953]\tlr: 7.372e-05, memory: 9058, loss: 1.4785\n",
|
||
"2023-07-02 18:20:56,799 - modelscope - INFO - epoch [1][1830/4953]\tlr: 7.358e-05, memory: 9058, loss: 1.5188\n",
|
||
"2023-07-02 18:21:03,334 - modelscope - INFO - epoch [1][1835/4953]\tlr: 7.345e-05, memory: 9058, loss: 0.6644\n",
|
||
"2023-07-02 18:21:10,067 - modelscope - INFO - epoch [1][1840/4953]\tlr: 7.332e-05, memory: 9058, loss: 0.9434\n",
|
||
"2023-07-02 18:21:16,554 - modelscope - INFO - epoch [1][1845/4953]\tlr: 7.319e-05, memory: 9058, loss: 0.7092\n",
|
||
"2023-07-02 18:21:23,374 - modelscope - INFO - epoch [1][1850/4953]\tlr: 7.306e-05, memory: 9058, loss: 1.1020\n",
|
||
"2023-07-02 18:21:32,187 - modelscope - INFO - epoch [1][1855/4953]\tlr: 7.293e-05, memory: 9058, loss: 1.1508\n",
|
||
"2023-07-02 18:21:37,254 - modelscope - INFO - epoch [1][1860/4953]\tlr: 7.280e-05, memory: 9058, loss: 1.6852\n",
|
||
"2023-07-02 18:21:42,410 - modelscope - INFO - epoch [1][1865/4953]\tlr: 7.266e-05, memory: 9058, loss: 0.9865\n",
|
||
"2023-07-02 18:21:47,494 - modelscope - INFO - epoch [1][1870/4953]\tlr: 7.253e-05, memory: 9058, loss: 1.4111\n",
|
||
"2023-07-02 18:21:51,877 - modelscope - INFO - epoch [1][1875/4953]\tlr: 7.240e-05, memory: 9058, loss: 1.9342\n",
|
||
"2023-07-02 18:21:57,909 - modelscope - INFO - epoch [1][1880/4953]\tlr: 7.227e-05, memory: 9058, loss: 1.5063\n",
|
||
"2023-07-02 18:22:03,018 - modelscope - INFO - epoch [1][1885/4953]\tlr: 7.213e-05, memory: 9058, loss: 1.5504\n",
|
||
"2023-07-02 18:22:07,481 - modelscope - INFO - epoch [1][1890/4953]\tlr: 7.200e-05, memory: 9058, loss: 1.2473\n",
|
||
"2023-07-02 18:22:12,667 - modelscope - INFO - epoch [1][1895/4953]\tlr: 7.187e-05, memory: 9058, loss: 2.0055\n",
|
||
"2023-07-02 18:22:17,967 - modelscope - INFO - epoch [1][1900/4953]\tlr: 7.174e-05, memory: 9058, loss: 0.7781\n",
|
||
"2023-07-02 18:22:24,563 - modelscope - INFO - epoch [1][1905/4953]\tlr: 7.160e-05, memory: 9058, loss: 1.1995\n",
|
||
"2023-07-02 18:22:28,670 - modelscope - INFO - epoch [1][1910/4953]\tlr: 7.147e-05, memory: 9058, loss: 2.4594\n",
|
||
"2023-07-02 18:22:35,136 - modelscope - INFO - epoch [1][1915/4953]\tlr: 7.133e-05, memory: 9058, loss: 0.7545\n",
|
||
"2023-07-02 18:22:41,042 - modelscope - INFO - epoch [1][1920/4953]\tlr: 7.120e-05, memory: 9058, loss: 1.8008\n",
|
||
"2023-07-02 18:22:45,686 - modelscope - INFO - epoch [1][1925/4953]\tlr: 7.107e-05, memory: 9058, loss: 1.4076\n",
|
||
"2023-07-02 18:22:50,652 - modelscope - INFO - epoch [1][1930/4953]\tlr: 7.093e-05, memory: 9058, loss: 1.6135\n",
|
||
"2023-07-02 18:22:55,346 - modelscope - INFO - epoch [1][1935/4953]\tlr: 7.080e-05, memory: 9058, loss: 1.3820\n",
|
||
"2023-07-02 18:23:00,407 - modelscope - INFO - epoch [1][1940/4953]\tlr: 7.066e-05, memory: 9058, loss: 1.3170\n",
|
||
"2023-07-02 18:23:07,089 - modelscope - INFO - epoch [1][1945/4953]\tlr: 7.053e-05, memory: 9058, loss: 1.5059\n",
|
||
"2023-07-02 18:23:14,519 - modelscope - INFO - epoch [1][1950/4953]\tlr: 7.039e-05, memory: 9058, loss: 1.1481\n",
|
||
"2023-07-02 18:23:20,167 - modelscope - INFO - epoch [1][1955/4953]\tlr: 7.026e-05, memory: 9058, loss: 1.5484\n",
|
||
"2023-07-02 18:23:26,522 - modelscope - INFO - epoch [1][1960/4953]\tlr: 7.012e-05, memory: 9058, loss: 1.5056\n",
|
||
"2023-07-02 18:23:31,990 - modelscope - INFO - epoch [1][1965/4953]\tlr: 6.999e-05, memory: 9058, loss: 0.8258\n",
|
||
"2023-07-02 18:23:36,765 - modelscope - INFO - epoch [1][1970/4953]\tlr: 6.985e-05, memory: 9058, loss: 2.1605\n",
|
||
"2023-07-02 18:23:44,015 - modelscope - INFO - epoch [1][1975/4953]\tlr: 6.972e-05, memory: 9058, loss: 0.5347\n",
|
||
"2023-07-02 18:23:50,763 - modelscope - INFO - epoch [1][1980/4953]\tlr: 6.958e-05, memory: 9058, loss: 0.5833\n",
|
||
"2023-07-02 18:23:56,081 - modelscope - INFO - epoch [1][1985/4953]\tlr: 6.945e-05, memory: 9058, loss: 1.3211\n",
|
||
"2023-07-02 18:24:02,890 - modelscope - INFO - epoch [1][1990/4953]\tlr: 6.931e-05, memory: 9058, loss: 0.6614\n",
|
||
"2023-07-02 18:24:11,102 - modelscope - INFO - epoch [1][1995/4953]\tlr: 6.917e-05, memory: 9058, loss: 1.0019\n",
|
||
"2023-07-02 18:24:15,188 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 18:26:31,178 - modelscope - INFO - Saving checkpoint at 2000 iter\n",
|
||
"2023-07-02 18:26:31,219 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter1800_acc0.79673832654953\n",
|
||
"2023-07-02 18:26:31,223 - modelscope - INFO - Saving checkpoint at 2000 iter\n",
|
||
"2023-07-02 18:26:31,262 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_1800\n",
|
||
"2023-07-02 18:26:31,267 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9058, evaluation/acc: 0.8048, evaluation/loss: 1.3532, loss: 2.3406\n",
|
||
"2023-07-02 18:26:36,725 - modelscope - INFO - epoch [1][2005/4953]\tlr: 6.890e-05, memory: 9058, loss: 1.7643\n",
|
||
"2023-07-02 18:26:43,719 - modelscope - INFO - epoch [1][2010/4953]\tlr: 6.876e-05, memory: 9058, loss: 1.3211\n",
|
||
"2023-07-02 18:26:50,532 - modelscope - INFO - epoch [1][2015/4953]\tlr: 6.863e-05, memory: 9058, loss: 1.0998\n",
|
||
"2023-07-02 18:26:55,084 - modelscope - INFO - epoch [1][2020/4953]\tlr: 6.849e-05, memory: 9058, loss: 1.0711\n",
|
||
"2023-07-02 18:27:01,229 - modelscope - INFO - epoch [1][2025/4953]\tlr: 6.835e-05, memory: 9058, loss: 0.9915\n",
|
||
"2023-07-02 18:27:05,887 - modelscope - INFO - epoch [1][2030/4953]\tlr: 6.822e-05, memory: 9058, loss: 1.4650\n",
|
||
"2023-07-02 18:27:10,177 - modelscope - INFO - epoch [1][2035/4953]\tlr: 6.808e-05, memory: 9058, loss: 1.7047\n",
|
||
"2023-07-02 18:27:16,232 - modelscope - INFO - epoch [1][2040/4953]\tlr: 6.794e-05, memory: 9058, loss: 1.1574\n",
|
||
"2023-07-02 18:27:20,822 - modelscope - INFO - epoch [1][2045/4953]\tlr: 6.780e-05, memory: 9058, loss: 2.8094\n",
|
||
"2023-07-02 18:27:26,542 - modelscope - INFO - epoch [1][2050/4953]\tlr: 6.767e-05, memory: 9058, loss: 1.8707\n",
|
||
"2023-07-02 18:27:33,544 - modelscope - INFO - epoch [1][2055/4953]\tlr: 6.753e-05, memory: 9058, loss: 0.4879\n",
|
||
"2023-07-02 18:27:38,872 - modelscope - INFO - epoch [1][2060/4953]\tlr: 6.739e-05, memory: 9058, loss: 1.4332\n",
|
||
"2023-07-02 18:27:45,755 - modelscope - INFO - epoch [1][2065/4953]\tlr: 6.725e-05, memory: 9058, loss: 1.3403\n",
|
||
"2023-07-02 18:27:52,231 - modelscope - INFO - epoch [1][2070/4953]\tlr: 6.712e-05, memory: 9058, loss: 1.4531\n",
|
||
"2023-07-02 18:27:55,367 - modelscope - INFO - epoch [1][2075/4953]\tlr: 6.698e-05, memory: 9058, loss: 2.8781\n",
|
||
"2023-07-02 18:28:03,691 - modelscope - INFO - epoch [1][2080/4953]\tlr: 6.684e-05, memory: 9058, loss: 1.1735\n",
|
||
"2023-07-02 18:28:12,186 - modelscope - INFO - epoch [1][2085/4953]\tlr: 6.670e-05, memory: 9058, loss: 0.9088\n",
|
||
"2023-07-02 18:28:18,486 - modelscope - INFO - epoch [1][2090/4953]\tlr: 6.656e-05, memory: 9058, loss: 0.4293\n",
|
||
"2023-07-02 18:28:24,461 - modelscope - INFO - epoch [1][2095/4953]\tlr: 6.642e-05, memory: 9058, loss: 2.8336\n",
|
||
"2023-07-02 18:28:31,009 - modelscope - INFO - epoch [1][2100/4953]\tlr: 6.628e-05, memory: 9058, loss: 0.6750\n",
|
||
"2023-07-02 18:28:35,682 - modelscope - INFO - epoch [1][2105/4953]\tlr: 6.614e-05, memory: 9058, loss: 1.2004\n",
|
||
"2023-07-02 18:28:42,815 - modelscope - INFO - epoch [1][2110/4953]\tlr: 6.601e-05, memory: 9058, loss: 0.7390\n",
|
||
"2023-07-02 18:28:48,536 - modelscope - INFO - epoch [1][2115/4953]\tlr: 6.587e-05, memory: 9058, loss: 1.2892\n",
|
||
"2023-07-02 18:28:54,885 - modelscope - INFO - epoch [1][2120/4953]\tlr: 6.573e-05, memory: 9058, loss: 1.1596\n",
|
||
"2023-07-02 18:29:01,644 - modelscope - INFO - epoch [1][2125/4953]\tlr: 6.559e-05, memory: 9058, loss: 1.2383\n",
|
||
"2023-07-02 18:29:06,513 - modelscope - INFO - epoch [1][2130/4953]\tlr: 6.545e-05, memory: 9058, loss: 1.6500\n",
|
||
"2023-07-02 18:29:12,125 - modelscope - INFO - epoch [1][2135/4953]\tlr: 6.531e-05, memory: 9058, loss: 1.4234\n",
|
||
"2023-07-02 18:29:16,930 - modelscope - INFO - epoch [1][2140/4953]\tlr: 6.517e-05, memory: 9058, loss: 0.9209\n",
|
||
"2023-07-02 18:29:23,051 - modelscope - INFO - epoch [1][2145/4953]\tlr: 6.503e-05, memory: 9058, loss: 1.3340\n",
|
||
"2023-07-02 18:29:26,259 - modelscope - INFO - epoch [1][2150/4953]\tlr: 6.489e-05, memory: 9058, loss: 2.2531\n",
|
||
"2023-07-02 18:29:30,151 - modelscope - INFO - epoch [1][2155/4953]\tlr: 6.475e-05, memory: 9058, loss: 2.4398\n",
|
||
"2023-07-02 18:29:35,984 - modelscope - INFO - epoch [1][2160/4953]\tlr: 6.461e-05, memory: 9058, loss: 1.2609\n",
|
||
"2023-07-02 18:29:42,072 - modelscope - INFO - epoch [1][2165/4953]\tlr: 6.447e-05, memory: 9058, loss: 1.3589\n",
|
||
"2023-07-02 18:29:47,131 - modelscope - INFO - epoch [1][2170/4953]\tlr: 6.433e-05, memory: 9058, loss: 1.9894\n",
|
||
"2023-07-02 18:29:52,463 - modelscope - INFO - epoch [1][2175/4953]\tlr: 6.419e-05, memory: 9058, loss: 1.4546\n",
|
||
"2023-07-02 18:29:56,467 - modelscope - INFO - epoch [1][2180/4953]\tlr: 6.405e-05, memory: 9058, loss: 2.2633\n",
|
||
"2023-07-02 18:30:00,810 - modelscope - INFO - epoch [1][2185/4953]\tlr: 6.391e-05, memory: 9058, loss: 1.4179\n",
|
||
"2023-07-02 18:30:04,745 - modelscope - INFO - epoch [1][2190/4953]\tlr: 6.377e-05, memory: 9058, loss: 1.1947\n",
|
||
"2023-07-02 18:30:10,179 - modelscope - INFO - epoch [1][2195/4953]\tlr: 6.363e-05, memory: 9058, loss: 1.5030\n",
|
||
"2023-07-02 18:30:16,533 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:16<00:00, 2.04it/s]\n",
|
||
"2023-07-02 18:32:32,577 - modelscope - INFO - Saving checkpoint at 2200 iter\n",
|
||
"2023-07-02 18:32:32,617 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter2000_acc0.8048229217529297\n",
|
||
"2023-07-02 18:32:32,621 - modelscope - INFO - Saving checkpoint at 2200 iter\n",
|
||
"2023-07-02 18:32:32,661 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_2000\n",
|
||
"2023-07-02 18:32:32,665 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9058, evaluation/acc: 0.8064, evaluation/loss: 1.3193, loss: 0.8660\n",
|
||
"2023-07-02 18:32:38,756 - modelscope - INFO - epoch [1][2205/4953]\tlr: 6.334e-05, memory: 9058, loss: 1.2521\n",
|
||
"2023-07-02 18:32:45,468 - modelscope - INFO - epoch [1][2210/4953]\tlr: 6.320e-05, memory: 9058, loss: 1.0652\n",
|
||
"2023-07-02 18:32:51,626 - modelscope - INFO - epoch [1][2215/4953]\tlr: 6.306e-05, memory: 9058, loss: 0.8250\n",
|
||
"2023-07-02 18:32:56,742 - modelscope - INFO - epoch [1][2220/4953]\tlr: 6.292e-05, memory: 9058, loss: 1.2680\n",
|
||
"2023-07-02 18:33:02,927 - modelscope - INFO - epoch [1][2225/4953]\tlr: 6.278e-05, memory: 9058, loss: 1.5531\n",
|
||
"2023-07-02 18:33:08,196 - modelscope - INFO - epoch [1][2230/4953]\tlr: 6.264e-05, memory: 9058, loss: 1.5766\n",
|
||
"2023-07-02 18:33:14,926 - modelscope - INFO - epoch [1][2235/4953]\tlr: 6.250e-05, memory: 9058, loss: 1.6031\n",
|
||
"2023-07-02 18:33:19,152 - modelscope - INFO - epoch [1][2240/4953]\tlr: 6.236e-05, memory: 9058, loss: 1.8438\n",
|
||
"2023-07-02 18:33:26,986 - modelscope - INFO - epoch [1][2245/4953]\tlr: 6.221e-05, memory: 9058, loss: 1.0715\n",
|
||
"2023-07-02 18:33:34,062 - modelscope - INFO - epoch [1][2250/4953]\tlr: 6.207e-05, memory: 9058, loss: 1.3094\n",
|
||
"2023-07-02 18:33:40,767 - modelscope - INFO - epoch [1][2255/4953]\tlr: 6.193e-05, memory: 9058, loss: 0.5586\n",
|
||
"2023-07-02 18:33:45,996 - modelscope - INFO - epoch [1][2260/4953]\tlr: 6.179e-05, memory: 9058, loss: 1.0727\n",
|
||
"2023-07-02 18:33:50,926 - modelscope - INFO - epoch [1][2265/4953]\tlr: 6.165e-05, memory: 9058, loss: 0.5758\n",
|
||
"2023-07-02 18:33:54,762 - modelscope - INFO - epoch [1][2270/4953]\tlr: 6.151e-05, memory: 9058, loss: 1.1336\n",
|
||
"2023-07-02 18:34:00,210 - modelscope - INFO - epoch [1][2275/4953]\tlr: 6.136e-05, memory: 9058, loss: 1.0373\n",
|
||
"2023-07-02 18:34:08,272 - modelscope - INFO - epoch [1][2280/4953]\tlr: 6.122e-05, memory: 9058, loss: 0.7815\n",
|
||
"2023-07-02 18:34:14,309 - modelscope - INFO - epoch [1][2285/4953]\tlr: 6.108e-05, memory: 9058, loss: 1.4531\n",
|
||
"2023-07-02 18:34:21,626 - modelscope - INFO - epoch [1][2290/4953]\tlr: 6.094e-05, memory: 9058, loss: 1.6297\n",
|
||
"2023-07-02 18:34:28,588 - modelscope - INFO - epoch [1][2295/4953]\tlr: 6.080e-05, memory: 9082, loss: 1.6783\n",
|
||
"2023-07-02 18:34:33,419 - modelscope - INFO - epoch [1][2300/4953]\tlr: 6.065e-05, memory: 9082, loss: 2.0078\n",
|
||
"2023-07-02 18:34:38,966 - modelscope - INFO - epoch [1][2305/4953]\tlr: 6.051e-05, memory: 9082, loss: 1.6065\n",
|
||
"2023-07-02 18:34:44,320 - modelscope - INFO - epoch [1][2310/4953]\tlr: 6.037e-05, memory: 9082, loss: 1.6664\n",
|
||
"2023-07-02 18:34:49,557 - modelscope - INFO - epoch [1][2315/4953]\tlr: 6.023e-05, memory: 9082, loss: 2.1622\n",
|
||
"2023-07-02 18:34:54,691 - modelscope - INFO - epoch [1][2320/4953]\tlr: 6.008e-05, memory: 9082, loss: 2.2738\n",
|
||
"2023-07-02 18:35:02,067 - modelscope - INFO - epoch [1][2325/4953]\tlr: 5.994e-05, memory: 9082, loss: 0.6338\n",
|
||
"2023-07-02 18:35:07,658 - modelscope - INFO - epoch [1][2330/4953]\tlr: 5.980e-05, memory: 9082, loss: 0.9046\n",
|
||
"2023-07-02 18:35:13,966 - modelscope - INFO - epoch [1][2335/4953]\tlr: 5.966e-05, memory: 9082, loss: 1.2388\n",
|
||
"2023-07-02 18:35:19,741 - modelscope - INFO - epoch [1][2340/4953]\tlr: 5.951e-05, memory: 9082, loss: 0.7371\n",
|
||
"2023-07-02 18:35:25,904 - modelscope - INFO - epoch [1][2345/4953]\tlr: 5.937e-05, memory: 9082, loss: 1.4103\n",
|
||
"2023-07-02 18:35:31,382 - modelscope - INFO - epoch [1][2350/4953]\tlr: 5.923e-05, memory: 9082, loss: 1.4088\n",
|
||
"2023-07-02 18:35:36,193 - modelscope - INFO - epoch [1][2355/4953]\tlr: 5.909e-05, memory: 9082, loss: 2.0184\n",
|
||
"2023-07-02 18:35:40,781 - modelscope - INFO - epoch [1][2360/4953]\tlr: 5.894e-05, memory: 9082, loss: 1.1237\n",
|
||
"2023-07-02 18:35:45,133 - modelscope - INFO - epoch [1][2365/4953]\tlr: 5.880e-05, memory: 9082, loss: 2.1938\n",
|
||
"2023-07-02 18:35:51,029 - modelscope - INFO - epoch [1][2370/4953]\tlr: 5.866e-05, memory: 9082, loss: 0.9563\n",
|
||
"2023-07-02 18:35:57,943 - modelscope - INFO - epoch [1][2375/4953]\tlr: 5.852e-05, memory: 9082, loss: 1.3258\n",
|
||
"2023-07-02 18:36:05,016 - modelscope - INFO - epoch [1][2380/4953]\tlr: 5.837e-05, memory: 9082, loss: 1.2687\n",
|
||
"2023-07-02 18:36:09,977 - modelscope - INFO - epoch [1][2385/4953]\tlr: 5.823e-05, memory: 9082, loss: 1.2655\n",
|
||
"2023-07-02 18:36:16,229 - modelscope - INFO - epoch [1][2390/4953]\tlr: 5.809e-05, memory: 9082, loss: 0.9164\n",
|
||
"2023-07-02 18:36:21,471 - modelscope - INFO - epoch [1][2395/4953]\tlr: 5.794e-05, memory: 9082, loss: 1.6281\n",
|
||
"2023-07-02 18:36:27,959 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 18:38:43,433 - modelscope - INFO - Saving checkpoint at 2400 iter\n",
|
||
"2023-07-02 18:38:43,474 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter2200_acc0.8063529133796692\n",
|
||
"2023-07-02 18:38:43,478 - modelscope - INFO - Saving checkpoint at 2400 iter\n",
|
||
"2023-07-02 18:38:43,517 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_2200\n",
|
||
"2023-07-02 18:38:43,521 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8076, evaluation/loss: 1.3023, loss: 0.6604\n",
|
||
"2023-07-02 18:38:48,050 - modelscope - INFO - epoch [1][2405/4953]\tlr: 5.766e-05, memory: 9082, loss: 1.8258\n",
|
||
"2023-07-02 18:38:54,650 - modelscope - INFO - epoch [1][2410/4953]\tlr: 5.751e-05, memory: 9082, loss: 1.3132\n",
|
||
"2023-07-02 18:38:59,846 - modelscope - INFO - epoch [1][2415/4953]\tlr: 5.737e-05, memory: 9082, loss: 1.6910\n",
|
||
"2023-07-02 18:39:07,443 - modelscope - INFO - epoch [1][2420/4953]\tlr: 5.723e-05, memory: 9082, loss: 1.4445\n",
|
||
"2023-07-02 18:39:15,603 - modelscope - INFO - epoch [1][2425/4953]\tlr: 5.708e-05, memory: 9082, loss: 0.9867\n",
|
||
"2023-07-02 18:39:21,112 - modelscope - INFO - epoch [1][2430/4953]\tlr: 5.694e-05, memory: 9082, loss: 1.5023\n",
|
||
"2023-07-02 18:39:26,278 - modelscope - INFO - epoch [1][2435/4953]\tlr: 5.680e-05, memory: 9082, loss: 1.5297\n",
|
||
"2023-07-02 18:39:32,189 - modelscope - INFO - epoch [1][2440/4953]\tlr: 5.666e-05, memory: 9082, loss: 1.2663\n",
|
||
"2023-07-02 18:39:39,288 - modelscope - INFO - epoch [1][2445/4953]\tlr: 5.651e-05, memory: 9082, loss: 1.1214\n",
|
||
"2023-07-02 18:39:45,604 - modelscope - INFO - epoch [1][2450/4953]\tlr: 5.637e-05, memory: 9082, loss: 0.7744\n",
|
||
"2023-07-02 18:39:50,026 - modelscope - INFO - epoch [1][2455/4953]\tlr: 5.623e-05, memory: 9082, loss: 1.3865\n",
|
||
"2023-07-02 18:39:57,039 - modelscope - INFO - epoch [1][2460/4953]\tlr: 5.608e-05, memory: 9082, loss: 0.5821\n",
|
||
"2023-07-02 18:40:04,905 - modelscope - INFO - epoch [1][2465/4953]\tlr: 5.594e-05, memory: 9082, loss: 1.6459\n",
|
||
"2023-07-02 18:40:12,277 - modelscope - INFO - epoch [1][2470/4953]\tlr: 5.580e-05, memory: 9082, loss: 1.5098\n",
|
||
"2023-07-02 18:40:21,189 - modelscope - INFO - epoch [1][2475/4953]\tlr: 5.565e-05, memory: 9082, loss: 0.7347\n",
|
||
"2023-07-02 18:40:25,832 - modelscope - INFO - epoch [1][2480/4953]\tlr: 5.551e-05, memory: 9082, loss: 1.9617\n",
|
||
"2023-07-02 18:40:31,034 - modelscope - INFO - epoch [1][2485/4953]\tlr: 5.537e-05, memory: 9082, loss: 1.3300\n",
|
||
"2023-07-02 18:40:35,486 - modelscope - INFO - epoch [1][2490/4953]\tlr: 5.522e-05, memory: 9082, loss: 1.7078\n",
|
||
"2023-07-02 18:40:43,211 - modelscope - INFO - epoch [1][2495/4953]\tlr: 5.508e-05, memory: 9082, loss: 1.5921\n",
|
||
"2023-07-02 18:40:48,454 - modelscope - INFO - epoch [1][2500/4953]\tlr: 5.494e-05, memory: 9082, loss: 1.9926\n",
|
||
"2023-07-02 18:40:53,713 - modelscope - INFO - epoch [1][2505/4953]\tlr: 5.479e-05, memory: 9082, loss: 1.1594\n",
|
||
"2023-07-02 18:40:58,439 - modelscope - INFO - epoch [1][2510/4953]\tlr: 5.465e-05, memory: 9082, loss: 1.1770\n",
|
||
"2023-07-02 18:41:04,372 - modelscope - INFO - epoch [1][2515/4953]\tlr: 5.451e-05, memory: 9082, loss: 1.6250\n",
|
||
"2023-07-02 18:41:09,182 - modelscope - INFO - epoch [1][2520/4953]\tlr: 5.436e-05, memory: 9082, loss: 1.7578\n",
|
||
"2023-07-02 18:41:14,114 - modelscope - INFO - epoch [1][2525/4953]\tlr: 5.422e-05, memory: 9082, loss: 2.3328\n",
|
||
"2023-07-02 18:41:20,090 - modelscope - INFO - epoch [1][2530/4953]\tlr: 5.408e-05, memory: 9082, loss: 2.0059\n",
|
||
"2023-07-02 18:41:24,643 - modelscope - INFO - epoch [1][2535/4953]\tlr: 5.393e-05, memory: 9082, loss: 1.9216\n",
|
||
"2023-07-02 18:41:30,805 - modelscope - INFO - epoch [1][2540/4953]\tlr: 5.379e-05, memory: 9082, loss: 0.7870\n",
|
||
"2023-07-02 18:41:35,276 - modelscope - INFO - epoch [1][2545/4953]\tlr: 5.365e-05, memory: 9082, loss: 1.8344\n",
|
||
"2023-07-02 18:41:40,107 - modelscope - INFO - epoch [1][2550/4953]\tlr: 5.350e-05, memory: 9082, loss: 1.0918\n",
|
||
"2023-07-02 18:41:45,127 - modelscope - INFO - epoch [1][2555/4953]\tlr: 5.336e-05, memory: 9082, loss: 0.8277\n",
|
||
"2023-07-02 18:41:49,439 - modelscope - INFO - epoch [1][2560/4953]\tlr: 5.322e-05, memory: 9082, loss: 1.3539\n",
|
||
"2023-07-02 18:41:54,796 - modelscope - INFO - epoch [1][2565/4953]\tlr: 5.307e-05, memory: 9082, loss: 1.4898\n",
|
||
"2023-07-02 18:41:59,982 - modelscope - INFO - epoch [1][2570/4953]\tlr: 5.293e-05, memory: 9082, loss: 1.4383\n",
|
||
"2023-07-02 18:42:06,280 - modelscope - INFO - epoch [1][2575/4953]\tlr: 5.279e-05, memory: 9082, loss: 1.3823\n",
|
||
"2023-07-02 18:42:11,765 - modelscope - INFO - epoch [1][2580/4953]\tlr: 5.264e-05, memory: 9082, loss: 1.6961\n",
|
||
"2023-07-02 18:42:18,475 - modelscope - INFO - epoch [1][2585/4953]\tlr: 5.250e-05, memory: 9082, loss: 1.7096\n",
|
||
"2023-07-02 18:42:25,377 - modelscope - INFO - epoch [1][2590/4953]\tlr: 5.236e-05, memory: 9082, loss: 0.2711\n",
|
||
"2023-07-02 18:42:31,462 - modelscope - INFO - epoch [1][2595/4953]\tlr: 5.222e-05, memory: 9082, loss: 1.8032\n",
|
||
"2023-07-02 18:42:37,270 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 18:44:53,170 - modelscope - INFO - Saving checkpoint at 2600 iter\n",
|
||
"2023-07-02 18:44:53,210 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter2400_acc0.8075699210166931\n",
|
||
"2023-07-02 18:44:53,214 - modelscope - INFO - Saving checkpoint at 2600 iter\n",
|
||
"2023-07-02 18:44:53,253 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_2400\n",
|
||
"2023-07-02 18:44:53,258 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8082, evaluation/loss: 1.3051, loss: 1.3200\n",
|
||
"2023-07-02 18:44:56,746 - modelscope - INFO - epoch [1][2605/4953]\tlr: 5.193e-05, memory: 9082, loss: 2.4016\n",
|
||
"2023-07-02 18:45:02,237 - modelscope - INFO - epoch [1][2610/4953]\tlr: 5.179e-05, memory: 9082, loss: 1.4620\n",
|
||
"2023-07-02 18:45:08,746 - modelscope - INFO - epoch [1][2615/4953]\tlr: 5.164e-05, memory: 9082, loss: 1.0342\n",
|
||
"2023-07-02 18:45:15,827 - modelscope - INFO - epoch [1][2620/4953]\tlr: 5.150e-05, memory: 9082, loss: 1.2133\n",
|
||
"2023-07-02 18:45:20,967 - modelscope - INFO - epoch [1][2625/4953]\tlr: 5.136e-05, memory: 9082, loss: 1.1039\n",
|
||
"2023-07-02 18:45:28,010 - modelscope - INFO - epoch [1][2630/4953]\tlr: 5.122e-05, memory: 9082, loss: 2.2398\n",
|
||
"2023-07-02 18:45:33,346 - modelscope - INFO - epoch [1][2635/4953]\tlr: 5.107e-05, memory: 9082, loss: 1.0719\n",
|
||
"2023-07-02 18:45:38,505 - modelscope - INFO - epoch [1][2640/4953]\tlr: 5.093e-05, memory: 9082, loss: 2.1718\n",
|
||
"2023-07-02 18:45:46,286 - modelscope - INFO - epoch [1][2645/4953]\tlr: 5.079e-05, memory: 9082, loss: 1.4109\n",
|
||
"2023-07-02 18:45:50,359 - modelscope - INFO - epoch [1][2650/4953]\tlr: 5.065e-05, memory: 9082, loss: 2.7281\n",
|
||
"2023-07-02 18:45:54,451 - modelscope - INFO - epoch [1][2655/4953]\tlr: 5.050e-05, memory: 9082, loss: 1.4117\n",
|
||
"2023-07-02 18:46:01,191 - modelscope - INFO - epoch [1][2660/4953]\tlr: 5.036e-05, memory: 9082, loss: 1.0565\n",
|
||
"2023-07-02 18:46:06,247 - modelscope - INFO - epoch [1][2665/4953]\tlr: 5.022e-05, memory: 9082, loss: 0.9540\n",
|
||
"2023-07-02 18:46:13,076 - modelscope - INFO - epoch [1][2670/4953]\tlr: 5.008e-05, memory: 9082, loss: 1.5935\n",
|
||
"2023-07-02 18:46:18,638 - modelscope - INFO - epoch [1][2675/4953]\tlr: 4.993e-05, memory: 9082, loss: 2.1958\n",
|
||
"2023-07-02 18:46:23,885 - modelscope - INFO - epoch [1][2680/4953]\tlr: 4.979e-05, memory: 9082, loss: 1.6164\n",
|
||
"2023-07-02 18:46:31,178 - modelscope - INFO - epoch [1][2685/4953]\tlr: 4.965e-05, memory: 9082, loss: 0.9352\n",
|
||
"2023-07-02 18:46:38,014 - modelscope - INFO - epoch [1][2690/4953]\tlr: 4.951e-05, memory: 9082, loss: 1.4887\n",
|
||
"2023-07-02 18:46:41,545 - modelscope - INFO - epoch [1][2695/4953]\tlr: 4.936e-05, memory: 9082, loss: 1.2578\n",
|
||
"2023-07-02 18:46:46,458 - modelscope - INFO - epoch [1][2700/4953]\tlr: 4.922e-05, memory: 9082, loss: 1.1711\n",
|
||
"2023-07-02 18:46:53,227 - modelscope - INFO - epoch [1][2705/4953]\tlr: 4.908e-05, memory: 9082, loss: 1.3223\n",
|
||
"2023-07-02 18:46:59,578 - modelscope - INFO - epoch [1][2710/4953]\tlr: 4.894e-05, memory: 9082, loss: 1.4570\n",
|
||
"2023-07-02 18:47:04,896 - modelscope - INFO - epoch [1][2715/4953]\tlr: 4.880e-05, memory: 9082, loss: 1.0868\n",
|
||
"2023-07-02 18:47:10,404 - modelscope - INFO - epoch [1][2720/4953]\tlr: 4.865e-05, memory: 9082, loss: 1.5884\n",
|
||
"2023-07-02 18:47:16,038 - modelscope - INFO - epoch [1][2725/4953]\tlr: 4.851e-05, memory: 9082, loss: 1.0243\n",
|
||
"2023-07-02 18:47:22,354 - modelscope - INFO - epoch [1][2730/4953]\tlr: 4.837e-05, memory: 9082, loss: 1.4346\n",
|
||
"2023-07-02 18:47:29,290 - modelscope - INFO - epoch [1][2735/4953]\tlr: 4.823e-05, memory: 9082, loss: 0.9521\n",
|
||
"2023-07-02 18:47:37,813 - modelscope - INFO - epoch [1][2740/4953]\tlr: 4.809e-05, memory: 9082, loss: 0.7296\n",
|
||
"2023-07-02 18:47:40,908 - modelscope - INFO - epoch [1][2745/4953]\tlr: 4.795e-05, memory: 9082, loss: 1.5844\n",
|
||
"2023-07-02 18:47:46,334 - modelscope - INFO - epoch [1][2750/4953]\tlr: 4.781e-05, memory: 9082, loss: 1.5023\n",
|
||
"2023-07-02 18:47:51,224 - modelscope - INFO - epoch [1][2755/4953]\tlr: 4.766e-05, memory: 9082, loss: 0.9710\n",
|
||
"2023-07-02 18:47:58,431 - modelscope - INFO - epoch [1][2760/4953]\tlr: 4.752e-05, memory: 9082, loss: 1.1539\n",
|
||
"2023-07-02 18:48:04,898 - modelscope - INFO - epoch [1][2765/4953]\tlr: 4.738e-05, memory: 9082, loss: 1.6984\n",
|
||
"2023-07-02 18:48:10,316 - modelscope - INFO - epoch [1][2770/4953]\tlr: 4.724e-05, memory: 9082, loss: 1.5420\n",
|
||
"2023-07-02 18:48:16,843 - modelscope - INFO - epoch [1][2775/4953]\tlr: 4.710e-05, memory: 9082, loss: 1.2396\n",
|
||
"2023-07-02 18:48:22,406 - modelscope - INFO - epoch [1][2780/4953]\tlr: 4.696e-05, memory: 9082, loss: 1.8611\n",
|
||
"2023-07-02 18:48:28,234 - modelscope - INFO - epoch [1][2785/4953]\tlr: 4.682e-05, memory: 9082, loss: 1.2051\n",
|
||
"2023-07-02 18:48:35,175 - modelscope - INFO - epoch [1][2790/4953]\tlr: 4.668e-05, memory: 9082, loss: 0.9440\n",
|
||
"2023-07-02 18:48:40,689 - modelscope - INFO - epoch [1][2795/4953]\tlr: 4.654e-05, memory: 9082, loss: 1.5422\n",
|
||
"2023-07-02 18:48:46,340 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 18:51:02,313 - modelscope - INFO - Saving checkpoint at 2800 iter\n",
|
||
"2023-07-02 18:51:02,352 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_2600\n",
|
||
"2023-07-02 18:51:02,357 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8080, evaluation/loss: 1.2874, loss: 0.3999\n",
|
||
"2023-07-02 18:51:09,389 - modelscope - INFO - epoch [1][2805/4953]\tlr: 4.625e-05, memory: 9082, loss: 0.9511\n",
|
||
"2023-07-02 18:51:14,406 - modelscope - INFO - epoch [1][2810/4953]\tlr: 4.611e-05, memory: 9082, loss: 0.9344\n",
|
||
"2023-07-02 18:51:19,383 - modelscope - INFO - epoch [1][2815/4953]\tlr: 4.597e-05, memory: 9082, loss: 1.5798\n",
|
||
"2023-07-02 18:51:26,100 - modelscope - INFO - epoch [1][2820/4953]\tlr: 4.583e-05, memory: 9082, loss: 1.1518\n",
|
||
"2023-07-02 18:51:31,560 - modelscope - INFO - epoch [1][2825/4953]\tlr: 4.569e-05, memory: 9082, loss: 1.9438\n",
|
||
"2023-07-02 18:51:37,772 - modelscope - INFO - epoch [1][2830/4953]\tlr: 4.555e-05, memory: 9082, loss: 1.2336\n",
|
||
"2023-07-02 18:51:45,037 - modelscope - INFO - epoch [1][2835/4953]\tlr: 4.541e-05, memory: 9082, loss: 0.4342\n",
|
||
"2023-07-02 18:51:50,379 - modelscope - INFO - epoch [1][2840/4953]\tlr: 4.527e-05, memory: 9082, loss: 1.5258\n",
|
||
"2023-07-02 18:51:55,219 - modelscope - INFO - epoch [1][2845/4953]\tlr: 4.513e-05, memory: 9082, loss: 1.3063\n",
|
||
"2023-07-02 18:52:00,648 - modelscope - INFO - epoch [1][2850/4953]\tlr: 4.499e-05, memory: 9082, loss: 1.0977\n",
|
||
"2023-07-02 18:52:05,123 - modelscope - INFO - epoch [1][2855/4953]\tlr: 4.486e-05, memory: 9082, loss: 1.2469\n",
|
||
"2023-07-02 18:52:10,542 - modelscope - INFO - epoch [1][2860/4953]\tlr: 4.472e-05, memory: 9082, loss: 1.0984\n",
|
||
"2023-07-02 18:52:17,747 - modelscope - INFO - epoch [1][2865/4953]\tlr: 4.458e-05, memory: 9082, loss: 0.7611\n",
|
||
"2023-07-02 18:52:23,635 - modelscope - INFO - epoch [1][2870/4953]\tlr: 4.444e-05, memory: 9082, loss: 1.9703\n",
|
||
"2023-07-02 18:52:29,494 - modelscope - INFO - epoch [1][2875/4953]\tlr: 4.430e-05, memory: 9082, loss: 1.2950\n",
|
||
"2023-07-02 18:52:35,837 - modelscope - INFO - epoch [1][2880/4953]\tlr: 4.416e-05, memory: 9082, loss: 0.8969\n",
|
||
"2023-07-02 18:52:40,187 - modelscope - INFO - epoch [1][2885/4953]\tlr: 4.402e-05, memory: 9082, loss: 2.0484\n",
|
||
"2023-07-02 18:52:46,608 - modelscope - INFO - epoch [1][2890/4953]\tlr: 4.388e-05, memory: 9082, loss: 1.3309\n",
|
||
"2023-07-02 18:52:52,971 - modelscope - INFO - epoch [1][2895/4953]\tlr: 4.374e-05, memory: 9082, loss: 2.1859\n",
|
||
"2023-07-02 18:52:57,418 - modelscope - INFO - epoch [1][2900/4953]\tlr: 4.360e-05, memory: 9082, loss: 1.4730\n",
|
||
"2023-07-02 18:53:02,915 - modelscope - INFO - epoch [1][2905/4953]\tlr: 4.347e-05, memory: 9082, loss: 1.1398\n",
|
||
"2023-07-02 18:53:08,380 - modelscope - INFO - epoch [1][2910/4953]\tlr: 4.333e-05, memory: 9082, loss: 1.1520\n",
|
||
"2023-07-02 18:53:14,293 - modelscope - INFO - epoch [1][2915/4953]\tlr: 4.319e-05, memory: 9082, loss: 1.4763\n",
|
||
"2023-07-02 18:53:19,782 - modelscope - INFO - epoch [1][2920/4953]\tlr: 4.305e-05, memory: 9082, loss: 1.3924\n",
|
||
"2023-07-02 18:53:24,564 - modelscope - INFO - epoch [1][2925/4953]\tlr: 4.291e-05, memory: 9082, loss: 1.1281\n",
|
||
"2023-07-02 18:53:28,764 - modelscope - INFO - epoch [1][2930/4953]\tlr: 4.278e-05, memory: 9082, loss: 1.3961\n",
|
||
"2023-07-02 18:53:34,633 - modelscope - INFO - epoch [1][2935/4953]\tlr: 4.264e-05, memory: 9082, loss: 1.1989\n",
|
||
"2023-07-02 18:53:40,740 - modelscope - INFO - epoch [1][2940/4953]\tlr: 4.250e-05, memory: 9082, loss: 1.4141\n",
|
||
"2023-07-02 18:53:45,991 - modelscope - INFO - epoch [1][2945/4953]\tlr: 4.236e-05, memory: 9082, loss: 1.8516\n",
|
||
"2023-07-02 18:53:53,446 - modelscope - INFO - epoch [1][2950/4953]\tlr: 4.223e-05, memory: 9082, loss: 1.0945\n",
|
||
"2023-07-02 18:53:57,916 - modelscope - INFO - epoch [1][2955/4953]\tlr: 4.209e-05, memory: 9082, loss: 2.4191\n",
|
||
"2023-07-02 18:54:03,814 - modelscope - INFO - epoch [1][2960/4953]\tlr: 4.195e-05, memory: 9082, loss: 1.0555\n",
|
||
"2023-07-02 18:54:11,481 - modelscope - INFO - epoch [1][2965/4953]\tlr: 4.181e-05, memory: 9082, loss: 1.0359\n",
|
||
"2023-07-02 18:54:18,062 - modelscope - INFO - epoch [1][2970/4953]\tlr: 4.168e-05, memory: 9082, loss: 0.5380\n",
|
||
"2023-07-02 18:54:23,157 - modelscope - INFO - epoch [1][2975/4953]\tlr: 4.154e-05, memory: 9082, loss: 1.7539\n",
|
||
"2023-07-02 18:54:27,560 - modelscope - INFO - epoch [1][2980/4953]\tlr: 4.140e-05, memory: 9082, loss: 1.5100\n",
|
||
"2023-07-02 18:54:32,977 - modelscope - INFO - epoch [1][2985/4953]\tlr: 4.127e-05, memory: 9082, loss: 1.5968\n",
|
||
"2023-07-02 18:54:38,633 - modelscope - INFO - epoch [1][2990/4953]\tlr: 4.113e-05, memory: 9082, loss: 1.0911\n",
|
||
"2023-07-02 18:54:46,186 - modelscope - INFO - epoch [1][2995/4953]\tlr: 4.100e-05, memory: 9082, loss: 0.9789\n",
|
||
"2023-07-02 18:54:52,074 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 18:57:08,067 - modelscope - INFO - Saving checkpoint at 3000 iter\n",
|
||
"2023-07-02 18:57:08,107 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter2600_acc0.8082306385040283\n",
|
||
"2023-07-02 18:57:08,111 - modelscope - INFO - Saving checkpoint at 3000 iter\n",
|
||
"2023-07-02 18:57:08,150 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_2800\n",
|
||
"2023-07-02 18:57:08,155 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8084, evaluation/loss: 1.2728, loss: 0.7777\n",
|
||
"2023-07-02 18:57:14,568 - modelscope - INFO - epoch [1][3005/4953]\tlr: 4.072e-05, memory: 9082, loss: 1.7105\n",
|
||
"2023-07-02 18:57:20,305 - modelscope - INFO - epoch [1][3010/4953]\tlr: 4.059e-05, memory: 9082, loss: 0.9040\n",
|
||
"2023-07-02 18:57:25,518 - modelscope - INFO - epoch [1][3015/4953]\tlr: 4.045e-05, memory: 9082, loss: 1.3430\n",
|
||
"2023-07-02 18:57:30,679 - modelscope - INFO - epoch [1][3020/4953]\tlr: 4.032e-05, memory: 9082, loss: 1.9619\n",
|
||
"2023-07-02 18:57:36,997 - modelscope - INFO - epoch [1][3025/4953]\tlr: 4.018e-05, memory: 9082, loss: 0.9646\n",
|
||
"2023-07-02 18:57:42,949 - modelscope - INFO - epoch [1][3030/4953]\tlr: 4.005e-05, memory: 9082, loss: 0.8223\n",
|
||
"2023-07-02 18:57:47,568 - modelscope - INFO - epoch [1][3035/4953]\tlr: 3.991e-05, memory: 9082, loss: 1.9203\n",
|
||
"2023-07-02 18:57:53,111 - modelscope - INFO - epoch [1][3040/4953]\tlr: 3.978e-05, memory: 9082, loss: 1.0070\n",
|
||
"2023-07-02 18:57:59,474 - modelscope - INFO - epoch [1][3045/4953]\tlr: 3.964e-05, memory: 9082, loss: 1.2164\n",
|
||
"2023-07-02 18:58:04,237 - modelscope - INFO - epoch [1][3050/4953]\tlr: 3.951e-05, memory: 9082, loss: 1.6008\n",
|
||
"2023-07-02 18:58:09,687 - modelscope - INFO - epoch [1][3055/4953]\tlr: 3.937e-05, memory: 9082, loss: 2.0203\n",
|
||
"2023-07-02 18:58:14,949 - modelscope - INFO - epoch [1][3060/4953]\tlr: 3.924e-05, memory: 9082, loss: 1.4613\n",
|
||
"2023-07-02 18:58:21,818 - modelscope - INFO - epoch [1][3065/4953]\tlr: 3.911e-05, memory: 9082, loss: 1.2766\n",
|
||
"2023-07-02 18:58:28,251 - modelscope - INFO - epoch [1][3070/4953]\tlr: 3.897e-05, memory: 9082, loss: 1.2920\n",
|
||
"2023-07-02 18:58:34,440 - modelscope - INFO - epoch [1][3075/4953]\tlr: 3.884e-05, memory: 9082, loss: 1.1436\n",
|
||
"2023-07-02 18:58:41,344 - modelscope - INFO - epoch [1][3080/4953]\tlr: 3.870e-05, memory: 9082, loss: 1.6750\n",
|
||
"2023-07-02 18:58:47,507 - modelscope - INFO - epoch [1][3085/4953]\tlr: 3.857e-05, memory: 9082, loss: 1.4508\n",
|
||
"2023-07-02 18:58:53,152 - modelscope - INFO - epoch [1][3090/4953]\tlr: 3.844e-05, memory: 9082, loss: 1.1961\n",
|
||
"2023-07-02 18:58:57,615 - modelscope - INFO - epoch [1][3095/4953]\tlr: 3.830e-05, memory: 9082, loss: 2.0420\n",
|
||
"2023-07-02 18:59:04,675 - modelscope - INFO - epoch [1][3100/4953]\tlr: 3.817e-05, memory: 9082, loss: 0.3189\n",
|
||
"2023-07-02 18:59:09,594 - modelscope - INFO - epoch [1][3105/4953]\tlr: 3.804e-05, memory: 9082, loss: 1.5581\n",
|
||
"2023-07-02 18:59:16,591 - modelscope - INFO - epoch [1][3110/4953]\tlr: 3.791e-05, memory: 9082, loss: 0.9396\n",
|
||
"2023-07-02 18:59:23,334 - modelscope - INFO - epoch [1][3115/4953]\tlr: 3.777e-05, memory: 9082, loss: 0.6580\n",
|
||
"2023-07-02 18:59:28,047 - modelscope - INFO - epoch [1][3120/4953]\tlr: 3.764e-05, memory: 9082, loss: 1.4602\n",
|
||
"2023-07-02 18:59:31,315 - modelscope - INFO - epoch [1][3125/4953]\tlr: 3.751e-05, memory: 9082, loss: 1.3484\n",
|
||
"2023-07-02 18:59:36,121 - modelscope - INFO - epoch [1][3130/4953]\tlr: 3.738e-05, memory: 9082, loss: 2.1273\n",
|
||
"2023-07-02 18:59:44,336 - modelscope - INFO - epoch [1][3135/4953]\tlr: 3.725e-05, memory: 9082, loss: 0.8621\n",
|
||
"2023-07-02 18:59:49,884 - modelscope - INFO - epoch [1][3140/4953]\tlr: 3.712e-05, memory: 9082, loss: 1.0844\n",
|
||
"2023-07-02 18:59:52,597 - modelscope - INFO - epoch [1][3145/4953]\tlr: 3.698e-05, memory: 9082, loss: 1.5453\n",
|
||
"2023-07-02 18:59:59,243 - modelscope - INFO - epoch [1][3150/4953]\tlr: 3.685e-05, memory: 9082, loss: 1.1129\n",
|
||
"2023-07-02 19:00:04,220 - modelscope - INFO - epoch [1][3155/4953]\tlr: 3.672e-05, memory: 9082, loss: 1.1824\n",
|
||
"2023-07-02 19:00:11,762 - modelscope - INFO - epoch [1][3160/4953]\tlr: 3.659e-05, memory: 9082, loss: 0.5676\n",
|
||
"2023-07-02 19:00:18,630 - modelscope - INFO - epoch [1][3165/4953]\tlr: 3.646e-05, memory: 9082, loss: 0.9189\n",
|
||
"2023-07-02 19:00:23,483 - modelscope - INFO - epoch [1][3170/4953]\tlr: 3.633e-05, memory: 9082, loss: 1.0324\n",
|
||
"2023-07-02 19:00:27,164 - modelscope - INFO - epoch [1][3175/4953]\tlr: 3.620e-05, memory: 9082, loss: 1.2984\n",
|
||
"2023-07-02 19:00:32,041 - modelscope - INFO - epoch [1][3180/4953]\tlr: 3.607e-05, memory: 9082, loss: 1.6036\n",
|
||
"2023-07-02 19:00:37,245 - modelscope - INFO - epoch [1][3185/4953]\tlr: 3.594e-05, memory: 9082, loss: 1.3896\n",
|
||
"2023-07-02 19:00:44,493 - modelscope - INFO - epoch [1][3190/4953]\tlr: 3.581e-05, memory: 9082, loss: 1.1153\n",
|
||
"2023-07-02 19:00:49,874 - modelscope - INFO - epoch [1][3195/4953]\tlr: 3.568e-05, memory: 9082, loss: 1.2354\n",
|
||
"2023-07-02 19:00:55,061 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 19:03:10,730 - modelscope - INFO - Saving checkpoint at 3200 iter\n",
|
||
"2023-07-02 19:03:10,770 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter3000_acc0.8084218502044678\n",
|
||
"2023-07-02 19:03:10,774 - modelscope - INFO - Saving checkpoint at 3200 iter\n",
|
||
"2023-07-02 19:03:10,813 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_3000\n",
|
||
"2023-07-02 19:03:10,818 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8086, evaluation/loss: 1.2627, loss: 1.5492\n",
|
||
"2023-07-02 19:03:18,070 - modelscope - INFO - epoch [1][3205/4953]\tlr: 3.542e-05, memory: 9082, loss: 0.1662\n",
|
||
"2023-07-02 19:03:26,317 - modelscope - INFO - epoch [1][3210/4953]\tlr: 3.530e-05, memory: 9082, loss: 1.6430\n",
|
||
"2023-07-02 19:03:32,449 - modelscope - INFO - epoch [1][3215/4953]\tlr: 3.517e-05, memory: 9082, loss: 0.4798\n",
|
||
"2023-07-02 19:03:38,508 - modelscope - INFO - epoch [1][3220/4953]\tlr: 3.504e-05, memory: 9082, loss: 1.0096\n",
|
||
"2023-07-02 19:03:45,266 - modelscope - INFO - epoch [1][3225/4953]\tlr: 3.491e-05, memory: 9082, loss: 1.1305\n",
|
||
"2023-07-02 19:03:48,361 - modelscope - INFO - epoch [1][3230/4953]\tlr: 3.478e-05, memory: 9082, loss: 1.6721\n",
|
||
"2023-07-02 19:03:54,630 - modelscope - INFO - epoch [1][3235/4953]\tlr: 3.465e-05, memory: 9082, loss: 1.1138\n",
|
||
"2023-07-02 19:03:59,780 - modelscope - INFO - epoch [1][3240/4953]\tlr: 3.453e-05, memory: 9082, loss: 1.2146\n",
|
||
"2023-07-02 19:04:04,310 - modelscope - INFO - epoch [1][3245/4953]\tlr: 3.440e-05, memory: 9082, loss: 0.9602\n",
|
||
"2023-07-02 19:04:09,085 - modelscope - INFO - epoch [1][3250/4953]\tlr: 3.427e-05, memory: 9082, loss: 2.0369\n",
|
||
"2023-07-02 19:04:13,329 - modelscope - INFO - epoch [1][3255/4953]\tlr: 3.415e-05, memory: 9082, loss: 1.3604\n",
|
||
"2023-07-02 19:04:19,728 - modelscope - INFO - epoch [1][3260/4953]\tlr: 3.402e-05, memory: 9082, loss: 1.0500\n",
|
||
"2023-07-02 19:04:25,537 - modelscope - INFO - epoch [1][3265/4953]\tlr: 3.389e-05, memory: 9082, loss: 1.0730\n",
|
||
"2023-07-02 19:04:33,616 - modelscope - INFO - epoch [1][3270/4953]\tlr: 3.377e-05, memory: 9082, loss: 1.3219\n",
|
||
"2023-07-02 19:04:36,942 - modelscope - INFO - epoch [1][3275/4953]\tlr: 3.364e-05, memory: 9082, loss: 0.7494\n",
|
||
"2023-07-02 19:04:43,190 - modelscope - INFO - epoch [1][3280/4953]\tlr: 3.351e-05, memory: 9082, loss: 0.8293\n",
|
||
"2023-07-02 19:04:51,311 - modelscope - INFO - epoch [1][3285/4953]\tlr: 3.339e-05, memory: 9082, loss: 0.7475\n",
|
||
"2023-07-02 19:04:54,815 - modelscope - INFO - epoch [1][3290/4953]\tlr: 3.326e-05, memory: 9082, loss: 1.8000\n",
|
||
"2023-07-02 19:05:00,342 - modelscope - INFO - epoch [1][3295/4953]\tlr: 3.314e-05, memory: 9082, loss: 1.9621\n",
|
||
"2023-07-02 19:05:06,094 - modelscope - INFO - epoch [1][3300/4953]\tlr: 3.301e-05, memory: 9082, loss: 1.3162\n",
|
||
"2023-07-02 19:05:10,639 - modelscope - INFO - epoch [1][3305/4953]\tlr: 3.289e-05, memory: 9082, loss: 1.4781\n",
|
||
"2023-07-02 19:05:12,888 - modelscope - INFO - epoch [1][3310/4953]\tlr: 3.276e-05, memory: 9082, loss: 1.9320\n",
|
||
"2023-07-02 19:05:18,374 - modelscope - INFO - epoch [1][3315/4953]\tlr: 3.264e-05, memory: 9082, loss: 0.4891\n",
|
||
"2023-07-02 19:05:25,255 - modelscope - INFO - epoch [1][3320/4953]\tlr: 3.252e-05, memory: 9082, loss: 0.9572\n",
|
||
"2023-07-02 19:05:31,095 - modelscope - INFO - epoch [1][3325/4953]\tlr: 3.239e-05, memory: 9082, loss: 1.0703\n",
|
||
"2023-07-02 19:05:37,787 - modelscope - INFO - epoch [1][3330/4953]\tlr: 3.227e-05, memory: 9082, loss: 0.4883\n",
|
||
"2023-07-02 19:05:42,067 - modelscope - INFO - epoch [1][3335/4953]\tlr: 3.214e-05, memory: 9082, loss: 2.1445\n",
|
||
"2023-07-02 19:05:47,958 - modelscope - INFO - epoch [1][3340/4953]\tlr: 3.202e-05, memory: 9082, loss: 1.5414\n",
|
||
"2023-07-02 19:05:52,434 - modelscope - INFO - epoch [1][3345/4953]\tlr: 3.190e-05, memory: 9082, loss: 1.9531\n",
|
||
"2023-07-02 19:05:57,227 - modelscope - INFO - epoch [1][3350/4953]\tlr: 3.178e-05, memory: 9082, loss: 1.2508\n",
|
||
"2023-07-02 19:06:03,488 - modelscope - INFO - epoch [1][3355/4953]\tlr: 3.165e-05, memory: 9082, loss: 1.1402\n",
|
||
"2023-07-02 19:06:08,978 - modelscope - INFO - epoch [1][3360/4953]\tlr: 3.153e-05, memory: 9082, loss: 1.1211\n",
|
||
"2023-07-02 19:06:16,191 - modelscope - INFO - epoch [1][3365/4953]\tlr: 3.141e-05, memory: 9082, loss: 0.7613\n",
|
||
"2023-07-02 19:06:23,420 - modelscope - INFO - epoch [1][3370/4953]\tlr: 3.129e-05, memory: 9082, loss: 1.3293\n",
|
||
"2023-07-02 19:06:30,067 - modelscope - INFO - epoch [1][3375/4953]\tlr: 3.117e-05, memory: 9082, loss: 1.9758\n",
|
||
"2023-07-02 19:06:36,844 - modelscope - INFO - epoch [1][3380/4953]\tlr: 3.104e-05, memory: 9082, loss: 0.3589\n",
|
||
"2023-07-02 19:06:43,906 - modelscope - INFO - epoch [1][3385/4953]\tlr: 3.092e-05, memory: 9082, loss: 0.9208\n",
|
||
"2023-07-02 19:06:49,972 - modelscope - INFO - epoch [1][3390/4953]\tlr: 3.080e-05, memory: 9082, loss: 1.2713\n",
|
||
"2023-07-02 19:06:56,815 - modelscope - INFO - epoch [1][3395/4953]\tlr: 3.068e-05, memory: 9082, loss: 1.3320\n",
|
||
"2023-07-02 19:07:00,998 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 19:09:16,634 - modelscope - INFO - Saving checkpoint at 3400 iter\n",
|
||
"2023-07-02 19:09:16,674 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter3200_acc0.8085957169532776\n",
|
||
"2023-07-02 19:09:16,679 - modelscope - INFO - Saving checkpoint at 3400 iter\n",
|
||
"2023-07-02 19:09:16,718 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_3200\n",
|
||
"2023-07-02 19:09:16,723 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8090, evaluation/loss: 1.2532, loss: 1.3594\n",
|
||
"2023-07-02 19:09:23,967 - modelscope - INFO - epoch [1][3405/4953]\tlr: 3.044e-05, memory: 9082, loss: 1.4662\n",
|
||
"2023-07-02 19:09:27,883 - modelscope - INFO - epoch [1][3410/4953]\tlr: 3.032e-05, memory: 9082, loss: 1.6219\n",
|
||
"2023-07-02 19:09:36,612 - modelscope - INFO - epoch [1][3415/4953]\tlr: 3.020e-05, memory: 9082, loss: 0.8362\n",
|
||
"2023-07-02 19:09:43,660 - modelscope - INFO - epoch [1][3420/4953]\tlr: 3.008e-05, memory: 9082, loss: 0.5874\n",
|
||
"2023-07-02 19:09:50,318 - modelscope - INFO - epoch [1][3425/4953]\tlr: 2.996e-05, memory: 9082, loss: 0.5588\n",
|
||
"2023-07-02 19:09:55,763 - modelscope - INFO - epoch [1][3430/4953]\tlr: 2.985e-05, memory: 9082, loss: 1.5086\n",
|
||
"2023-07-02 19:10:00,017 - modelscope - INFO - epoch [1][3435/4953]\tlr: 2.973e-05, memory: 9082, loss: 1.7063\n",
|
||
"2023-07-02 19:10:04,359 - modelscope - INFO - epoch [1][3440/4953]\tlr: 2.961e-05, memory: 9082, loss: 1.0250\n",
|
||
"2023-07-02 19:10:11,212 - modelscope - INFO - epoch [1][3445/4953]\tlr: 2.949e-05, memory: 9082, loss: 1.7650\n",
|
||
"2023-07-02 19:10:18,583 - modelscope - INFO - epoch [1][3450/4953]\tlr: 2.937e-05, memory: 9082, loss: 1.0846\n",
|
||
"2023-07-02 19:10:24,668 - modelscope - INFO - epoch [1][3455/4953]\tlr: 2.926e-05, memory: 9082, loss: 0.6735\n",
|
||
"2023-07-02 19:10:29,335 - modelscope - INFO - epoch [1][3460/4953]\tlr: 2.914e-05, memory: 9082, loss: 1.6277\n",
|
||
"2023-07-02 19:10:36,188 - modelscope - INFO - epoch [1][3465/4953]\tlr: 2.902e-05, memory: 9082, loss: 0.5597\n",
|
||
"2023-07-02 19:10:40,421 - modelscope - INFO - epoch [1][3470/4953]\tlr: 2.891e-05, memory: 9082, loss: 1.6338\n",
|
||
"2023-07-02 19:10:45,436 - modelscope - INFO - epoch [1][3475/4953]\tlr: 2.879e-05, memory: 9082, loss: 1.2394\n",
|
||
"2023-07-02 19:10:51,181 - modelscope - INFO - epoch [1][3480/4953]\tlr: 2.867e-05, memory: 9082, loss: 1.4753\n",
|
||
"2023-07-02 19:10:57,524 - modelscope - INFO - epoch [1][3485/4953]\tlr: 2.856e-05, memory: 9082, loss: 0.2870\n",
|
||
"2023-07-02 19:11:04,534 - modelscope - INFO - epoch [1][3490/4953]\tlr: 2.844e-05, memory: 9082, loss: 1.1145\n",
|
||
"2023-07-02 19:11:09,939 - modelscope - INFO - epoch [1][3495/4953]\tlr: 2.833e-05, memory: 9082, loss: 1.5525\n",
|
||
"2023-07-02 19:11:16,051 - modelscope - INFO - epoch [1][3500/4953]\tlr: 2.821e-05, memory: 9082, loss: 0.9821\n",
|
||
"2023-07-02 19:11:21,112 - modelscope - INFO - epoch [1][3505/4953]\tlr: 2.810e-05, memory: 9082, loss: 0.5899\n",
|
||
"2023-07-02 19:11:26,462 - modelscope - INFO - epoch [1][3510/4953]\tlr: 2.798e-05, memory: 9082, loss: 1.0081\n",
|
||
"2023-07-02 19:11:31,458 - modelscope - INFO - epoch [1][3515/4953]\tlr: 2.787e-05, memory: 9082, loss: 1.9700\n",
|
||
"2023-07-02 19:11:36,854 - modelscope - INFO - epoch [1][3520/4953]\tlr: 2.775e-05, memory: 9082, loss: 1.4628\n",
|
||
"2023-07-02 19:11:42,492 - modelscope - INFO - epoch [1][3525/4953]\tlr: 2.764e-05, memory: 9082, loss: 2.0672\n",
|
||
"2023-07-02 19:11:46,917 - modelscope - INFO - epoch [1][3530/4953]\tlr: 2.753e-05, memory: 9082, loss: 1.2469\n",
|
||
"2023-07-02 19:11:51,730 - modelscope - INFO - epoch [1][3535/4953]\tlr: 2.741e-05, memory: 9082, loss: 1.8609\n",
|
||
"2023-07-02 19:11:58,366 - modelscope - INFO - epoch [1][3540/4953]\tlr: 2.730e-05, memory: 9082, loss: 1.0629\n",
|
||
"2023-07-02 19:12:03,036 - modelscope - INFO - epoch [1][3545/4953]\tlr: 2.719e-05, memory: 9082, loss: 1.9508\n",
|
||
"2023-07-02 19:12:07,669 - modelscope - INFO - epoch [1][3550/4953]\tlr: 2.707e-05, memory: 9082, loss: 1.1436\n",
|
||
"2023-07-02 19:12:12,567 - modelscope - INFO - epoch [1][3555/4953]\tlr: 2.696e-05, memory: 9082, loss: 1.7292\n",
|
||
"2023-07-02 19:12:18,906 - modelscope - INFO - epoch [1][3560/4953]\tlr: 2.685e-05, memory: 9082, loss: 1.4152\n",
|
||
"2023-07-02 19:12:27,058 - modelscope - INFO - epoch [1][3565/4953]\tlr: 2.674e-05, memory: 9082, loss: 1.5086\n",
|
||
"2023-07-02 19:12:34,096 - modelscope - INFO - epoch [1][3570/4953]\tlr: 2.663e-05, memory: 9082, loss: 0.4786\n",
|
||
"2023-07-02 19:12:40,666 - modelscope - INFO - epoch [1][3575/4953]\tlr: 2.652e-05, memory: 9082, loss: 1.7496\n",
|
||
"2023-07-02 19:12:47,997 - modelscope - INFO - epoch [1][3580/4953]\tlr: 2.641e-05, memory: 9082, loss: 1.0977\n",
|
||
"2023-07-02 19:12:51,897 - modelscope - INFO - epoch [1][3585/4953]\tlr: 2.630e-05, memory: 9082, loss: 1.6832\n",
|
||
"2023-07-02 19:12:59,020 - modelscope - INFO - epoch [1][3590/4953]\tlr: 2.619e-05, memory: 9082, loss: 0.4163\n",
|
||
"2023-07-02 19:13:07,038 - modelscope - INFO - epoch [1][3595/4953]\tlr: 2.608e-05, memory: 9082, loss: 0.7688\n",
|
||
"2023-07-02 19:13:13,293 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.05it/s]\n",
|
||
"2023-07-02 19:15:28,735 - modelscope - INFO - Saving checkpoint at 3600 iter\n",
|
||
"2023-07-02 19:15:28,776 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter3400_acc0.8089956045150757\n",
|
||
"2023-07-02 19:15:28,780 - modelscope - INFO - Saving checkpoint at 3600 iter\n",
|
||
"2023-07-02 19:15:28,819 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_3400\n",
|
||
"2023-07-02 19:15:28,824 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8097, evaluation/loss: 1.2494, loss: 0.8758\n",
|
||
"2023-07-02 19:15:35,336 - modelscope - INFO - epoch [1][3605/4953]\tlr: 2.586e-05, memory: 9082, loss: 0.5239\n",
|
||
"2023-07-02 19:15:41,849 - modelscope - INFO - epoch [1][3610/4953]\tlr: 2.575e-05, memory: 9082, loss: 1.5448\n",
|
||
"2023-07-02 19:15:46,600 - modelscope - INFO - epoch [1][3615/4953]\tlr: 2.564e-05, memory: 9082, loss: 1.2828\n",
|
||
"2023-07-02 19:15:53,236 - modelscope - INFO - epoch [1][3620/4953]\tlr: 2.553e-05, memory: 9082, loss: 1.3886\n",
|
||
"2023-07-02 19:15:59,060 - modelscope - INFO - epoch [1][3625/4953]\tlr: 2.542e-05, memory: 9082, loss: 1.2750\n",
|
||
"2023-07-02 19:16:04,370 - modelscope - INFO - epoch [1][3630/4953]\tlr: 2.532e-05, memory: 9082, loss: 1.0339\n",
|
||
"2023-07-02 19:16:09,908 - modelscope - INFO - epoch [1][3635/4953]\tlr: 2.521e-05, memory: 9082, loss: 1.6308\n",
|
||
"2023-07-02 19:16:16,808 - modelscope - INFO - epoch [1][3640/4953]\tlr: 2.510e-05, memory: 9082, loss: 1.2590\n",
|
||
"2023-07-02 19:16:22,072 - modelscope - INFO - epoch [1][3645/4953]\tlr: 2.500e-05, memory: 9082, loss: 2.3364\n",
|
||
"2023-07-02 19:16:29,035 - modelscope - INFO - epoch [1][3650/4953]\tlr: 2.489e-05, memory: 9082, loss: 1.1231\n",
|
||
"2023-07-02 19:16:35,184 - modelscope - INFO - epoch [1][3655/4953]\tlr: 2.478e-05, memory: 9082, loss: 0.8313\n",
|
||
"2023-07-02 19:16:41,731 - modelscope - INFO - epoch [1][3660/4953]\tlr: 2.468e-05, memory: 9082, loss: 1.2649\n",
|
||
"2023-07-02 19:16:47,773 - modelscope - INFO - epoch [1][3665/4953]\tlr: 2.457e-05, memory: 9082, loss: 0.1984\n",
|
||
"2023-07-02 19:16:53,645 - modelscope - INFO - epoch [1][3670/4953]\tlr: 2.447e-05, memory: 9082, loss: 1.2534\n",
|
||
"2023-07-02 19:16:58,300 - modelscope - INFO - epoch [1][3675/4953]\tlr: 2.436e-05, memory: 9082, loss: 1.1865\n",
|
||
"2023-07-02 19:17:02,935 - modelscope - INFO - epoch [1][3680/4953]\tlr: 2.426e-05, memory: 9082, loss: 1.0458\n",
|
||
"2023-07-02 19:17:10,508 - modelscope - INFO - epoch [1][3685/4953]\tlr: 2.415e-05, memory: 9082, loss: 1.4961\n",
|
||
"2023-07-02 19:17:15,416 - modelscope - INFO - epoch [1][3690/4953]\tlr: 2.405e-05, memory: 9082, loss: 1.9992\n",
|
||
"2023-07-02 19:17:21,634 - modelscope - INFO - epoch [1][3695/4953]\tlr: 2.394e-05, memory: 9082, loss: 1.0555\n",
|
||
"2023-07-02 19:17:25,173 - modelscope - INFO - epoch [1][3700/4953]\tlr: 2.384e-05, memory: 9082, loss: 1.3477\n",
|
||
"2023-07-02 19:17:31,506 - modelscope - INFO - epoch [1][3705/4953]\tlr: 2.374e-05, memory: 9082, loss: 1.4563\n",
|
||
"2023-07-02 19:17:37,274 - modelscope - INFO - epoch [1][3710/4953]\tlr: 2.364e-05, memory: 9082, loss: 1.0638\n",
|
||
"2023-07-02 19:17:42,368 - modelscope - INFO - epoch [1][3715/4953]\tlr: 2.353e-05, memory: 9082, loss: 1.0961\n",
|
||
"2023-07-02 19:17:48,384 - modelscope - INFO - epoch [1][3720/4953]\tlr: 2.343e-05, memory: 9082, loss: 0.6570\n",
|
||
"2023-07-02 19:17:54,584 - modelscope - INFO - epoch [1][3725/4953]\tlr: 2.333e-05, memory: 9082, loss: 1.4391\n",
|
||
"2023-07-02 19:18:00,199 - modelscope - INFO - epoch [1][3730/4953]\tlr: 2.323e-05, memory: 9082, loss: 1.0986\n",
|
||
"2023-07-02 19:18:06,613 - modelscope - INFO - epoch [1][3735/4953]\tlr: 2.313e-05, memory: 9082, loss: 1.2259\n",
|
||
"2023-07-02 19:18:11,954 - modelscope - INFO - epoch [1][3740/4953]\tlr: 2.303e-05, memory: 9082, loss: 1.2266\n",
|
||
"2023-07-02 19:18:19,245 - modelscope - INFO - epoch [1][3745/4953]\tlr: 2.293e-05, memory: 9082, loss: 0.8633\n",
|
||
"2023-07-02 19:18:24,296 - modelscope - INFO - epoch [1][3750/4953]\tlr: 2.283e-05, memory: 9082, loss: 1.2285\n",
|
||
"2023-07-02 19:18:31,793 - modelscope - INFO - epoch [1][3755/4953]\tlr: 2.273e-05, memory: 9082, loss: 1.7500\n",
|
||
"2023-07-02 19:18:37,572 - modelscope - INFO - epoch [1][3760/4953]\tlr: 2.263e-05, memory: 9082, loss: 0.6735\n",
|
||
"2023-07-02 19:18:44,200 - modelscope - INFO - epoch [1][3765/4953]\tlr: 2.253e-05, memory: 9082, loss: 1.8328\n",
|
||
"2023-07-02 19:18:49,475 - modelscope - INFO - epoch [1][3770/4953]\tlr: 2.243e-05, memory: 9082, loss: 1.3798\n",
|
||
"2023-07-02 19:18:53,690 - modelscope - INFO - epoch [1][3775/4953]\tlr: 2.233e-05, memory: 9082, loss: 2.3062\n",
|
||
"2023-07-02 19:18:58,638 - modelscope - INFO - epoch [1][3780/4953]\tlr: 2.223e-05, memory: 9082, loss: 1.1617\n",
|
||
"2023-07-02 19:19:05,096 - modelscope - INFO - epoch [1][3785/4953]\tlr: 2.213e-05, memory: 9082, loss: 1.7489\n",
|
||
"2023-07-02 19:19:12,468 - modelscope - INFO - epoch [1][3790/4953]\tlr: 2.204e-05, memory: 9082, loss: 1.1701\n",
|
||
"2023-07-02 19:19:22,097 - modelscope - INFO - epoch [1][3795/4953]\tlr: 2.194e-05, memory: 9082, loss: 0.3038\n",
|
||
"2023-07-02 19:19:29,069 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 19:21:44,819 - modelscope - INFO - Saving checkpoint at 3800 iter\n",
|
||
"2023-07-02 19:21:44,859 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter3600_acc0.8096736669540405\n",
|
||
"2023-07-02 19:21:44,863 - modelscope - INFO - Saving checkpoint at 3800 iter\n",
|
||
"2023-07-02 19:21:44,902 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_3600\n",
|
||
"2023-07-02 19:21:44,907 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8099, evaluation/loss: 1.2569, loss: 1.0828\n",
|
||
"2023-07-02 19:21:50,359 - modelscope - INFO - epoch [1][3805/4953]\tlr: 2.174e-05, memory: 9082, loss: 1.3383\n",
|
||
"2023-07-02 19:21:56,101 - modelscope - INFO - epoch [1][3810/4953]\tlr: 2.165e-05, memory: 9082, loss: 1.3833\n",
|
||
"2023-07-02 19:22:02,037 - modelscope - INFO - epoch [1][3815/4953]\tlr: 2.155e-05, memory: 9082, loss: 1.1005\n",
|
||
"2023-07-02 19:22:07,031 - modelscope - INFO - epoch [1][3820/4953]\tlr: 2.146e-05, memory: 9082, loss: 1.6941\n",
|
||
"2023-07-02 19:22:11,810 - modelscope - INFO - epoch [1][3825/4953]\tlr: 2.136e-05, memory: 9082, loss: 1.8938\n",
|
||
"2023-07-02 19:22:16,752 - modelscope - INFO - epoch [1][3830/4953]\tlr: 2.127e-05, memory: 9082, loss: 1.6121\n",
|
||
"2023-07-02 19:22:25,240 - modelscope - INFO - epoch [1][3835/4953]\tlr: 2.117e-05, memory: 9082, loss: 0.7009\n",
|
||
"2023-07-02 19:22:31,231 - modelscope - INFO - epoch [1][3840/4953]\tlr: 2.108e-05, memory: 9082, loss: 1.8273\n",
|
||
"2023-07-02 19:22:37,939 - modelscope - INFO - epoch [1][3845/4953]\tlr: 2.098e-05, memory: 9082, loss: 0.8680\n",
|
||
"2023-07-02 19:22:43,021 - modelscope - INFO - epoch [1][3850/4953]\tlr: 2.089e-05, memory: 9082, loss: 1.5473\n",
|
||
"2023-07-02 19:22:49,156 - modelscope - INFO - epoch [1][3855/4953]\tlr: 2.080e-05, memory: 9082, loss: 1.1435\n",
|
||
"2023-07-02 19:22:53,445 - modelscope - INFO - epoch [1][3860/4953]\tlr: 2.071e-05, memory: 9082, loss: 1.1194\n",
|
||
"2023-07-02 19:22:59,485 - modelscope - INFO - epoch [1][3865/4953]\tlr: 2.061e-05, memory: 9082, loss: 1.0640\n",
|
||
"2023-07-02 19:23:03,673 - modelscope - INFO - epoch [1][3870/4953]\tlr: 2.052e-05, memory: 9082, loss: 1.0879\n",
|
||
"2023-07-02 19:23:08,721 - modelscope - INFO - epoch [1][3875/4953]\tlr: 2.043e-05, memory: 9082, loss: 0.9207\n",
|
||
"2023-07-02 19:23:14,908 - modelscope - INFO - epoch [1][3880/4953]\tlr: 2.034e-05, memory: 9082, loss: 0.5737\n",
|
||
"2023-07-02 19:23:21,843 - modelscope - INFO - epoch [1][3885/4953]\tlr: 2.025e-05, memory: 9082, loss: 1.3052\n",
|
||
"2023-07-02 19:23:30,760 - modelscope - INFO - epoch [1][3890/4953]\tlr: 2.016e-05, memory: 9082, loss: 1.1666\n",
|
||
"2023-07-02 19:23:36,181 - modelscope - INFO - epoch [1][3895/4953]\tlr: 2.007e-05, memory: 9082, loss: 1.7224\n",
|
||
"2023-07-02 19:23:40,094 - modelscope - INFO - epoch [1][3900/4953]\tlr: 1.998e-05, memory: 9082, loss: 1.0042\n",
|
||
"2023-07-02 19:23:47,764 - modelscope - INFO - epoch [1][3905/4953]\tlr: 1.989e-05, memory: 9082, loss: 1.2044\n",
|
||
"2023-07-02 19:23:54,075 - modelscope - INFO - epoch [1][3910/4953]\tlr: 1.980e-05, memory: 9082, loss: 1.3367\n",
|
||
"2023-07-02 19:24:00,699 - modelscope - INFO - epoch [1][3915/4953]\tlr: 1.971e-05, memory: 9082, loss: 1.1395\n",
|
||
"2023-07-02 19:24:06,413 - modelscope - INFO - epoch [1][3920/4953]\tlr: 1.962e-05, memory: 9082, loss: 1.1899\n",
|
||
"2023-07-02 19:24:12,663 - modelscope - INFO - epoch [1][3925/4953]\tlr: 1.953e-05, memory: 9082, loss: 1.0320\n",
|
||
"2023-07-02 19:24:18,897 - modelscope - INFO - epoch [1][3930/4953]\tlr: 1.944e-05, memory: 9082, loss: 2.0555\n",
|
||
"2023-07-02 19:24:25,760 - modelscope - INFO - epoch [1][3935/4953]\tlr: 1.936e-05, memory: 9082, loss: 1.3466\n",
|
||
"2023-07-02 19:24:29,617 - modelscope - INFO - epoch [1][3940/4953]\tlr: 1.927e-05, memory: 9082, loss: 1.7797\n",
|
||
"2023-07-02 19:24:34,498 - modelscope - INFO - epoch [1][3945/4953]\tlr: 1.918e-05, memory: 9082, loss: 0.6168\n",
|
||
"2023-07-02 19:24:39,457 - modelscope - INFO - epoch [1][3950/4953]\tlr: 1.910e-05, memory: 9082, loss: 1.1122\n",
|
||
"2023-07-02 19:24:48,913 - modelscope - INFO - epoch [1][3955/4953]\tlr: 1.901e-05, memory: 9082, loss: 0.9353\n",
|
||
"2023-07-02 19:24:55,564 - modelscope - INFO - epoch [1][3960/4953]\tlr: 1.892e-05, memory: 9082, loss: 0.9599\n",
|
||
"2023-07-02 19:25:00,536 - modelscope - INFO - epoch [1][3965/4953]\tlr: 1.884e-05, memory: 9082, loss: 1.4582\n",
|
||
"2023-07-02 19:25:07,894 - modelscope - INFO - epoch [1][3970/4953]\tlr: 1.875e-05, memory: 9082, loss: 1.0347\n",
|
||
"2023-07-02 19:25:11,877 - modelscope - INFO - epoch [1][3975/4953]\tlr: 1.867e-05, memory: 9082, loss: 1.9000\n",
|
||
"2023-07-02 19:25:18,225 - modelscope - INFO - epoch [1][3980/4953]\tlr: 1.858e-05, memory: 9082, loss: 1.4125\n",
|
||
"2023-07-02 19:25:22,417 - modelscope - INFO - epoch [1][3985/4953]\tlr: 1.850e-05, memory: 9082, loss: 1.8959\n",
|
||
"2023-07-02 19:25:27,100 - modelscope - INFO - epoch [1][3990/4953]\tlr: 1.842e-05, memory: 9082, loss: 1.4008\n",
|
||
"2023-07-02 19:25:31,958 - modelscope - INFO - epoch [1][3995/4953]\tlr: 1.833e-05, memory: 9082, loss: 0.8114\n",
|
||
"2023-07-02 19:25:37,042 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 19:27:53,013 - modelscope - INFO - Saving checkpoint at 4000 iter\n",
|
||
"2023-07-02 19:27:53,054 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_3800\n",
|
||
"2023-07-02 19:27:53,059 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8099, evaluation/loss: 1.2522, loss: 1.1221\n",
|
||
"2023-07-02 19:27:58,830 - modelscope - INFO - epoch [1][4005/4953]\tlr: 1.817e-05, memory: 9082, loss: 1.9461\n",
|
||
"2023-07-02 19:28:04,138 - modelscope - INFO - epoch [1][4010/4953]\tlr: 1.809e-05, memory: 9082, loss: 1.5629\n",
|
||
"2023-07-02 19:28:09,984 - modelscope - INFO - epoch [1][4015/4953]\tlr: 1.801e-05, memory: 9082, loss: 0.7642\n",
|
||
"2023-07-02 19:28:13,463 - modelscope - INFO - epoch [1][4020/4953]\tlr: 1.792e-05, memory: 9082, loss: 2.2344\n",
|
||
"2023-07-02 19:28:20,355 - modelscope - INFO - epoch [1][4025/4953]\tlr: 1.784e-05, memory: 9082, loss: 0.9662\n",
|
||
"2023-07-02 19:28:26,276 - modelscope - INFO - epoch [1][4030/4953]\tlr: 1.776e-05, memory: 9082, loss: 1.0925\n",
|
||
"2023-07-02 19:28:32,273 - modelscope - INFO - epoch [1][4035/4953]\tlr: 1.768e-05, memory: 9082, loss: 1.4812\n",
|
||
"2023-07-02 19:28:38,431 - modelscope - INFO - epoch [1][4040/4953]\tlr: 1.760e-05, memory: 9082, loss: 2.1295\n",
|
||
"2023-07-02 19:28:43,468 - modelscope - INFO - epoch [1][4045/4953]\tlr: 1.752e-05, memory: 9082, loss: 1.6391\n",
|
||
"2023-07-02 19:28:51,453 - modelscope - INFO - epoch [1][4050/4953]\tlr: 1.744e-05, memory: 9082, loss: 1.4901\n",
|
||
"2023-07-02 19:28:57,688 - modelscope - INFO - epoch [1][4055/4953]\tlr: 1.737e-05, memory: 9082, loss: 1.2383\n",
|
||
"2023-07-02 19:29:01,776 - modelscope - INFO - epoch [1][4060/4953]\tlr: 1.729e-05, memory: 9082, loss: 1.4404\n",
|
||
"2023-07-02 19:29:07,738 - modelscope - INFO - epoch [1][4065/4953]\tlr: 1.721e-05, memory: 9082, loss: 0.5664\n",
|
||
"2023-07-02 19:29:12,827 - modelscope - INFO - epoch [1][4070/4953]\tlr: 1.713e-05, memory: 9082, loss: 1.4554\n",
|
||
"2023-07-02 19:29:19,309 - modelscope - INFO - epoch [1][4075/4953]\tlr: 1.706e-05, memory: 9082, loss: 0.8976\n",
|
||
"2023-07-02 19:29:23,218 - modelscope - INFO - epoch [1][4080/4953]\tlr: 1.698e-05, memory: 9082, loss: 1.0562\n",
|
||
"2023-07-02 19:29:32,543 - modelscope - INFO - epoch [1][4085/4953]\tlr: 1.690e-05, memory: 9082, loss: 0.9514\n",
|
||
"2023-07-02 19:29:39,285 - modelscope - INFO - epoch [1][4090/4953]\tlr: 1.683e-05, memory: 9082, loss: 0.4714\n",
|
||
"2023-07-02 19:29:44,617 - modelscope - INFO - epoch [1][4095/4953]\tlr: 1.675e-05, memory: 9082, loss: 1.2211\n",
|
||
"2023-07-02 19:29:49,645 - modelscope - INFO - epoch [1][4100/4953]\tlr: 1.668e-05, memory: 9082, loss: 2.0924\n",
|
||
"2023-07-02 19:29:55,362 - modelscope - INFO - epoch [1][4105/4953]\tlr: 1.660e-05, memory: 9082, loss: 2.2705\n",
|
||
"2023-07-02 19:30:01,166 - modelscope - INFO - epoch [1][4110/4953]\tlr: 1.653e-05, memory: 9082, loss: 1.6148\n",
|
||
"2023-07-02 19:30:08,386 - modelscope - INFO - epoch [1][4115/4953]\tlr: 1.645e-05, memory: 9082, loss: 0.4558\n",
|
||
"2023-07-02 19:30:15,808 - modelscope - INFO - epoch [1][4120/4953]\tlr: 1.638e-05, memory: 9082, loss: 1.3715\n",
|
||
"2023-07-02 19:30:21,186 - modelscope - INFO - epoch [1][4125/4953]\tlr: 1.631e-05, memory: 9082, loss: 1.4497\n",
|
||
"2023-07-02 19:30:26,639 - modelscope - INFO - epoch [1][4130/4953]\tlr: 1.623e-05, memory: 9082, loss: 1.0819\n",
|
||
"2023-07-02 19:30:32,756 - modelscope - INFO - epoch [1][4135/4953]\tlr: 1.616e-05, memory: 9082, loss: 0.5440\n",
|
||
"2023-07-02 19:30:39,286 - modelscope - INFO - epoch [1][4140/4953]\tlr: 1.609e-05, memory: 9082, loss: 1.7625\n",
|
||
"2023-07-02 19:30:45,148 - modelscope - INFO - epoch [1][4145/4953]\tlr: 1.602e-05, memory: 9082, loss: 1.4341\n",
|
||
"2023-07-02 19:30:49,574 - modelscope - INFO - epoch [1][4150/4953]\tlr: 1.595e-05, memory: 9082, loss: 1.2615\n",
|
||
"2023-07-02 19:30:56,310 - modelscope - INFO - epoch [1][4155/4953]\tlr: 1.588e-05, memory: 9082, loss: 1.1409\n",
|
||
"2023-07-02 19:31:00,158 - modelscope - INFO - epoch [1][4160/4953]\tlr: 1.580e-05, memory: 9082, loss: 1.3609\n",
|
||
"2023-07-02 19:31:06,731 - modelscope - INFO - epoch [1][4165/4953]\tlr: 1.573e-05, memory: 9082, loss: 1.5992\n",
|
||
"2023-07-02 19:31:10,582 - modelscope - INFO - epoch [1][4170/4953]\tlr: 1.566e-05, memory: 9082, loss: 1.2750\n",
|
||
"2023-07-02 19:31:17,613 - modelscope - INFO - epoch [1][4175/4953]\tlr: 1.560e-05, memory: 9082, loss: 1.5521\n",
|
||
"2023-07-02 19:31:21,814 - modelscope - INFO - epoch [1][4180/4953]\tlr: 1.553e-05, memory: 9082, loss: 2.2871\n",
|
||
"2023-07-02 19:31:28,108 - modelscope - INFO - epoch [1][4185/4953]\tlr: 1.546e-05, memory: 9082, loss: 1.4199\n",
|
||
"2023-07-02 19:31:31,428 - modelscope - INFO - epoch [1][4190/4953]\tlr: 1.539e-05, memory: 9082, loss: 1.6801\n",
|
||
"2023-07-02 19:31:36,958 - modelscope - INFO - epoch [1][4195/4953]\tlr: 1.532e-05, memory: 9082, loss: 1.2423\n",
|
||
"2023-07-02 19:31:43,408 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:16<00:00, 2.04it/s]\n",
|
||
"2023-07-02 19:33:59,477 - modelscope - INFO - Saving checkpoint at 4200 iter\n",
|
||
"2023-07-02 19:33:59,518 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_4000\n",
|
||
"2023-07-02 19:33:59,522 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8095, evaluation/loss: 1.2465, loss: 1.5236\n",
|
||
"2023-07-02 19:34:03,568 - modelscope - INFO - epoch [1][4205/4953]\tlr: 1.519e-05, memory: 9082, loss: 1.0014\n",
|
||
"2023-07-02 19:34:10,609 - modelscope - INFO - epoch [1][4210/4953]\tlr: 1.512e-05, memory: 9082, loss: 0.5158\n",
|
||
"2023-07-02 19:34:17,669 - modelscope - INFO - epoch [1][4215/4953]\tlr: 1.506e-05, memory: 9082, loss: 1.1637\n",
|
||
"2023-07-02 19:34:24,176 - modelscope - INFO - epoch [1][4220/4953]\tlr: 1.499e-05, memory: 9082, loss: 0.9216\n",
|
||
"2023-07-02 19:34:30,303 - modelscope - INFO - epoch [1][4225/4953]\tlr: 1.492e-05, memory: 9082, loss: 0.5468\n",
|
||
"2023-07-02 19:34:36,913 - modelscope - INFO - epoch [1][4230/4953]\tlr: 1.486e-05, memory: 9082, loss: 1.0229\n",
|
||
"2023-07-02 19:34:42,449 - modelscope - INFO - epoch [1][4235/4953]\tlr: 1.480e-05, memory: 9082, loss: 0.8887\n",
|
||
"2023-07-02 19:34:51,187 - modelscope - INFO - epoch [1][4240/4953]\tlr: 1.473e-05, memory: 9082, loss: 1.1398\n",
|
||
"2023-07-02 19:34:55,850 - modelscope - INFO - epoch [1][4245/4953]\tlr: 1.467e-05, memory: 9082, loss: 1.8500\n",
|
||
"2023-07-02 19:35:01,653 - modelscope - INFO - epoch [1][4250/4953]\tlr: 1.460e-05, memory: 9082, loss: 1.2860\n",
|
||
"2023-07-02 19:35:07,538 - modelscope - INFO - epoch [1][4255/4953]\tlr: 1.454e-05, memory: 9082, loss: 0.9241\n",
|
||
"2023-07-02 19:35:10,832 - modelscope - INFO - epoch [1][4260/4953]\tlr: 1.448e-05, memory: 9082, loss: 1.5016\n",
|
||
"2023-07-02 19:35:15,940 - modelscope - INFO - epoch [1][4265/4953]\tlr: 1.442e-05, memory: 9082, loss: 1.1250\n",
|
||
"2023-07-02 19:35:21,080 - modelscope - INFO - epoch [1][4270/4953]\tlr: 1.436e-05, memory: 9082, loss: 1.0505\n",
|
||
"2023-07-02 19:35:26,817 - modelscope - INFO - epoch [1][4275/4953]\tlr: 1.429e-05, memory: 9082, loss: 1.0356\n",
|
||
"2023-07-02 19:35:36,012 - modelscope - INFO - epoch [1][4280/4953]\tlr: 1.423e-05, memory: 9082, loss: 0.9335\n",
|
||
"2023-07-02 19:35:42,237 - modelscope - INFO - epoch [1][4285/4953]\tlr: 1.417e-05, memory: 9082, loss: 0.5855\n",
|
||
"2023-07-02 19:35:46,223 - modelscope - INFO - epoch [1][4290/4953]\tlr: 1.411e-05, memory: 9082, loss: 1.2945\n",
|
||
"2023-07-02 19:35:52,610 - modelscope - INFO - epoch [1][4295/4953]\tlr: 1.405e-05, memory: 9082, loss: 0.9766\n",
|
||
"2023-07-02 19:35:59,125 - modelscope - INFO - epoch [1][4300/4953]\tlr: 1.400e-05, memory: 9082, loss: 1.6789\n",
|
||
"2023-07-02 19:36:03,214 - modelscope - INFO - epoch [1][4305/4953]\tlr: 1.394e-05, memory: 9082, loss: 1.5262\n",
|
||
"2023-07-02 19:36:08,897 - modelscope - INFO - epoch [1][4310/4953]\tlr: 1.388e-05, memory: 9082, loss: 1.0785\n",
|
||
"2023-07-02 19:36:15,128 - modelscope - INFO - epoch [1][4315/4953]\tlr: 1.382e-05, memory: 9082, loss: 0.6479\n",
|
||
"2023-07-02 19:36:21,607 - modelscope - INFO - epoch [1][4320/4953]\tlr: 1.376e-05, memory: 9082, loss: 1.8496\n",
|
||
"2023-07-02 19:36:29,617 - modelscope - INFO - epoch [1][4325/4953]\tlr: 1.371e-05, memory: 9082, loss: 0.5391\n",
|
||
"2023-07-02 19:36:35,101 - modelscope - INFO - epoch [1][4330/4953]\tlr: 1.365e-05, memory: 9082, loss: 1.8141\n",
|
||
"2023-07-02 19:36:41,579 - modelscope - INFO - epoch [1][4335/4953]\tlr: 1.359e-05, memory: 9082, loss: 0.6881\n",
|
||
"2023-07-02 19:36:48,569 - modelscope - INFO - epoch [1][4340/4953]\tlr: 1.354e-05, memory: 9082, loss: 0.6677\n",
|
||
"2023-07-02 19:36:55,362 - modelscope - INFO - epoch [1][4345/4953]\tlr: 1.348e-05, memory: 9082, loss: 0.7067\n",
|
||
"2023-07-02 19:37:01,199 - modelscope - INFO - epoch [1][4350/4953]\tlr: 1.343e-05, memory: 9082, loss: 1.3036\n",
|
||
"2023-07-02 19:37:06,752 - modelscope - INFO - epoch [1][4355/4953]\tlr: 1.337e-05, memory: 9082, loss: 0.5832\n",
|
||
"2023-07-02 19:37:11,013 - modelscope - INFO - epoch [1][4360/4953]\tlr: 1.332e-05, memory: 9082, loss: 0.9969\n",
|
||
"2023-07-02 19:37:15,110 - modelscope - INFO - epoch [1][4365/4953]\tlr: 1.326e-05, memory: 9082, loss: 1.6590\n",
|
||
"2023-07-02 19:37:22,411 - modelscope - INFO - epoch [1][4370/4953]\tlr: 1.321e-05, memory: 9082, loss: 0.8229\n",
|
||
"2023-07-02 19:37:29,106 - modelscope - INFO - epoch [1][4375/4953]\tlr: 1.316e-05, memory: 9082, loss: 1.3289\n",
|
||
"2023-07-02 19:37:33,326 - modelscope - INFO - epoch [1][4380/4953]\tlr: 1.311e-05, memory: 9082, loss: 1.0410\n",
|
||
"2023-07-02 19:37:38,513 - modelscope - INFO - epoch [1][4385/4953]\tlr: 1.305e-05, memory: 9082, loss: 0.6374\n",
|
||
"2023-07-02 19:37:42,903 - modelscope - INFO - epoch [1][4390/4953]\tlr: 1.300e-05, memory: 9082, loss: 2.6094\n",
|
||
"2023-07-02 19:37:46,474 - modelscope - INFO - epoch [1][4395/4953]\tlr: 1.295e-05, memory: 9082, loss: 1.7327\n",
|
||
"2023-07-02 19:37:53,357 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:16<00:00, 2.03it/s]\n",
|
||
"2023-07-02 19:40:09,626 - modelscope - INFO - Saving checkpoint at 4400 iter\n",
|
||
"2023-07-02 19:40:09,667 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter3800_acc0.8098996877670288\n",
|
||
"2023-07-02 19:40:09,672 - modelscope - INFO - Saving checkpoint at 4400 iter\n",
|
||
"2023-07-02 19:40:09,712 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_4200\n",
|
||
"2023-07-02 19:40:09,717 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8100, evaluation/loss: 1.2437, loss: 1.0930\n",
|
||
"2023-07-02 19:40:15,785 - modelscope - INFO - epoch [1][4405/4953]\tlr: 1.285e-05, memory: 9082, loss: 0.5974\n",
|
||
"2023-07-02 19:40:23,144 - modelscope - INFO - epoch [1][4410/4953]\tlr: 1.280e-05, memory: 9082, loss: 1.0870\n",
|
||
"2023-07-02 19:40:28,966 - modelscope - INFO - epoch [1][4415/4953]\tlr: 1.275e-05, memory: 9082, loss: 1.0536\n",
|
||
"2023-07-02 19:40:35,092 - modelscope - INFO - epoch [1][4420/4953]\tlr: 1.270e-05, memory: 9082, loss: 1.4613\n",
|
||
"2023-07-02 19:40:41,826 - modelscope - INFO - epoch [1][4425/4953]\tlr: 1.265e-05, memory: 9082, loss: 0.8297\n",
|
||
"2023-07-02 19:40:46,568 - modelscope - INFO - epoch [1][4430/4953]\tlr: 1.261e-05, memory: 9082, loss: 2.0414\n",
|
||
"2023-07-02 19:40:53,278 - modelscope - INFO - epoch [1][4435/4953]\tlr: 1.256e-05, memory: 9082, loss: 1.1800\n",
|
||
"2023-07-02 19:40:58,208 - modelscope - INFO - epoch [1][4440/4953]\tlr: 1.251e-05, memory: 9082, loss: 0.8595\n",
|
||
"2023-07-02 19:41:04,905 - modelscope - INFO - epoch [1][4445/4953]\tlr: 1.246e-05, memory: 9082, loss: 0.0801\n",
|
||
"2023-07-02 19:41:08,125 - modelscope - INFO - epoch [1][4450/4953]\tlr: 1.242e-05, memory: 9082, loss: 1.7031\n",
|
||
"2023-07-02 19:41:13,374 - modelscope - INFO - epoch [1][4455/4953]\tlr: 1.237e-05, memory: 9082, loss: 1.8381\n",
|
||
"2023-07-02 19:41:17,994 - modelscope - INFO - epoch [1][4460/4953]\tlr: 1.233e-05, memory: 9082, loss: 1.1123\n",
|
||
"2023-07-02 19:41:21,181 - modelscope - INFO - epoch [1][4465/4953]\tlr: 1.228e-05, memory: 9082, loss: 2.0922\n",
|
||
"2023-07-02 19:41:27,252 - modelscope - INFO - epoch [1][4470/4953]\tlr: 1.224e-05, memory: 9082, loss: 0.8977\n",
|
||
"2023-07-02 19:41:31,600 - modelscope - INFO - epoch [1][4475/4953]\tlr: 1.219e-05, memory: 9082, loss: 0.9191\n",
|
||
"2023-07-02 19:41:36,554 - modelscope - INFO - epoch [1][4480/4953]\tlr: 1.215e-05, memory: 9082, loss: 1.9734\n",
|
||
"2023-07-02 19:41:42,916 - modelscope - INFO - epoch [1][4485/4953]\tlr: 1.210e-05, memory: 9082, loss: 0.7236\n",
|
||
"2023-07-02 19:41:49,532 - modelscope - INFO - epoch [1][4490/4953]\tlr: 1.206e-05, memory: 9082, loss: 1.5750\n",
|
||
"2023-07-02 19:41:55,282 - modelscope - INFO - epoch [1][4495/4953]\tlr: 1.202e-05, memory: 9082, loss: 0.9306\n",
|
||
"2023-07-02 19:42:01,377 - modelscope - INFO - epoch [1][4500/4953]\tlr: 1.198e-05, memory: 9082, loss: 1.9801\n",
|
||
"2023-07-02 19:42:05,379 - modelscope - INFO - epoch [1][4505/4953]\tlr: 1.193e-05, memory: 9082, loss: 2.3320\n",
|
||
"2023-07-02 19:42:11,849 - modelscope - INFO - epoch [1][4510/4953]\tlr: 1.189e-05, memory: 9082, loss: 1.3637\n",
|
||
"2023-07-02 19:42:18,695 - modelscope - INFO - epoch [1][4515/4953]\tlr: 1.185e-05, memory: 9082, loss: 1.5328\n",
|
||
"2023-07-02 19:42:26,045 - modelscope - INFO - epoch [1][4520/4953]\tlr: 1.181e-05, memory: 9082, loss: 1.0721\n",
|
||
"2023-07-02 19:42:32,060 - modelscope - INFO - epoch [1][4525/4953]\tlr: 1.177e-05, memory: 9082, loss: 1.1867\n",
|
||
"2023-07-02 19:42:38,307 - modelscope - INFO - epoch [1][4530/4953]\tlr: 1.173e-05, memory: 9082, loss: 1.3500\n",
|
||
"2023-07-02 19:42:46,137 - modelscope - INFO - epoch [1][4535/4953]\tlr: 1.169e-05, memory: 9082, loss: 0.7637\n",
|
||
"2023-07-02 19:42:52,814 - modelscope - INFO - epoch [1][4540/4953]\tlr: 1.165e-05, memory: 9082, loss: 0.8551\n",
|
||
"2023-07-02 19:43:00,111 - modelscope - INFO - epoch [1][4545/4953]\tlr: 1.162e-05, memory: 9082, loss: 1.3265\n",
|
||
"2023-07-02 19:43:06,301 - modelscope - INFO - epoch [1][4550/4953]\tlr: 1.158e-05, memory: 9082, loss: 0.6115\n",
|
||
"2023-07-02 19:43:10,926 - modelscope - INFO - epoch [1][4555/4953]\tlr: 1.154e-05, memory: 9082, loss: 1.8475\n",
|
||
"2023-07-02 19:43:17,954 - modelscope - INFO - epoch [1][4560/4953]\tlr: 1.150e-05, memory: 9082, loss: 1.3332\n",
|
||
"2023-07-02 19:43:22,493 - modelscope - INFO - epoch [1][4565/4953]\tlr: 1.147e-05, memory: 9082, loss: 1.9062\n",
|
||
"2023-07-02 19:43:28,213 - modelscope - INFO - epoch [1][4570/4953]\tlr: 1.143e-05, memory: 9082, loss: 0.6227\n",
|
||
"2023-07-02 19:43:34,862 - modelscope - INFO - epoch [1][4575/4953]\tlr: 1.140e-05, memory: 9082, loss: 0.7937\n",
|
||
"2023-07-02 19:43:40,905 - modelscope - INFO - epoch [1][4580/4953]\tlr: 1.136e-05, memory: 9082, loss: 1.4903\n",
|
||
"2023-07-02 19:43:47,007 - modelscope - INFO - epoch [1][4585/4953]\tlr: 1.133e-05, memory: 9082, loss: 1.0449\n",
|
||
"2023-07-02 19:43:52,730 - modelscope - INFO - epoch [1][4590/4953]\tlr: 1.129e-05, memory: 9082, loss: 1.0068\n",
|
||
"2023-07-02 19:43:56,715 - modelscope - INFO - epoch [1][4595/4953]\tlr: 1.126e-05, memory: 9082, loss: 1.5157\n",
|
||
"2023-07-02 19:44:04,629 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 19:46:20,481 - modelscope - INFO - Saving checkpoint at 4600 iter\n",
|
||
"2023-07-02 19:46:20,521 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_4400\n",
|
||
"2023-07-02 19:46:20,526 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8098, evaluation/loss: 1.2390, loss: 1.1334\n",
|
||
"2023-07-02 19:46:25,140 - modelscope - INFO - epoch [1][4605/4953]\tlr: 1.119e-05, memory: 9082, loss: 1.6938\n",
|
||
"2023-07-02 19:46:30,413 - modelscope - INFO - epoch [1][4610/4953]\tlr: 1.116e-05, memory: 9082, loss: 2.1351\n",
|
||
"2023-07-02 19:46:37,216 - modelscope - INFO - epoch [1][4615/4953]\tlr: 1.113e-05, memory: 9082, loss: 0.9270\n",
|
||
"2023-07-02 19:46:43,728 - modelscope - INFO - epoch [1][4620/4953]\tlr: 1.110e-05, memory: 9082, loss: 1.1201\n",
|
||
"2023-07-02 19:46:50,227 - modelscope - INFO - epoch [1][4625/4953]\tlr: 1.107e-05, memory: 9082, loss: 1.2715\n",
|
||
"2023-07-02 19:46:53,772 - modelscope - INFO - epoch [1][4630/4953]\tlr: 1.103e-05, memory: 9082, loss: 1.4461\n",
|
||
"2023-07-02 19:46:59,663 - modelscope - INFO - epoch [1][4635/4953]\tlr: 1.100e-05, memory: 9082, loss: 1.2715\n",
|
||
"2023-07-02 19:47:06,614 - modelscope - INFO - epoch [1][4640/4953]\tlr: 1.097e-05, memory: 9082, loss: 0.6478\n",
|
||
"2023-07-02 19:47:14,999 - modelscope - INFO - epoch [1][4645/4953]\tlr: 1.094e-05, memory: 9082, loss: 1.0031\n",
|
||
"2023-07-02 19:47:19,690 - modelscope - INFO - epoch [1][4650/4953]\tlr: 1.092e-05, memory: 9082, loss: 1.0572\n",
|
||
"2023-07-02 19:47:27,827 - modelscope - INFO - epoch [1][4655/4953]\tlr: 1.089e-05, memory: 9082, loss: 0.9459\n",
|
||
"2023-07-02 19:47:33,520 - modelscope - INFO - epoch [1][4660/4953]\tlr: 1.086e-05, memory: 9082, loss: 0.9813\n",
|
||
"2023-07-02 19:47:39,880 - modelscope - INFO - epoch [1][4665/4953]\tlr: 1.083e-05, memory: 9082, loss: 1.3258\n",
|
||
"2023-07-02 19:47:46,513 - modelscope - INFO - epoch [1][4670/4953]\tlr: 1.080e-05, memory: 9082, loss: 1.2884\n",
|
||
"2023-07-02 19:47:51,769 - modelscope - INFO - epoch [1][4675/4953]\tlr: 1.078e-05, memory: 9082, loss: 1.6375\n",
|
||
"2023-07-02 19:47:57,474 - modelscope - INFO - epoch [1][4680/4953]\tlr: 1.075e-05, memory: 9082, loss: 0.9726\n",
|
||
"2023-07-02 19:48:02,354 - modelscope - INFO - epoch [1][4685/4953]\tlr: 1.073e-05, memory: 9082, loss: 1.1402\n",
|
||
"2023-07-02 19:48:09,946 - modelscope - INFO - epoch [1][4690/4953]\tlr: 1.070e-05, memory: 9082, loss: 0.9941\n",
|
||
"2023-07-02 19:48:16,660 - modelscope - INFO - epoch [1][4695/4953]\tlr: 1.068e-05, memory: 9082, loss: 1.5975\n",
|
||
"2023-07-02 19:48:22,892 - modelscope - INFO - epoch [1][4700/4953]\tlr: 1.065e-05, memory: 9082, loss: 0.9816\n",
|
||
"2023-07-02 19:48:28,221 - modelscope - INFO - epoch [1][4705/4953]\tlr: 1.063e-05, memory: 9082, loss: 0.9115\n",
|
||
"2023-07-02 19:48:35,152 - modelscope - INFO - epoch [1][4710/4953]\tlr: 1.060e-05, memory: 9082, loss: 1.4184\n",
|
||
"2023-07-02 19:48:40,666 - modelscope - INFO - epoch [1][4715/4953]\tlr: 1.058e-05, memory: 9082, loss: 1.6391\n",
|
||
"2023-07-02 19:48:46,682 - modelscope - INFO - epoch [1][4720/4953]\tlr: 1.056e-05, memory: 9082, loss: 2.1836\n",
|
||
"2023-07-02 19:48:53,274 - modelscope - INFO - epoch [1][4725/4953]\tlr: 1.054e-05, memory: 9082, loss: 1.1783\n",
|
||
"2023-07-02 19:48:56,851 - modelscope - INFO - epoch [1][4730/4953]\tlr: 1.051e-05, memory: 9082, loss: 1.0398\n",
|
||
"2023-07-02 19:49:03,951 - modelscope - INFO - epoch [1][4735/4953]\tlr: 1.049e-05, memory: 9082, loss: 0.4896\n",
|
||
"2023-07-02 19:49:09,418 - modelscope - INFO - epoch [1][4740/4953]\tlr: 1.047e-05, memory: 9082, loss: 0.8757\n",
|
||
"2023-07-02 19:49:15,768 - modelscope - INFO - epoch [1][4745/4953]\tlr: 1.045e-05, memory: 9082, loss: 1.5896\n",
|
||
"2023-07-02 19:49:21,308 - modelscope - INFO - epoch [1][4750/4953]\tlr: 1.043e-05, memory: 9082, loss: 1.3535\n",
|
||
"2023-07-02 19:49:27,455 - modelscope - INFO - epoch [1][4755/4953]\tlr: 1.041e-05, memory: 9082, loss: 1.3389\n",
|
||
"2023-07-02 19:49:34,436 - modelscope - INFO - epoch [1][4760/4953]\tlr: 1.039e-05, memory: 9082, loss: 0.6073\n",
|
||
"2023-07-02 19:49:42,538 - modelscope - INFO - epoch [1][4765/4953]\tlr: 1.037e-05, memory: 9082, loss: 0.6708\n",
|
||
"2023-07-02 19:49:49,238 - modelscope - INFO - epoch [1][4770/4953]\tlr: 1.036e-05, memory: 9082, loss: 0.8630\n",
|
||
"2023-07-02 19:49:55,165 - modelscope - INFO - epoch [1][4775/4953]\tlr: 1.034e-05, memory: 9082, loss: 0.7835\n",
|
||
"2023-07-02 19:50:01,434 - modelscope - INFO - epoch [1][4780/4953]\tlr: 1.032e-05, memory: 9082, loss: 1.7195\n",
|
||
"2023-07-02 19:50:08,788 - modelscope - INFO - epoch [1][4785/4953]\tlr: 1.030e-05, memory: 9082, loss: 1.1434\n",
|
||
"2023-07-02 19:50:14,523 - modelscope - INFO - epoch [1][4790/4953]\tlr: 1.029e-05, memory: 9082, loss: 0.6416\n",
|
||
"2023-07-02 19:50:21,717 - modelscope - INFO - epoch [1][4795/4953]\tlr: 1.027e-05, memory: 9082, loss: 1.0909\n",
|
||
"2023-07-02 19:50:25,524 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
|
||
"2023-07-02 19:52:41,308 - modelscope - INFO - Saving checkpoint at 4800 iter\n",
|
||
"2023-07-02 19:52:41,348 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter4400_acc0.8100214004516602\n",
|
||
"2023-07-02 19:52:41,353 - modelscope - INFO - Saving checkpoint at 4800 iter\n",
|
||
"2023-07-02 19:52:41,392 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_4600\n",
|
||
"2023-07-02 19:52:41,397 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8101, evaluation/loss: 1.2370, loss: 1.1855\n",
|
||
"2023-07-02 19:52:47,709 - modelscope - INFO - epoch [1][4805/4953]\tlr: 1.024e-05, memory: 9082, loss: 0.8004\n",
|
||
"2023-07-02 19:52:53,162 - modelscope - INFO - epoch [1][4810/4953]\tlr: 1.023e-05, memory: 9082, loss: 1.1193\n",
|
||
"2023-07-02 19:53:00,428 - modelscope - INFO - epoch [1][4815/4953]\tlr: 1.021e-05, memory: 9082, loss: 0.8555\n",
|
||
"2023-07-02 19:53:03,760 - modelscope - INFO - epoch [1][4820/4953]\tlr: 1.020e-05, memory: 9082, loss: 1.4422\n",
|
||
"2023-07-02 19:53:09,302 - modelscope - INFO - epoch [1][4825/4953]\tlr: 1.019e-05, memory: 9082, loss: 1.5247\n",
|
||
"2023-07-02 19:53:17,785 - modelscope - INFO - epoch [1][4830/4953]\tlr: 1.017e-05, memory: 9082, loss: 0.5462\n",
|
||
"2023-07-02 19:53:24,406 - modelscope - INFO - epoch [1][4835/4953]\tlr: 1.016e-05, memory: 9082, loss: 1.0023\n",
|
||
"2023-07-02 19:53:29,386 - modelscope - INFO - epoch [1][4840/4953]\tlr: 1.015e-05, memory: 9082, loss: 1.3645\n",
|
||
"2023-07-02 19:53:34,231 - modelscope - INFO - epoch [1][4845/4953]\tlr: 1.014e-05, memory: 9082, loss: 0.9927\n",
|
||
"2023-07-02 19:53:40,558 - modelscope - INFO - epoch [1][4850/4953]\tlr: 1.013e-05, memory: 9082, loss: 2.0516\n",
|
||
"2023-07-02 19:53:47,846 - modelscope - INFO - epoch [1][4855/4953]\tlr: 1.012e-05, memory: 9082, loss: 0.7750\n",
|
||
"2023-07-02 19:53:52,341 - modelscope - INFO - epoch [1][4860/4953]\tlr: 1.011e-05, memory: 9082, loss: 1.4390\n",
|
||
"2023-07-02 19:53:57,172 - modelscope - INFO - epoch [1][4865/4953]\tlr: 1.010e-05, memory: 9082, loss: 1.0197\n",
|
||
"2023-07-02 19:54:02,776 - modelscope - INFO - epoch [1][4870/4953]\tlr: 1.009e-05, memory: 9082, loss: 0.7660\n",
|
||
"2023-07-02 19:54:08,311 - modelscope - INFO - epoch [1][4875/4953]\tlr: 1.008e-05, memory: 9082, loss: 0.8775\n",
|
||
"2023-07-02 19:54:14,394 - modelscope - INFO - epoch [1][4880/4953]\tlr: 1.007e-05, memory: 9082, loss: 1.3374\n",
|
||
"2023-07-02 19:54:20,602 - modelscope - INFO - epoch [1][4885/4953]\tlr: 1.006e-05, memory: 9082, loss: 1.0018\n",
|
||
"2023-07-02 19:54:28,123 - modelscope - INFO - epoch [1][4890/4953]\tlr: 1.006e-05, memory: 9082, loss: 1.4156\n",
|
||
"2023-07-02 19:54:34,101 - modelscope - INFO - epoch [1][4895/4953]\tlr: 1.005e-05, memory: 9082, loss: 1.4742\n",
|
||
"2023-07-02 19:54:39,802 - modelscope - INFO - epoch [1][4900/4953]\tlr: 1.004e-05, memory: 9082, loss: 1.2737\n",
|
||
"2023-07-02 19:54:45,785 - modelscope - INFO - epoch [1][4905/4953]\tlr: 1.004e-05, memory: 9082, loss: 1.2928\n",
|
||
"2023-07-02 19:54:52,274 - modelscope - INFO - epoch [1][4910/4953]\tlr: 1.003e-05, memory: 9082, loss: 0.9859\n",
|
||
"2023-07-02 19:54:57,409 - modelscope - INFO - epoch [1][4915/4953]\tlr: 1.003e-05, memory: 9082, loss: 1.8160\n",
|
||
"2023-07-02 19:55:04,217 - modelscope - INFO - epoch [1][4920/4953]\tlr: 1.002e-05, memory: 9082, loss: 0.9310\n",
|
||
"2023-07-02 19:55:09,704 - modelscope - INFO - epoch [1][4925/4953]\tlr: 1.002e-05, memory: 9082, loss: 1.1717\n",
|
||
"2023-07-02 19:55:15,079 - modelscope - INFO - epoch [1][4930/4953]\tlr: 1.001e-05, memory: 9082, loss: 1.8821\n",
|
||
"2023-07-02 19:55:19,843 - modelscope - INFO - epoch [1][4935/4953]\tlr: 1.001e-05, memory: 9082, loss: 0.7700\n",
|
||
"2023-07-02 19:55:24,826 - modelscope - INFO - epoch [1][4940/4953]\tlr: 1.001e-05, memory: 9082, loss: 1.1562\n",
|
||
"2023-07-02 19:55:29,831 - modelscope - INFO - epoch [1][4945/4953]\tlr: 1.000e-05, memory: 9082, loss: 1.2777\n",
|
||
"2023-07-02 19:55:34,919 - modelscope - INFO - epoch [1][4950/4953]\tlr: 1.000e-05, memory: 9082, loss: 0.9414\n",
|
||
"2023-07-02 19:55:38,429 - modelscope - INFO - Saving checkpoint at 4953 iter\n",
|
||
"2023-07-02 19:55:38,697 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_4800\n",
|
||
"2023-07-02 19:55:38,741 - modelscope - INFO - Train finished. Uploading models, waiting...\n",
|
||
"2023-07-02 19:55:38,823 - modelscope - INFO - {'done': True}\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"def cfg_modify_fn(cfg: Config) -> Config:\n",
|
||
" cfg.update(CONFIG)\n",
|
||
" return cfg\n",
|
||
"\n",
|
||
"\n",
|
||
"trainer = EpochBasedTrainer(\n",
|
||
" model=model,\n",
|
||
" cfg_file=cfg_file,\n",
|
||
" data_collator=data_collate_fn,\n",
|
||
" train_dataset=train_dataset,\n",
|
||
" eval_dataset=val_dataset,\n",
|
||
" remove_unused_data=True,\n",
|
||
" seed=42,\n",
|
||
" device='cpu', # No placement for model, leave the model to `device_map`\n",
|
||
" cfg_modify_fn=cfg_modify_fn,\n",
|
||
")\n",
|
||
"\n",
|
||
"trainer.train()"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 可视化\n",
|
||
"tensorboard 命令: (e.g.) \n",
|
||
"`tensorboard --logdir /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449 --port 6006`"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"dict_keys(['lr', 'loss', 'evaluation/acc', 'evaluation/loss'])\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAHDCAYAAACXsvqpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbJ0lEQVR4nO2dd7wkVZ32n+6b79w8d+7kRBokzJBhBEyMjogCLrqIqCy6uiiYcFfFzPrquPqur+ICsgZwdQUxoIgEiYNkGEDCwJAm53Rzvl3vH78+XaeqK3d1fr6fz0zfrq46dSo/9UsnYRiGAUIIIYQQQkKSLHYHCCGEEEJIeUIhSQghhBBCIkEhSQghhBBCIkEhSQghhBBCIkEhSQghhBBCIkEhSQghhBBCIkEhSQghhBBCIkEhSQghhBBCIkEhSQghhBBCIkEhSQghaa677jokEgls2LCh2F0hhJCygEKSEEIIIYREgkKSEEIIIYREgkKSEEIIIYREgkKSEEI8uOqqq3D44YejoaEBc+bMwcUXX4ze3l7LPC+//DLOOecczJo1C42NjZg3bx7e9773oa+vLzPPnXfeiVNOOQUdHR1oaWnBkiVL8KUvfanAW0MIIfFSW+wOEEJIqfKNb3wDl19+OVasWIGPf/zjWLduHa6++mo8/vjjePDBB1FXV4fx8XGsXLkSY2Nj+OQnP4lZs2Zh69atuOWWW9Db24v29nY8//zzeOc734mlS5fi3//939HQ0IBXXnkFDz74YLE3kRBCcoJCkhBCHNi9ezdWrVqFt73tbbjtttuQTIoD59BDD8Ull1yCX/3qV7jwwguxdu1arF+/Hr/97W/xnve8J7P81772tczfd955J8bHx3Hbbbehu7u74NtCCCH5gq5tQghx4K677sL4+Dg+85nPZEQkAHz0ox9FW1sb/vKXvwAA2tvbAQB33HEHhoeHHdvq6OgAAPzpT39CKpXKb8cJIaSAUEgSQogDGzduBAAsWbLEMr2+vh4HHHBA5vfFixfj0ksvxU9/+lN0d3dj5cqVuPLKKy3xkeeeey5OPvlk/PM//zNmzpyJ973vfbjxxhspKgkhZQ+FJCGE5Mh//ud/4plnnsGXvvQljIyM4FOf+hQOP/xwbNmyBQDQ1NSE+++/H3fddRc++MEP4plnnsG5556Lt771rZiamipy7wkhJDoUkoQQ4sDChQsBAOvWrbNMHx8fx/r16zO/K4488kh85Stfwf3334+//e1v2Lp1K3784x9nfk8mkzjttNPw/e9/H2vXrsW3vvUt3HPPPbj33nvzvzGEEJInKCQJIcSBFStWoL6+HldccQUMw8hM/9nPfoa+vj6cccYZAID+/n5MTk5alj3yyCORTCYxNjYGANi3b19W+0cddRQAZOYhhJByhFnbhBDiwIwZM3DZZZfh8ssvx9vf/naceeaZWLduHa666iocf/zx+MAHPgAAuOeee3DJJZfgve99Lw455BBMTk7il7/8JWpqanDOOecAAP793/8d999/P8444wwsXLgQu3btwlVXXYV58+bhlFNOKeZmEkJITlBIEkKIC9/4xjcwY8YM/Nd//Rc++9nPoqurCx/72Mfw7W9/G3V1dQCAZcuWYeXKlfjzn/+MrVu3orm5GcuWLcNtt92Gk046CQBw5plnYsOGDfj5z3+OPXv2oLu7G2984xtx+eWXZ7K+CSGkHEkYus+GEEIIIYSQgDBGkhBCCCGERIJCkhBCCCGERIJCkhBCCCGERIJCkhBCCCGERIJCkhBCCCGERIJCkhBCCCGERKLgdSRTqRS2bduG1tZWJBKJQq+eEEIIIYT4YBgGBgYGMGfOHCST7nbHggvJbdu2Yf78+YVeLSGEEEIICcnmzZsxb948198LLiRbW1sBSMfa2toKvXpCCCGEEOJDf38/5s+fn9FtbhRcSCp3dltbG4UkIYQQQkgJ4xeGyGQbQgghhBASidBCcuvWrfjABz6A6dOno6mpCUceeSSeeOKJfPSNEEIIIYSUMKFc2/v378fJJ5+MN7/5zbjtttswY8YMvPzyy+js7MxX/wghhBBCSIkSSkj+x3/8B+bPn49rr702M23x4sWxd4oQQgghhJQ+oVzbN998M4477ji8973vRU9PD44++mj85Cc/8VxmbGwM/f39ln+EEEIIIaT8CSUkX3vtNVx99dU4+OCDcccdd+DjH/84PvWpT+EXv/iF6zKrVq1Ce3t75h9rSBJCCCGEVAYJwzCMoDPX19fjuOOOw0MPPZSZ9qlPfQqPP/44Hn74YcdlxsbGMDY2lvmu6hL19fWx/A8hhBBCSAnS39+P9vZ2X70WyiI5e/ZsHHbYYZZpr3vd67Bp0ybXZRoaGjI1I1k7khBCCCGkcgglJE8++WSsW7fOMu2ll17CwoULY+0UIYQQQggpfUIJyc9+9rN45JFH8O1vfxuvvPIKfv3rX+O///u/cfHFF+erf4QQQgghpEQJJSSPP/543HTTTbj++utxxBFH4Jvf/CZ+8IMf4Pzzz89X/wghhBBCSIkSKtkmDoIGbxJCCCGEkOKQl2QbQgghhBBCFBSSADA5AaSmit0LQgghhJCygkJyahLYvh7Y+mqxe0IIIYQQUlZQSI6PFrsHhBBCCCFlCYUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIWkztgoYKSK3QtCCCGEkLKgOoWkYThP37UJ2LOtsH0hhBBCCClTqk9I9u0FtrwMjI86/z46XNj+EEIIIYSUKdUnJPv3ymfv7uL2gxBCCCGkzKk+IUkIIYQQQmKBQpIQQgghhESCQtIl74YQQgghhHhDIUkIIYQQQiJBIUkIIYQQQiJBIUkIIYQQQiJBIUkIIYQQQiJRvULSyPqDEEIIIYSEoHqFJCGEEEIIyYkqFpK0RBJCCCGE5EIVC0lCCCGEEJILVSwkE8XuACGEEEJIWVPFQpKubUIIIYSQXKhiIUkIIYQQQnKBQpIQQgghhESCQpIQQgghhESCQpIQQgghhESCQpIQQgghhESCQpIQQgghhESCQpIQQgghhESCQpIQQgghhESisoXkS08B3/oQ8OMvFLsnhBBCCCEVR22xO5BXxoeBPdvA4RAJIYQQQuKnsi2Smc3jcIiEEEIIIXFT2UIykbZEUkcSQgghhMROlQjJVHH7QQghhBBSgVSHkCSEEEIIIbFT2UJSJdkY9G0TQgghhMRNZQvJBIUkIYQQQki+qA4hyWwbQgghhJDYCSUkv/GNbyCRSFj+HXroofnqWwx4WCRTKaBvDzAxXtguEUIIIYRUCKELkh9++OG46667zAZqS7imedLDIjk5DvTvK2h3CCGEEEIqidAqsLa2FrNmzcpHX+KHMZKEEEIIIXkjdIzkyy+/jDlz5uCAAw7A+eefj02bNuWjX/GQSG8edSQhhBBCSOyEskieeOKJuO6667BkyRJs374dl19+OU499VQ899xzaG1tdVxmbGwMY2Njme/9/f259TgUTLYhhBBCCMkXoYTk6aefnvl76dKlOPHEE7Fw4ULceOON+MhHPuK4zKpVq3D55Zfn1suoZHQkhSQhhBBCSNzkVP6no6MDhxxyCF555RXXeS677DL09fVl/m3evDmXVYYj49ougpDs38tkHkIIIYRUNDkJycHBQbz66quYPXu26zwNDQ1oa2uz/CscRUq2mZoE+vZKeaEUx/kmhBBCSGUSSkj+67/+K1avXo0NGzbgoYcewrvf/W7U1NTgvPPOy1f/csOr/E8+sQhXutUJIYQQUpmEipHcsmULzjvvPOzduxczZszAKaecgkceeQQzZszIV/9yJOE/CyGEEEIIiUQoIXnDDTfkqx/5IWOQpHuZEEIIISRuKnysbdaRJIQQQgjJF5UtJIuVbEMIIYQQUgVUtpBMqs2jkCSEEEIIiZvKFpIsSE4IIYQQkjcqW0iWgmubGpYQQgghFUplC8lEkTYvwbJDhBBCCKl8KlxIpj9Z/ocQQgghJHYqXEiWwubRt00IIYSQyqQUlFb+YbINIYQQQkjsVLaQzBQkp5AkhBBCCImbCheSmSDJonaDEEIIIaQSqQ4hWWiLJC2ghBBCCKkCqkRIFrEPFJWEEEIIqVAqW0iCrm1CCCGEkHxR2UJSLwxOyyAhhBBCSKxUtpBMUkgSQgghhOSLyhaSoJAkhBBCCMkXlS0kLWNeF0tIUsASQgghpDKpHiFJiyQhhBBCSKxUuJCsMf8ulpCkfiWEEEJIhVLZQlInFyE5OgRMjIVZWfR1EUIIIYSUCZUtJC2u7VS0NibGgN1bgR0b4+kTIYQQQkiFUD1CMioT47m3QQghhBBSgVSPkIzq2o4iRg3XL4QQQgghFUOFC0lt86K6tgkhhBBCiCMVLiRzWDY1FUMjoEGSEEIIIRVLbbE7kFd0t3QqhEVysBfYvwvo7AFq683phhFP3CUhhBBCSAVQ4RbJiCPb9O+Tz/27Yu0OIYQQQkglUdlCUt+8MC7m+kZtOc2SGSlhh75tQgghhFQmlS0ko9aRTLrtFopCQgghhBBF9QjJ6I2YfwbWkRSchBBCCKl8KltIAsgIwTDJNq5QIBJCCCGEKCpfSGaskjGIwCgxktSehBBCCKlQqkBIpj8jC7pclaBt+cE+YNdmrU4lIYQQQkh5UgVCMr2JcYxsE9Qi6TXb/p3A2IhZYogQQgghpEypfCGZIYRl0XXWGP3UHLKREEIIIWVOFQjJtG87Ug1IG4x3JIQQQgjJUPlCMpGjkLQsRyVJCCGEEKKobCGZSEQUki7zcmQbQgghhJAMlS0kgdwtkpEwHP8khBBCCKkkKl9IZihSHUlCCCGEkAql8oVkzhZJxkgSQgghhDhR+UIy16xt6khCCCGEEEcqX0jGOUQilSQhhBBCSIbqEZKpGAqSM2ubEEIIISRD5QtJRaiRZOjPJoQQQgjxo8KFZEIbazuOGMkIY21ThxJCCCGkQqlwIYlMrk08pXuCtkH1SAghhJDKp/KFJGJMtqE+JIQQQgjJUPlCsuh1JKk+CSGEEFKZ5CQkv/Od7yCRSOAzn/lMTN2JmYT2dxyubY5sQwghhBCSIbKQfPzxx3HNNddg6dKlcfYnflSyTSjLIMfKJoQQQgjxI5KQHBwcxPnnn4+f/OQn6OzsjLtP8aKskmHqSFrQRSVVJSGEEEKIIpKQvPjii3HGGWdgxYoVcfcnD2SUZPBFXPViBCFJ7UkIIYSQCqU27AI33HADnnzySTz++OOB5h8bG8PY2Fjme39/f9hV5kbOyTYakZqgkiSEEEJIZRLKIrl582Z8+tOfxv/+7/+isbEx0DKrVq1Ce3t75t/8+fMjdTQaCWQskpFd24QQQgghxIlQQnLNmjXYtWsXjjnmGNTW1qK2tharV6/GFVdcgdraWkxNTWUtc9lll6Gvry/zb/PmzbF1PhCJhP88gaEYJYQQQghRhHJtn3baaXj22Wct0y688EIceuih+MIXvoCampqsZRoaGtDQ0JBbL3MhU4884ljbvbsjrJSCkxBCCCGVTygh2draiiOOOMIybdq0aZg+fXrW9NIhxhjJoFBHEkIIIaQK4Mg2eYeqkhBCCCGVSeisbTv33XdfDN3II4kIY227zcoREgkhhBBCMlS+RTKSa5vqjxBCCCHEj8oWklr1n3DJNm5QYBJCCCGEKCpbSAIoSrINIYQQQkgVUPlCMkqyDTUnIYQQQogvFS4kE9GSbWJVklSlhBBCCKlMKlxIQrNIFnKlFI+EEEIIqXwqX0gq4ki2iRJnWUxNaRjA2EhMiUaEEEIIIVaqQEhGiZGsEIviwH5g12Zgz7Zi94QQQgghFUjlC8mij2xTRAZ75XN0uKjdIIQQQkhlQiGZDwzXL4QQQgghFUP1CElCCCGEEBIrlS8kMzGSUyGWiXOwbTfKXOBOjAOpMPuUEEIIIZVGZQvJREIbIjHEcsXwRk9NSXLM1GQRVh6SiXFgxwZg62vF7gkhhBBCikhlC0kApkUyjvI/EWYMusy+7UDv7vLIsM4k7zD+kxBCCKlmKl9IFqUguU7AFStxNj6av64QQgghhMRI9QjJkvdtE0IIIYSUF5UvJON0bRNCCCGEkAyVLyR113bQWpKus9FSCaDsE84JIYQQEg9VICTTn6EskhSMhBBCCCF+VL6QjDLWNiGEEEII8aXyhWScQyRGaYIClhBCCCEVSuULyWJYJKkdCSGEEFIFVL6QjFL+h1ZEQgghhBBfqkdIxiIOg7ZBIUoIIYSQyqeKhCTrSBJCCCGExEltsTuQd5JprZwqQPmfiTFg/y5gbCT3tgghhBBCSpzKF5KJGvlMTSHvom7HxuxpfXuB+iagsZmxl4QQQgipKCrftZ2xSE4FXyZuvbd7S8wNEkIIIYQUn+oRklMhhKQbtCim4RiJhBBCCKkKIZl2bY8MhRCTFIyEEEIIIX5UvpBMpDdxdAjYu724fSGEEEIIqSAqX0jqMZLjo8XtCyGEEEJIBVEFQjLt2g4T35g3z3ahXeZ00RNCCCEkf1SBkIyQte0qwEpUmBmGuO379ha7J4QQQgipIipfSCaiFCTPE/nSoeOjwPAA0F8EIclMdkIIIaRqqXwhmXFtxyAkS1UzVfLwj6kU0L8PmBwvdk8IIYQQYqMKhGQU13YEaJnLD727gb49zqMGEUIIIaSoVIGQVEMkVrDVzo1K0LZjw/JJoU4IIYSUHFUgJGOMkTRSwOSE24/h2hrsBQb7cu1RpFXnjGVgGwo8QgghpFqpHiFpuLi2DQN44E/A8w/7tzU2Amxf7xyvF0hP2Wbav7NwljbDkKQcWvYIIYQQEhO1xe5A3vFzbe/YCDx2h/x9+PJgbY4OAy31ufcNgIjLAoxdvX8nMNQPtHUB7d3xtVug7hNCCCGk9KgCi6SPkNRHu9n4IjCRtjaOjYhgdMLRqhfR0lcoA+FQv3z27yvQCgkhhBBS6VS+kEz4ZG3XaEbZ318B/PYHEgt51b/KP9eYyFCdcP+pLF3NhTRB0txJCCGElCqVLyT9km3sOmXHBmCg1xR4g73A1CSwfYPZhpP489KDNTUe85SjkNQJ2f+hvuIUTieEEEJI7FSPkHRLtplymL71Ve33SeCe3wDXfxd44s50WyFd24l8WyTLSIzu2ylDOY6PFbsnhBBCCMmRyheSCZ8YyanJ7GkDmsVsbBh49kH5++G/pCfGKdzKSATGSb4LxBNCCCEk71S+kMxYJN2EpEMMZP9+8+8b/tP8W8VbOrq2gwjCkC7xKBQ65rJKdTAhhBBCqklIulokHSxjAy6ZzRlRmnu3MjgJv9FhYM/WmBJ97DB5pSgYhsSHTtClTwghpHKoAiEZwbWtWySd2gqrJD1nd/hx9xZgZEhqP8ZN7DqSJslAjAxKfCjHDCeEEFJBVIGQ9Cn/4xgj6WKRVEkzoetIevzm5YqedOgbKU/GRv3nIYQQQsqMUELy6quvxtKlS9HW1oa2tjYsX74ct912W776Fg9RLJLjLg/9jFsyYKxjxoLpRUQBWlSiFl8v1e0pBCG2ff8uYN+O/HWFEEIIiYlQQnLevHn4zne+gzVr1uCJJ57AW97yFpx11ll4/vnn89W/3FFibufG7JFqhvqtpX78mJwQMRlUEHmV/VFUs7Yi2RiG1C4d6s9TjCwhhBASH6GE5Lve9S684x3vwMEHH4xDDjkE3/rWt9DS0oJHHnkkX/3LnaS2iXf80vrbT78CrHsiXHvDgy4/BFCETtZPL1EaSWQaLn/HiGUVtnXs3wns3Fzl1seY4D4khBBS4tT6z+LM1NQUfvvb32JoaAjLly93nW9sbAxjY2aman9/f9RVRkMXkq/+3fqbk7DzY2Qg/Mg2hiGj5fTucvrRa8FgfXJzxRdDhwz2yefYMNA4zX0+Jo+7QPFICCGkfAidbPPss8+ipaUFDQ0NuOiii3DTTTfhsMMOc51/1apVaG9vz/ybP39+Th0OTcIlTjGItWfJsdnTRoaiubYdRWTAfngxOgz0a8lBvs0VSMFRD0XDcP1CCCGElByhheSSJUvw9NNP49FHH8XHP/5xXHDBBVi7dq3r/Jdddhn6+voy/zZv3pxTh0OjWyT15Jcg8Wft3dnTtq+H8wM+6kM/R7EwMpS/tmOn1PpTSKp52wkhhFQqoV3b9fX1OOiggwAAxx57LB5//HH88Ic/xDXXXOM4f0NDAxoaGnLrZS7oQrJG29yx4ex5AWBauxSOBoCOnuzfH7kV6JoJvPX8ACvPMdmmZGPkIsZhlurmFIIo217N+4sQQkhZkHMdyVQqZYmBLDl013Ztnfn32Ijz/G1d5t8dDhZJAHjsjuxpnqIvYh3JXHFqu2RiE0umI4QQQgiJSCiL5GWXXYbTTz8dCxYswMDAAH7961/jvvvuwx13OAirUkF3Z+sWSXspIEVrZ9p9DWBam/M8QcuyBNJKAYSkYUhikC6Ec2kvTmg1i5kCZN0TQgghMRFKSO7atQsf+tCHsH37drS3t2Pp0qW444478Na3vjVf/csdPeGlRrdIeghJRX2T+fe8g8WKqYYvDLZy+Yjsvk7/tm8HMDwATJ8NNLc6zxOq3RgZHpB9rFtyXSmSMBruB8bHJOY1SG3PamF8VM7plg7uF0IIIZEIJSR/9rOf5asf+WNKsx7WBrBI1tabfzdoQrKxGXjnPwM//oKI0NSU1doZVbgFqSM5PCCf/fschGQR0Lvcv1c+m1qAunrH2XMiDn2zNz1KTEOT9LMoBDw/Cqm1d26Sz0QSaGkv4Io9mJwQzwGFLSGElAWVP9Z2vZboo4s2t9qLTVrtw9o64OCj5e9jTgMams3fRgbNNqdcxvE2Vxy4u+FxeeAaLkNC5i020b6NJeiWdRtvvVQp1C6cKJEY59FhCSvZvaXYPSGEEBKQyAXJy4auWcDrTgBeeMwa2zg5bp3v5DPFrT3/EOC+35nxlGd8RFyjLR3yvb5RROjwgGR4790mru726dnrDjREYsxjbatF3MYWj4Wo1td4exGecrByVXGMpKqW4JYIRwghpOSofCEJAMetyBaS+qg2Z10EHLjU/H7hN8SVDUj5ICUiARmtRQlJwIyXHNjvvO59O0Vk1rjt6nwNY5hPIem0vsKuruzg/gmHuq6aPEZHIoQQUnQq37UNmNnOerzkZFpILnujVUQCQGePeyydEphKSHrx2nPAdZcDt3jElsY+1naaVBGUi2+caI59Ktm6mvkivb1jo8C214ChAg8vWiicjuuerfIvr5Z1QgghuVJdQtLJIlkb0iirxo+2C0knjfPIrfJpH+PbslzMrm21TFwWyVQq2pjk+WDbq6UTzxeaHMIU9m6TY7BvR6w9Kgn696aP67jz74W2rBNCCAlFdQhJVfZnatK0cChx5OpydkFZJINYh+xxmIGIKY7P7QEctvltr8k/39qZYYVSBGGVSgH7XcYsrxScXiwq2RLbt1eOa9/uYveEEEJIBKogRjJhLeS9dzuw/TUzazu0kFQWSbuQdHjY2y2gTuvKl0hwdQmGVJJKkI6PBCyIHrTd+JqqXAzbJ6QEVF19EcsY5QkD5ZELRQghxEIVCElYa0PeeyOw5WXze1SLZJAYST37dKjfpWh3uSTbBHnK+2xLJVvW8oHT7urbI5/zDyloVwghhBAnqsO1nUyaxcN1EQnkYJH0iZEcHTYf+gAw2Ofcnl1cxWWVyWeSgqP7FdZ9sGdbgPqaMWKkKlCoVtr2kEAYBmNDCSFlQ3UIScB0yzbbxs+OS0jaH/q7Nlu/D/VmtzU1Gb/4MWJOtgm+4uxJ/fsKs+qJcWDLK8D+ndm/lYq4zCFvqmr0ZLVspx/7d8r57JaARAghJUT1CckpW9JIZNe2T7LNjo3W73aL5GN/BX70WeDp1eHWH5RSEFC5itnB3mAP04G0YC3p8jhBj0cVFyQngjqP3WrTEkJICVF9QnJ8zHl6UFwtkjZ22oTkkCYkhweAB/4oQ/Y9cVe49QelKDGSYfARSeNjMWVol5kYK7PuxkfVbjghhJQ1lS8klf5RJYDsAiusRVKNtDGw39vqp4TkwtfJp7JI7t4C3Plrc77dW/IzJFwcz2V9+wLpSJfxtqcm09sYolOpmGpXlrM+MTx826VgcSaEEFL1VEfWNuBueQwrJNvSY2qPDrtbJcdHzfjAxUcAG18wYyR/+W3rvKkpYPv68P3wxU1oFLDGiurCtvXypbMn+zdXWAum+qA4JoSQcqPyLZKKuIRkXT0wLZ2w4zbSSMZ9ngCmz5I/3bK2AWDXFu1LXAXJXaaHat6tkaAWMptFTY2fnAuhtUapiJNcsm2cfiqV7SKEEFLNVJGQrHeeHsUS2N4tn3u3Z/822Ae88rT8XVcPtHSY0+00NMnn7s3Zv0UmxlTfvA5WE7V/IZfTZx8ZArZvMIvRlySG45+e81UCFbY5hBBSLVSBkEyb4NzG1K6JMFpLRkg6WCR/tQq45zfyd109MK1d/h4bBq7+vHXeg46ST3upoJJEM2UGTkAuMXUwMiDDVu7ZVvh1R9oVXhbJqB0hhJAyZGJMqqGMDBa7J8RGFQjJNG4WSTeB6UVHWkjuc7BI6mWBauvF6qjc6vYLYPER8ukkSKMSa+3BAoyfnStjIxKv6opDn/JZrD1XvCIE/CeWMZW2PYSQWNmzXcRkMQwBxJMqEpIxxUgCQJuLa9tugaurBxIJYFqH83pV8okqpD0VU6aydCbeJnxjKwMroPgwDLHmxrrfSghmbVfPdhJCvEkVcKQ0EorqEZJuLuxcXNv2NyN77J2ygk44xOR95Jvm2NvDA8DaR4H/uhR44VHrfKMxJKhEJseHeNbiIdqLVG7IaZYiCFxHohQkJ4QQQkqb6hGSbhbJKPUKlZDs3W11kw7ZEmrq0kJy9uLsNlraxe3dkB4p5/ZfiGXt1mut8+3eGr5/gIclJ0Tatt5G/z4t69plrO1gE7PbdoTlfzz3ES11hBBCSoDqFZINzUBHD9A+I3xbrR1AskaEnz6Gtj0zWwnJU84Cjl3h3Fb79PDrLwZjI8AeH1FbaHETaHUF6NPUFDA54T9frFBIEkKqiASNC6VK9QrJD3wRuOCrQE1N+LaSSTO+sW+vOX3QNjaucm1Pnw288R+AuobstuYcGH79nhiSmRzLEIlhxEpQK2WBKUQftr0qReWnPGJ44u5HKexbQgghVU/1CslkbTQRCchDfPps+fulJ4En7xHh1rvHOl+dLVNcFTLXWXiowwpyePMaG5VaiW7DLoZpOmexYnh+zZ0SU1MTY/7z+KFbdT0tvCG23TBK3xVe4t0jhBDiTOUPkaiEU5aQzFFDK4vk06vT7dVIzKSOveTQzIXZ88xalFs/7Ojlh3LG5eleiLyR2IRPOSuUGGIkVWZ7Mgl0zy1h91CIUZQIIYSUDJUvJJWStLuVkxGtkQAAA5h9gHXS1lfM8bUzs9kegm9+LzA+Ahx5ijltWpsk7/Rp1szUVHShG2eNxLgtkrEQdOSXPHbBDU+NViRBNDVhVhMwjPiFpGEAvbuk+oGqQkAIIbFTqi/BpHpc22o4QkWuFsmTTrd+HxkC+vfapg3AcvI3twLvvhg4aJl1vtmLHJaLiF285iQcwlqJ/MSS4fK3jd49wO4t7r8HXZ+b1S5OTWdZR9wiLeh6A7aRj/vw+KgkmfXt8Z83CvbNNAxgYL9PEXpCCCGFonqEZH2j9XsuFkkj3d6F3zCn7dos9SB1hvqDPbxPOdv6/ZkHcuib/clr70BC5unfl93fXDAM54e+6/webQ3sc/8tqAhMpYAdG5xHHyob4oiRDGnBDUssSV0hGB2S8JBALxokZybHgYnxYveCEBokSxgKyUikn8idPcAl35e/R4eyhVPQ5IslxwL/cAmw5Dj5vmmd9/xjI8C+nS5ZwrYH+9RkduLN+KhYkOwj89gp9QQNL0YGpSSP40MwvV2jw/ICkNODMo/p2DHl2jgvX6bHttJETaoYpaMCYhiSuLdjQ2kPK0oIKSpVLCRz3XTDbFePDWtoAk57nyT3nP5PwdtadBiw7FT5OrAPuPka4LbrnB8yuzZL8fO+3dm/2QXCLT8BfvJlcQcqCjakYAGGSMyF3VtEZPsJas8+5HO+GJRk4PaKTdDtqTBBszVdOqoUxaR+fXF4OkKIC1WQbJOmQROSiWTuSQf6c69rlplo09QKLHsDcOTJIjCHBuD7kFQ37Gnt8tm/z2yvew5w/Nucl5ucAOpsllX95j85Abzyd/n7hceBE1zace9YyPnjXbxg5CSsizT0YWARXSYHwbWb9hJSZbI9YRkfcR99ixAC+rZLlyqySGrJNnEX61Y1JQFJqAHSrvOAJ35GSDrUmdzlEQuWSMDzQbtvh/n3yIBY3sI8iEM/s7OCJONsPCQVIDiCHCsjJVbVQPPm3qWiQxcrIYSUFNUjJJ1GlckF/cHdNcv8u7klelv1jdkueN0lnYWPUNXH6V5zN/CLbwJP3BWmYyEmu83rEfM3NSmW18gWwYjJPHFSLHGm9uveHRLqYC895d+A+adTfG8+GBsGBnpzW1c5WSTLoRA8yQ+GIbHofPEpPrwG804VCMm02Mo5JtKD6ZqQbLXV0gtilNRP9JYO62/bXgV+/V3nLFU/97w+DrjinhsCdEj1K8QPhsPkyQlg22vOyxkA9myTpJ8924L3KVD/IjI5LiWcwsSDjcVdhiZgiST128igfLpluhsu7emTJye8M+W9CHMMdm2RmpOupXtczivL9zJ5MBsGsGOjJKqU7YOsXPtdAgwPADs3yUseiYconu2JcXmG2kvzkVipAiGZJywWSc21vfRU24weZ38ivfv1h2NrZ/Z8OzYAv/w28Orfbcs7uLZ1xkbdf1PENQyfG16iTBXKHg/Qz9CE6Ls6RDs3ydjp+3cFW25q0paoE3ccZIjfcl31UJwjIvkwmUPmddkIyZRs5+REMIs7NVtlMdQnn1GGTU1NSW1WJjjlTu8usQr3UUjmk8pPtslXfK4uwBqbpXwPAPTMdSnL40AikbbkaW21TXeff/UfgJPPtC7vhdt423mj0E/DuNaX3o/KDRXUymgXCHEXEI9DSbquNw/HKh8j5zitgxQG7urisGe73INGBoEZc4vdm+Aod35dQ548gBHuLTyHC0J1WSTto9vkhO0MXXSY/AtzsiuLpP7meeJK6eeS44B3/nP2Mvq8Soi64SYkLXGLXnGG+bwKY2g7X8bUvOcBxbHtEbK2PZcpYEakYz8Cbk+sQ4CmgMHe/JTeKZuyS6TkUC+yo0PF7YedqUnvOq5DfeLKL6nBAnjtFYLKt0jqNLXGZ6VzeyiHscgkE8AUrA/HtunAx1YBNbXyVrf8DODhv8hv47aah4mkt6vPbVstMWpxXWillt1SiP7Yj3Uc6yyge7ws8KhKMDUp1puWdueKB3707ZVktmQNMPfA3LqZhUeSWdlQth0n+UDFu885QJ5PdpQ7Py+hShHhKVwQqssiqUrzxIGrdSfh+dX6m4NFEgDq6k3XQEOzOb1vL/DUfdryPjGS4y5CclDLBI/kjg2QFOFHLDF5JXaXiLs7cbjKQ2XeR6HAx0B/cerdLee4XuYqDGqI0HzEogW1+uuMDRchHCUoJXatkXjxs/Tr53BZjS7F87YQVJmQjFCaJywJ+xevZBtbbJ4TRywH5h5kft/8ktvKslEPpVPONodfBKQES4YYLzTfprQZiv3WGjShpqjE4Lt3y9q2L1/QWr+5vIhoM+YqAAuVzBAkQSiVkqz2Us3y5fO4cunfB2x9xawA4YR+H8l3HLQbUdbLmOqCUF1CMor7y40gFkm/897NIqlT3wiceynw1vPl+2Cftf0gMZILlgBnfNgUpLpF0hOnB74RrixQiJ9Dk4vFbrA3zp6olUb8LeZVFagLkVdQKvf2fD5kXAW8yzylmKHLh3B10LdHPvftdJ9HfxlyE3Q8XaqW6hKSJ71D6jSesDL3tuKIkQxikVSo+pJhBJASkirJSAlpvci5Z7JN8FUV5y5SgXeuuB/ehRQD+VhV3GWOfNdnAL17PGpdRmwzKgP75QGfb9FbikKWlA7lWli9UPe/Kn/pqq5km2ntwEe/FZNpPuiJE6COZJByM05C0vDox+SEWcOsMR1n2dyW3UZRhzGMQEl1yZ4IEnDW1JQcg+ZW/xGXYi3fUyJZ2479cLN0F/iAD/VJcfaBfcD8Q6K3EyVG0on+vfIQb+2U2Ol8sHOT3CtmL/YY77ukLjxSaHSLZFmJpgL0df8uCQuYuRCoqcn/+kqQKrBI2pNfYnpgxmmRDEJLu3yODgUrV6JGKqlrABqnyd/KIqkXZy0zHZkfbMchNRUx6SG9w/ze3nt3S1zSjo3e840M2kYGitKlAG7VfGEY4jaLffSfmElqN//YSgEFEZIBjkFm2TweL/XCqZKPCLFTEhbJEq0jOdgrFSScRpKrEqpASOaLgELSM2s7xIXROM20XmWyVD2uEiUWO7rN9fTMl8/1zwd8QLlYjnT2bAM2vehtHc0X+RyVJ0jSg9P6B3slcN0rBCFMopGby7F/X0D3ayHL0NhWMNgr/dxlqysXl4iNa3vyUTzZEiKZQ+Z8AXSk/8qLtf6QjI8C+3fTTZ8PSsEiGckGFKGvkbevSElIJUAVCMk8nfSuzUYoSB5o3oQkzQDAcw8Bax+Vt0S3fqgA6s6Z5rR5B4vrqn+vKUbD7h67YPyf/wP87goRlGGytvNNsR68Khs8Kys8D1mP9sK/TjfAYgqAvJcJiWnj8pKFGpNru5hKMh+rHOzL33CcOzdJImHvnvy0X+mkUlKn2KkQeklYJCMQ9tobHwW2vMwhFUNSBUIyT7i6tkO0EfYBtvgI+Xx6NXD7L9I1JdP92PKKWax8YL/5d0ePuXxdvWmV3LM1PdEr2cbnItSFwq5NATbAA8OQsYlje9sN0U5kHREiRjLwCuMQHW7TysGsVCAs51mxhGSI41H0uLQY1j81CezfKS+x+dyeKONbEwCGhDfs3urwU8o6X6WiDAD9FJJhoJCMjNvFZH8oBagjGRT76BsbnpfP/n3Ajd8HfvFNuQn87KsiNgGgs8e6zPTZ8rnmHnHf5nJP0N23udaF3LsN2L4hZJxWEW9oKrs3Cl7HPXYdaZs4MZ52/eVh3wVtMkDERP7J8woN1y9RGyl/ytWqRazHrpRPy/FRYFivh1nAzharvmYJQCEZlUDJNj4nVtgTr2smUKNlVaqyPr27zWmP3ma96O1CsmuWfO7YAPxqlVgB3QhTi7F/n/e8gPc1PZJ2p+iliXJpL98MDziI54AdytsNx8+CPCbHfdtr2bMW9CYY5sDlYDEP2myxXNt+YjMWMZoL+VxnKauRGKi0zSsJi2SA63TnJjFKqHtz6NCtSjtwhYFCMipBT7ggQyQGJZEElp9ufh/sBWBYL3L7cHFdM63fZ8yxfn/qHvf1OY7IYZgXp14cfWAf/K/aOC7SgK7afN9Aphyye6O4tuO8cflZJEeG41+nbwdyXDZv9/V8WyR1IelmiQtxvRT7+RbL+gu0EbFeU4Z4efZsLT+RkUrFV4XAKKFzMQgZA0mJd9Ywyu+8ciCUklm1ahWOP/54tLa2oqenB2effTbWrVuXr76VJ/kq/6M44e3AmR+Tv/v3y3WiZ+/u2Wadv8MmJOcfav3+l2vd3dJ+2Y/6CDl9mpt3cgL466+AW68tYkmRkBdn6Is55LFztYDFeRMJEyMZ03ojNZNeqJg30LzHSLqtK8Q8QUbHyRWv8Iw4LKJjI873l7DNFcstnpqS5JORIY8XghJl22vA9vUxlrRSFOm6dbpMJ8e9y4uFvscUcNvUS8ruLWUvJkMJydWrV+Piiy/GI488gjvvvBMTExN429vehqEhhyyvSkcd+CwxaB8iMcYYScW0dvlUrmW3C6ljBtDUbJ1WUwuc80lzuMTRoWzxmZqS7XO6eRuZ/6yu7Y0vAlNp4fnCY5JZ/uLj8ndm2QJcLLqbPxRxW0s9ftMPe9Y+jnkf5d09GrDNvFg0cnFt51mkhS1IXghjflabhllvNi708zk1JXHYOzfBe2hVH0aHpaRW4Gs7ZotkuaKEbxyjNAXaDUXYV9s3SHmx8ZgSrHLahLDGBUOe3WMjkohWxoQa2eb222+3fL/uuuvQ09ODNWvW4A1veEOsHYuNvHnxNCFpuIgEP6LWr9OFpGFkl2s455MyT0Ojc4cOXw4sfB3w6+9KzNyercCcA+S38VG58Te1elsk1duUYmQQuOkq4A3vtorH/n3yMNn2GnDMmwNsnMMB27EB2LMdOPwk31kxsF8EdFhif2AETKixWzliP19dBFwsutkowg0wBkGaSjm/fI2PhYvRDUqgovBFskh6EnKd/fvEM9E9B2hqsd4/svZBiLaVgIx6bReFUhKgMb8kF01c20KCdEPMxChQ3+A8byhy8GSFXmUpnSO5kdMQiX19EiPX1dXlOs/Y2BjGxsy3hf7+PNUQcyVPB8tQN8kQWdp2wsZIKtQINakpcS8/cLP524HLRCRm1uHRn44ZItJ2axZJlTQzMuA8fN/UhNSBu/0XUm8LkDjMfTuBtY9I2QQ1HQCeulf+AcC0VuDgYwJvJgCxlv76u/L35Dhw7Gnajx7HNtTNLhHPzTGot1RfV5wuu0K7R3ds9E7WciWmfkR12e3e4uxutccXR2FiXPoVdr87nn9lFpemwlv27QTmtsTX57Cem7wZD3JdPiUvxE3TzCFvy5ISPBnj6lIJblo5EDnZJpVK4TOf+QxOPvlkHHHEEa7zrVq1Cu3t7Zl/8+fPj7rK0kIlmtjFYNQYyebW4MvV1JrDHj58qzm9vRs448M+C2vBvertfqfLUH1OIqd3t4g73er4lvfJ58gg8PJT7qveEaDWpP1C3rDW/Pue31jXGytxu7a9LJKl8HYfw3rtIjKneKSgLnL974gi3LVUVQz7RFn49XVMBRlppQgWyTDHK+7zNK+nvdb42EiOhfFjPAaDfeI9yhqsoAwouWQbn05MTkQc4SgHiyRHtgnPxRdfjOeeew433HCD53yXXXYZ+vr6Mv82bw4w9Fw5keWeto/b7PGw00Vo2Ldu5d7Wk1wOWiYj1/iSPvlnLZTP9c+5zOZwIaZSYq3U6Zxp9seLKAPa212QD90Svo0g+FrzbPgdL0+LpNdwY7ncpX22wVMM5Psm6PMgcu1anPvHZx25ND3YZ41FswhJN8tpmH0S83b37ZW4Q/cV+ovHyQnxYAR+YMccu9i/T4SiG5PjElazY0O0daRSEoMXFxUzdGMJKEm/LvTtkXCq2BvOdf7KJJKQvOSSS3DLLbfg3nvvxbx58zznbWhoQFtbm+VfWVAT0OtvF0f257GX1UQXI2GFZEtauO3R4hSdYhDt7Rowz/25B4mY3bNNRpywo4vgzS9Jhqdh2Cw6CXFZB4ldGh4E7vsd8Merg99U7YHi+vBqcY61nYl5TWZPC9uGNOTxW54skjs3A0N9tokB2y+gjoxFuMVJrv0YH5Xrxz5kpcItjtRXKMZkBZoYl+oJ+rkWx8gduzbLA3uf7d4R6FzKcacP98u6dzkYJiYnJMs61yE67S/Mg70SPx7IwlwGGKkQQwGWgEUy7D0qyr01Fx0Zun8h5y9hQglJwzBwySWX4KabbsI999yDxYsX56tf8ZHvQstJu5XNtr6Obo9l9d0f0SKp3CTHvRVodY9VtZI+gxuagNnpY/jsQ+mfHM7uXZuB3/4A+PnX5C1fZci1dQEf/obsg9mLspf74JetsUCDvcCT9wCvPQs89ldgoNe/q3aLw9hwsBtE6BtCeoFkDkJSJ2iMZJx3k9RU9kPdsqoYHgaGIS8ekbPjw67P53sp4BermUr5x8LmM751x4b0GMo+2bthV6EE8qj9mlQnv63/cR47/WV27/Zs0bhnawzrs13E/ftkvVFFeKlFsfTvD74tQazjed++fJVN0ymkRbIUb2bRCCUkL774YvzqV7/Cr3/9a7S2tmLHjh3YsWMHRkY83AvFJkvoxU3Cw0WdAOqbPBbVd3/Ik6rdJlCbW8ItrzjkaPl87iH3eTZptUJ1i2TPAtMSecrZ1mXO/yIwYy7wnk+Z0/Rkhof+DPz+CoeV2faD08Mv7tqUhv6gTyBzw8qpblzEGMnY7y1uDUZc0fioxMLmkt2c0zbm8+YbsW3Hl1VbW45WSb/1xWwFymkYU48OGCmpV+i7SIz7N6W1NTzgYg3O07kSOUGuxIRDOY9J7nRuRXnxt1+XUQ0QUZatIEIJyauvvhp9fX1405vehNmzZ2f+/eY3v8lX/3In30IykfAu4+M5so1eziDkeucfbP3ulqyTdRO2XXDzD5HPzevcb5D6DWd0yPyul1uw74OZC+Sza5aISiDbihUkS9bpZrdXZZnn4Nre+KK4dVTBXhUikIC5z3JKHnHY75k/vVzbMd+N8hln570yj98Mh2l+y5cZWZvmVpNV/Z1Hi2RkQjwkw5aByjWkw74/y7wOXyAmxs2hZENhE907NqbDlMII4jyF40Qmhj4M7Jc4Sot7nxbGKIQq/2OUxAkUkqi1Gu00t0oii31M6ZoaWUemGpBHOaDGZom9HIqhBNJsW1hBQ7PzfI5ox7FrtmzX6HBa2NktZClrluFgr+narmu0zltTJ4kF9n3ulYgzNmKOGe74u4NFcs92YMGh7tft/l3eb9trH5XyRYrl7wSWv8P8nkC6ba/z3eENIaCOLOxNuYBvzHlpvxD7qhTuaz5Cssg6Mpa2Yh26MIgIynF9cUdF5br5KmmoZ773PdOLvdvl088aaa/TWIkow0b/XqB9erQ2cjmngy471C/Hq727ZI9J5Y+1HZdFMpGQA1ljy4pO1nhnX+vfa2qBZrdkI9tJ5XfC1NQCF3xVBOX02eZINdkd915VTQ0wa5H8/dKT2a7km66WEWoU+3eZLrJ6W53J93xKLJBnf8I6vbnVvWamW+khhXoDf8eFwEFHyd+ZAHuXC1EXu06oupaKh2/Rkn8SwPi4v/vc93oO6NqOWyFkJVe5rcu+3nzcoNyEkNM2l4KYyyOR6kRGOE/GR+MZycSzL34U4GGXjzjpLEpNSabJKUQhKHaDQolZJP2up8DLRJjHbZ35CtnZt0Osp15DQRaZKhWSEW4QKZcDXVPrY/W0rauxWcSWcv0qspoP0Mfps4Hz/k0EZaOLRdJJWNhHwjnyFPn82x+z593wvHXaLT81hVi9zSI590Dgn74GLDrMOj2ZNIuoAyJ6u+fK37+7Anh6tXPf+/ZKPB4AzDkQWJQutP7CoyJo7dsRFCeLsLI0794MXPNF4GdfA4bCxmJqB3FyXNxHmYd6UNd2rgQdUSfm1YYhH57trFjTlJw7QeLZ3PoTmDgEh5NFUv87YOd2bpJ4wVzHV1ZJVVHI7A77CRfjSVessberBc9DFfE49u8D9nsk6U1OiMXUq6RTXN3KNaPfcZ25WCcDzFPC5aMqX0g61S6Mct9vbHJe1ssimbB9Vw+DaW3ZIqzWFmUQlwk7SDPHvEk+d260PoD83nydRr5xQ79w6xuBtk7z+z2/MV1V6oJKTQE3XSmfMxcArR3AgUsBJCT5Z/tr4eOFJsaAx263jhGuUO77J+6SN7+JMWtppSgM7HMvCaPI99t90ePs4lx3iDb27xIhFGq0Gpf2Uym5FtyOleM1Zpt399bssjGhYiRDEilmUFvf6FDIGLpwzeds4fTtWyY+pYQI0B83EaWfC+Oj/kIo5/tKHuKX+/bISGxubvX9O8UT5FTSyQ8D8hIVlKi1RR1XXKhlS9OtDVSDkLQLNiC8SJs+2z3OL1lj1nRMJsOPdDNjrpTIsQ+ZFYeQTGgZyF60dIr72TCsD95hzXI3fQ7wpvdal7OLXy8WHmr+vWMDMMM2wlHGKpm+uPbukL7UNQDv/azs12ntYvUEgFf+HnzdiodusQ4nqXPTlXKD1kfS0WsyqhEpvG7QEx5WoKD3DL8HgJGyFqH3bzBYH2K5RwXeSJf5/bY9RFeU1VlZtHNh9xZ5SIWpFuBkIe23Hzc/kR/yJSDWGMQY2vJKJMtZ5/iEAsWhI+OORwvSHzcRpW/v8ECMQsgFr2oSkeozasu4efd0cexoxPC4HqYmAgzXmocXi5xiJH1+Hx+LZ9jWAlD5QrKmNjsxJexTs7lVu6nYlk0mZbjCWYukHI4XTidd4zSgs8c7SScyiWA3w0QCmLlQ/t78EvC7H0o5IN0F/N5PS8Hzt19gThsN4YI4+V3m38eeZo6qo3jxCet3JeI6ZgCtmvXyoGVmP8OyV7soDzoKePuHgKWnmtNW/95a1mZQE5K7t4olU1kznW4C9gLGFlzuGmGtPg/+WdzuLzzu/Lvn4Y7BOul14wxaWzJCeJN/mwEbiBJbpR5qWcXeFU4WM4c2dYukYZiJD25dKHSyjZfFMOzY9fkmbmtpuJUXYZU5bG8sLxgh28h1nU7WxaxICV2chghhyRc5bbPDsjs3xpOYWwBCZW2XLbV1sLyixvWmmUyaI+DU1cunxWwfUMg5EZOODNSQYYilb/1zIqYAcR8fe5r8PfdAs7zQYSeKe+L5R4HDTgjel86ZwGd+JO3OPUhujG1dwNiouJK3r5eknsNOlPnVBWS31HbPkc8oBbGVCDz2NOD17xRr5/xDgGf+JtOffdB5fp2MGIjprhS2mcfukM/Vvwded7zDDF7JNnHg0d7osFgV1LXg2o8QfYrbNV+ILMsg86ambO5nv7aDrDtGd2bsp40R/Vg6lum0L283QZapa9t10ZBCUt8/Q/3yMh7mWeR1/rr+5rV9eQ6xKVb8YFzisdRO1ZBUh5AEgGTCNKnnIiT1RWfMC2lJDHPzjMsiGXDW498GPPAn67Q1d8unPdP8hLfLv7Aka6yJOBd+Qz6v/rxYfW69VoTIkSebLh67kOzskc8924B1a8RKNDIoboADj5SyQHZGh8WtrWIeDzvRjO9s7QLe+VHglp+Y83fNEpeCkwUqWcRMTv1hosIpANMdb09yAmxWLa8bV8DtCuJ6j9pGTloqF4ukx7yRr8OYLTgF1pE5kRnYpoBPRz/d6HYsB/YDtfVA07R89Swe3NzBQZgcl5di3bPjR5CBEsZHRcA1Bth3sZ8KDqEjhe9Ebm2WuXjUqR4hqd9E4qot6fTwjUlHxmKSDBojaRjAgiXAG/4BePQ2yaje+or5e1vEGlt+KGvurIXm6DkvPAbMOcDMDG/tsG6C3pe//Mza3lP3Apdelb2ee2+UdhVZ4tQ2Tvj8Q0RIbn0tuy0VAxuXdSpMO71ajN2uzfKvtRP4w3/JtPZueSFQcaRRMVKIbE2PvF8MxGOV812px6QY1++7H+yWY98Gg6w0wDxBl7e1Ndgr9fa656Y9PDGuypcg52GEGMmxEdOzoQZm0PFaPpWOVW5uDV7T0a8/TvG842NSZi1XV/7YKOAyZoUz9s46vJAq9/PsRSLGLbPbhXvMqsmwtVk0i6Trl6qi8mMkFXoSTE61JfWs7LAPWq8TzaP+ZC54tZP5Ld2vk98FXPyfwD9+1pqkZB9FJ27mae1vedkq+uz7paY2u3SSH+ttJYzsb9D24SbnHCCfrz0j/dFv4m71MD0JIyQ95rVbSP94NbD1VfN73x7grl97tB/AvWQYwLb1MvpFoP5GIB+WKtcmg7j6DZ82/NbhNG/YbfSzSAZoL+fd6mGxHhsRb0GgkBLbfSXTZpzH3UE4Zk3wWZ9vZrvL8iOD6Qzk3pAZxj79cSq3pOrsBi13lNnHtnXF+aiy45VkGKW9QI0Y1q9TxYqRzMU9HdLdX6LFyIGqEpK6APTY7PZus0C3b5sh+xDmRIsra9tTSLrsh0TCGuvpWuw8Jo55i+myBsw4QEDc3HbO/Zz7MbK/1adS1gLNBy7N3ie6aG5oAg5cZn5//hHrTTx2K10AF5Ji2LZtg73AtlcdZ3VsMMj5NzEub/eT496iy3V1QeKnCuhi8izQHrHNOObLGuM3T9bWuBdPpaSvXgX/A7UX9zkQ5X4ZsQ+G4Rw/HbaNUPMHEEr7dgLbN6SPkf3HHB9WnvGtQe4TebbWBbJI5uMF1qfN3t3i3SqFIu55pIqEpG6RTMowU9PnAE0t1uEFm1udkwWcGw3ZiVBKMmTbEdpI2ty0+sne2iWfTS3Rh+MKSn2jFDK3u0fe/3kzuSaDISWTjn2Lc1u/WmX9PjaCzH6/5PvAmf/ivJzK7H/je+QcePM/yve/3y+lJRSOxZZ98LImhLnBOGWF77WXh0hYRYqb68WtDp1T3VOXJpxxs3Tqf6e/6GWM7K4qxzYi3IyzhGQIF2HWs9Bl2bDdGh32H9Ep7Eomxq3Dtzpd03GsTw1oEKn/+XyY+lkobeuenHC4dnyWiUrmWOTShtNY7bYGh/rkXjXskOkb+lHl5UUJMW+gBiLgVF6r6DiI74H9kuzkNEBAvt+tC0gVCUmbRbKhCWhuEaEyrc19uaBtRvndc9kQ806f7b7+MBZJ/eI8/QJg4euA930uREdyIJEEzrnEOq1tOhwtdgaAdltco2Jgv/WiVaPf1DWIYHXbH2d8GDjrIhGoCUjiSiIp2eSP3G5dv/4ZBKcb7UtPAffcKCWGgrqt7BbJ+kZTjC1YYnasf6++csc/M8uNj0p8qnqjt4Q12fo1POBf1yzIflHzWOoyGjk+aN0skgHnC8Kky0M6KGrVetmfzG9+Itqn7Z2bAljJ4vDdp4LV0zQMwPAowB4Gp0vWN8cxYd2n9nUHqcUatL+BB0bI4dwLnWxjnz+PFkmnc9f+oup1LKamIo5SFtaqWwSLpOd8laMkq0hI2iySlt8c60sEaNPvDhfCrZZ1Y/S48O3B7p4xnwFiJPfvEreI3Z19zielbE+hUMMmKppa0ochSw2IVdINXUipm3xTiznNSXi3TU+7vdPnRmcPcNLp8veT9zisJMSFbxdkRkpiGZ++D/jjVdbEJq92lUVy2Rvkc3zUFHYrzpdySoAMLenYnkPbt/1C6oaqDH3L7LZ+OwmgLIK40qO6l6PcbD1elqK062jF8rquHW6xjm64HEVelkUmwhtPkF0d9MG5b4d1X9ktzkHaGeqXF7lAw9mFFEpxiopII2AVwYoX1+pczw3tb8/YUVsDuzanR35yiVlNTaVfTPQmSlB4hYl3rzCqSEh6xEhGthzm0SIZRAD6rcfPIqkEdWrKo9hyAbG70L36XlMLvOfTzvGbG16Qt9zVvweeSotAvbyHLiodSa/3iJPl740vaG5DQ4LidTciIKJu/07n5gxDfr/pKqlVuWuL+Qa+O/0Q8nLNpFLAK0+bRcg7e6wvQ4mkZG+3pMt79Npdxh68+nf5fPgvkmCjW9xyKTmSRUgRYV9ssM+nOG9Ai6TT8GxG1h/ebepMTniPDew0RKsTcRgLneYPtVwAJRno2BnOVsugfUml5J60b4fsX93DkFl/jsk2Wa7RHF8wAi0b5CXLrbmQ/fMb+cd/hR7f3fZdQPVp75vXiDTjo5JQ6JSIVAo6LUwIQAVTReV/XMbDlgkhGtLOjrCubc+bcJis7RBC0pMSzAJr77a5nQy4WnYXLJF/j9wq7tnaOqmpeN9vgXVPiDVD0aTVvgiUyQ4pPbRgCbDpReDWnwNds8VKa0/oefJeWScA/OOlwN5twCHHmuLVSAHPPCAF39c/B7zxHHPZkQH5fcsr2dnjihceA+74H/N7c6u49pVw7egWwaJqS2btvwBMTYrI0oVWlLijoEIjzIMxNeUu0n0WzTrWbuP8uuEXxK+fY04kawAEyGp1ejjnVD4lwlMs0KELMFOuluhtrwU493xct751JW3tT4yJ+NVjwqMKgVTKloyUvofFLSwcbo3xtW0/H21fwhaXj7rtKlxjdMhmaDAiNOpn1Q/QXu9uuVd2zUpfn0H74DBf3IMtFJHqtEhmubYd5m9MW61qbFrb72SzeLYLZJF0KpEDyE3RUzRF6lh+OfNjUufxrefL9yDX10nvkJJFev1E+wO+2c8K6cLBR8nntteA5x4E1j5i/d1ImSISAG78PnD3DcDd12vzGNaxY3WXXyplxj727TG3V5+/d5d1ne3dwAcuM793zZJPVR+zb7fZhlf8pf6WPzKYLZCjuI/0DHlLW7Z2HZMHXNoMneHq8bLnlW3sZITZ5iMUvUgkJGRE1UgNyoN/Bv77S7KsW9/8CGQlylrIYXm3dgO24znNbXEvERn1gZsWP7u2iBiwb8fOTRJfHaqcjwv2lx7HLudwTvvicGMP+yyKkmwTtDpFLCXECrSMnYH98sKhXkjdBnwIu8Ly1pFVJCTtrkALDrUhO2aIC9GrZmGsFkn3Lvm2a/8+c4EkEdkLb4daSZGYMQ/42Le1sj9+b3Iah7/evV0ltoKg78+Dj7aeL/pY3IB7oP1LT5p/p1LmSDpAdsarXfRufAG48nPA43fKd3sgescMqSxw3App9+QzZXpGSO6Rm53TeLU6qpC54tHbrd+jWCSH+rxdvUDamJBHV6Kl37ZrPWhik2ozp2zQBPDfl0kM6t7tCLx9j94m+/GPenH9iPsmsmvbBRWv5tlMABGq/z01KSEeTgW53bqYZZB0erm2zTQyKMOxDuzPQRAHwDUZKQfXdmhxnqMyybLE+7i2hwe8rfc56P94G4y0svTPtnN2eMCnIkfwpgNRwmKzeoRk2BjJZFIezHaLZJiC1PkqIJolJG2/19T6WyOd2ikHUlPusXIt7cD7v+D8m9PIFU7Y90lzK3Da+8zvvbZsT7e+6C8udgvc7i3WeW++xmpBuu06+f63m2SS3cqnYjzf8A9S0kiVSGrtMPsYJDHGnuVrt8aEEl0ajkLSdlcNVYbH5Q462Af8+rsSd6rPolsds/K0nIrL5+kOrVt8AyUq2bAU/9b6ONArxyo1JQ8z+8uNPr9X/JnLIvK3xz4JIvjC0LtbXpac4uCyiGJpTc+un88FTdYwLB8OXwKIc59pvkMahrzX26/9rPa0CZMTAc7vuC2Sdvd6oIVy+tmyvj3bZJstFTIg03ZtSc/rpyRj7n8RqR4hqWMPgA8jqHxrTHpkbYc6ERLW8ZRd1+H0PUemB7TetXW5x/XlkymPmLNZC4HFR2RPn5fD6DxLTwHecq783WdzM6skJb2oOSA34v3peY1UtrhqaAIOOcb8PqiJAT254LVns8v+6OjnrrJI+pXoUagRflZ+SD63vCxJPYp8PmydRKqbC9CtH2sfBXZsAO78X9OdD3gn5aj1zl4EzJwfpAPR2fSi+bdfLGWmC7Y+PHQL8OMvWktQ9e6S82lgvzy4nEabUc3oLwdxWyddF3XyInjMPxVieDu3dpxerr1qDeYyJnxkYrK4R2kv7CMi6/q0WVP1VXvdjx0pkiDyPXd8laTPz2nL7NhwsEoDXi8WZUb1CEn9ZqW7GQGEusrsgsGLXF3bnTPNki5e7cZtWWwMGE9YiHO/cVr4m6CTG9tpPzqSgOMK1fJbX7MKPZXlPHtR9rnxp6vl0zCAcZuQXPYGU8ABwE7tga+Xwfjj1cDmdIzd/EOssZF2OtKjA/Xt8a7jBqTFbdrSOU/LfL/5v81knVzcumMjZvtA9rniJCTHR4G7f2MVYI4LpxnVBPbax8x29cLtFndqymwrWSOjgFxzGfD0/c7t5yokdmww/15zt5R58mtTj40FJJFsuN8ce17HK6s+UuhAXFYjh2V3brSeTxMuIyf5WjsD9svJghbUIjk5kV0OLQiTE94i2jPuMIK1TLe8W+KCnRYIGyPpJe5DWlPt80R9ocm38LJsh8P+8t1O+73Gb9nyFo861SMkWzslqzeTbaURRohNaxch6ht/6NBu0GxhmSAfzeli6XqtyJyyzjVcizgHbS+PF0JNjRyr1s7wy+rDLc6YB3zwy+KirqmVTy9cdCRmL5bj3r9XMsIVg2khOa0deOv7rSJ2305xu06OA2OaQDjlLOD17xLr9uHLZdrN10jmNuBeT+3ks2REJjeaW0V4G4YZ8J9KAdd/D/jNf1pfpsbHzOM/rR048e3mb1tels9cxMSuzbbt8LAOKZ59EPj7auB3V1gXc+uHXoLpwT/J9k2Muc+vC69EUmIQh/qyxyf3Y2Is2JBs9ljYNffC95pxi7nt35u9XV6X6f6d1mQdwN8dGNS17YfborpI7N1lhnjo2xHIve2wjqx7lpOgCygk9+2Q88Kz3JSNkSGxOgetKRk6McPh9z1btfPQx7Udp0Uyq2suv7nu46jnVlQxmsb+khZ0XZlJIcS+77Xmc7yC9qlEqB4hWVcvYsBpFJswF1kyKe5TXay4oW5uXbNECHa5jEDjRV09MOcAa9KPX4xkEDpn5m5x8XrI50pNnRyrKNbW150gyTpnfwL44JekeHmyRo5/mKQbnaYW4LAT5G/9Ab3lJflsnwEsOQ644KvW5e78XykPpFzbbz0fOGGlGUOpssIB4KE/u4tIwFoL04lEwoyXVA+0wV55wG17DXjlKXNeFXdZUycvWCefCRz1pvSy6Xin1JRYJwOP3BECR4ukZrUddrEqKvbvsiY07d4KPH6HtyVA/abqq4YRCjo7NmaLNDsT49nzjA75Xy96iIPO5ET48Z3ttWEHe7Pjcy3EdS27CQvb90y4R4hr3Csb3c8DFNS1HUpwpMmUqRmGa0hTTjUHXWZQ9wvLz077MxHuXh0mRtJtX+ohNp7ZzVGw+9cD4FpCLL2//EbXCWOR9LLa7t8p3grLPg5i1fWfpVhUj5D0JM9JMdPaRAw2hHCL69TU2m6SMVgkW9rhemaGskgW4uwOuX119SLYDrDFSvoVaPdblxqWUVnCRgal+DkAHPMWcx0f/nfrck/dZz40VS20jnRbiw4359u3wzvjubHZ/TeFim9VIkYvMP7ac8DTq6XAr3I76212p1909qatQgP7ZVv3bA1383cafs6+vLKkTE0Bt14rGep6Itsjt2oubm3ZVAr466+AX347ex1bX/Xup7pxq/XYrYphTmU/F6wSFjW1Znzuzk3Z/duxUSyxSrzc+P/c2/zVd0J00IWxEQ8Lkv53HiySeb1X2K7trGQHxFxg3756PZnTbSav9UdwbVum20VMjtsaJgPbLSnPLXu9f59/ZQc/4nz0JCCC3O/lMEy1Ai+L82CfvBjGnbRWRCgkgXhjDBMuX8Kuw54t7tVW1P7n/GZYwq9IUUlk/stGudmV1ah/HwBDXMN6glKHLQFp26vyDzDjKNVnMgl8+HL5e2zUvQ5jfaOZHOOFipNc/7y4s5+4y/zthceAe34j09V6dFe/Gjpy+wbpryUJIuZjrR4+654AXnxcMtT1mMqn0y7usWHrqre8DDz3kJmNXNcArHh/ut/rvW/gKu5LWYN1669vpnlIlJBsnw6866Py98A+YPNLsu0P3QK8/DTwl5+K1fqWn1otjlnXP4CXnwo3apErHqokUv3JgO3nHEoDb5ehl7fYrXZpbATYBi+hEcra5de2f1d88XRtG9avnqLT4XxKTcVQrzPG+1EqJR6brFWEDD+wH1+nY6LvV8+hjR1XEHL+wkEhCSBWi6R+rMOUCrJjj8HMh9G0UK7tIJY0O0UrTZRw39et6YSb/rSQVA/+jhnIWuisi4BjT5MSPTrquFpG0OmSc2VqQosRS1iTwjp7gu0TZencvUUsdLr7V0eJYcsY5Gm3+NgwcMN/WscYz/ke5uJm1B8oTsN09u+znmN299N7P21u874d2ryJ7NXqFkmVYamvR83cvy+dDOKzSV4MpreltUteANSLQ+9u4Jm/icX1z/9tjou+Ya0UIVd84DJZrqFJwiXmHCj7zJJ0E7GDbpa58VFJCBoZNPfj84+IxTQOCl5yx8O17blohH56eYwyBbvDN2u2EeYHw2GyhwB3bDaMaztXt2yEe72BPL8YOK0zhNh3E6F6hrvb/Xz/LucawKWrIykkATi4RHJBWz6qGOqekz36TilaJIOutr7Jf55yIGOR7BVRogtJ+744cKkMhXjMW2D5UYkenZoaMytcZfp2dANn/Ys5T+fMYH10at+JB26WTxVTCWQL/s0vaV88zpW/3w+88nfn3/r2prNZbdOVFUOPW3JyLfXtsa5bF5s1dSJ+O2eY68q48lMizvQbt3rwJJPp4tSaFVKV0Nm7HfjpV2zFwCOgzo3WTrk+1XHp3Q08/7D/8tNni4D88OXy95J0qainV+fWL8D7AWwY8jJjGCKm7/gfsZja66dGIUiCki++Pl7za1AXbBwEugdrHdq12Xr+xWmRdJrfQPYIWU5MTgAvPSXnQP8+7eVMa08V43Zb/t7fShuWfnn0P/Djy2YV9RtwIVdSU9ZzNrRr20FYTrokIGZeNgy5d0SJ0y0iFJKA7USOwUqXabcAVrWc1hFgW2vqJLlIp71bprdNDyZGy6rwuVvaNtJu4IQ8iEcGTatT+3T3ZZJJq0CrrdPWo6GEhhKS9Y1Ai5axPmNesO53zAiW6T7YKxbPlR+0Ttddqnu2ygNjymM0k307ZEjIm68B7vsd8Itvitt2/05xkf/sq1LCyC34XH8gOdW/7NtjXbdKkGmfAbz7ExIP29IJdM+Vm/6atBX10Ttk5J57teErlSUukcwOvN+Vfii9+Lh8Khd0WLa8LMJaWXzVsVDH908/Dv4AnNZmWowPWCqfm14Ua/HUZPjkG0WgF0ibxXbH+mjreuRW4PG/RlvWCSPzn9uP2t+2+WIRsi4EiZHU93tqSrwGe7al7yNhhaLHdLd5gySX3f4L4JafANd+Q9y9Q/3ZYR9Tky61Sw1g9R/Ean7LT4Df/wixmtH0prySEuNi22vi1cms3+8Y6X+nnDfd8mKrTd+bFuyeNTlL1yRJIQnAau0LG7dgI1/uG4vnxCvxJgRB+2qvu9nWBcxZ7BzHFRtFEp9eq62pMTOnh/u1jO1u7+UWLPFfj4qr1IVk10wphH7qu4Gj3ujfd0COyUX/Afzz/7FOP/Xs7HmXniIvAzrnfBJYeJj8PdgL/PgL4oJ1Yv3zwJ1a6Zwn7xGL3iO3AtdeDlz/XZmeVRcSpkgb1R5STnGKfXudheQRJ5n7NZEwh9R8OW0JefBms08ZDHP+/TbrzI50qR79nFZJR244XT83/j8R1k/dJ9+758rnYSch8Dl9wsrsae3TpfYoIPGrV3w6esJCoGLcsArJrQ4xZH7075OXir/90bsmYygXpZPb1nk2Vyt4PvC8J7tY5QxDXkj378xdI+Rq0QTEI6CHwvz862lBlAr2rNi0Tsp3KTa+YIYBeS7vcV3EsV+2vAL85efA2keiPZ8Dxw17uLbVd9dapobUvw1SyLwEoZAE5CbQM1+sPvZRb0ITg2vbrXxD0FmDEuiaiuEGVVYWSR9U+aiXnzbfVg84Ap4HYsX7gSNeD5z3eW2ibX6VEa4EjsruPuqNwPFvDTCikkZDk1jCdFHUs8BM6lGc+u7sZecdDJxzCTBXK1L+2rPON+CbrpSYuiDYLQiqvTGX5CLF9tdgOceU61rVV1UWXiUqN62zFowHzEB6fRPsbvTNL0kJoYduMafZxx63Y98nTsJucTor/4AjgPP+FTj748A7LoTl+OtivqkFOOkdzut78z+a54VhmNbTsNgtrRPjIrh1S+nUpDXjf9urCMTUlHms9eHjvEZnChW7F3S6g2sxDte2YUjS2i++KVUQMgQQQ56bmatF0ratYfbp6LC4ou0vfBNj8jIRtC173VTA+SUyDoK+fGx+Cbjx+5LUd/v/RLNkqvMmlGtbG/xAJjgtkL0e+73LY/ZSgkJS0dAULSnETiECysNaJGcvcomxi+PG6jI9SMF2L9yy3/NNwiPZBjAFzCO3yufcg4CDjvJeprEZeNsH5Di4Ya9LGmYEJTuGIduhtzF9trhXj3urfD/i9cDCQ937veI8a/ykXfC53fA++QNgybHZ01UYQKaPaSuHn1Vt3ZPWwuPKIjmtXT5VQlvXLBFhk+PZcYR3/FKtNL1MIi1QARy4TL5vfEHc8zr3/0HiLBU7NlqzO+3JQXZ3edt064hKsxcDBxwJHHq89YV14evMv3vmaeEPNpJJ62hId9+QXeNz7aPAY3d434fsD+E7/kfCEm75ifnbcL+44RV7tkpW/F//N/tYKnZvAX7yZbFGb1pnLWXkFlMHhLxnOpkaveZNE4c1cnQYuPXnwG3XieX96fvM3/R7suu6vI6JgwVrw1qJlUtNudc4DJrI4/X7X38lx/6e38j3ZW8w798DveZ8uzYDV3/eWglCR50Xx78NOPwk+VuNyhVZBYVw6Tth9yqocm2huhBFSNqPp9M89uXh87JTukqSQjJu4hCSvropZFmh2nrncbtb05YQv9FePHHZXkubOQrBghs0PVZoFw+ZQvEhO2mfff4h1hCCXBKU1Dmot6EsqSefCXzoK1Jn07EjaabPlvka0i9X+2yuYH1MbkXXLLOGZ6b9NPbakkYqPQpN+sb5+nfJKD/vvjh7Pn2c6oyQVCM+pW9hiYTpRr7/D/KpHoaqOHvGvTRlZiIf9UZJjLL3UZ2/d/xPOgHhSeDX/wHc8H+BH35KHr524Wi3ch57Glz3r24ZOe40sVK2dDhbiXUOWgaceLr5/e/a8I6TExLj9sCfrKMv2bHfo157Vj779gK3/UJCFja/nL3M9d8DnntQBKwTT9wlArR/L/C7H1p/G4lLSLo2YjMA2b7HISTv/F9g3Rrz+8S47Ku924Pdh8Ns5/MPS4zvn39qDhDQtxf4yVfk+JqN2j5dV+48eaA3+1pu6zKvHb1A/u9/JK54dX3ZUffGae2m4UJ5WKJYYz1LeQXcl/YXmNuv87b6ORHUImnpnz0cwOE4Tdrd2GFekkoLCsm4UVbNXEr/OJEIKR6D0NIuiTRRR3sBgp33kbpbxPI/WZOSppvYvq86erLnj7Ke+kbg0OPM71GL1wPIHJQ3vltc1W893zxnamrE0hj0HFIWtf1aIszwgBQRt3POJ+WzvtGMWVT07RWLzu9/JBbC8THTGpmskSEaV37QdAXr7E2ve2zEfDAoIalfZ6qguuJN75FPe2LA+hdEkE5rB+YfbApQRV2DhAFMa5P5rvi01c09NSm1LF9cY11OWS8XLJGM/eVnZG8LYK0J2jNfHrqHHg987NveQ2AqXv9O80GvJ8Hs0katefBm95qkukVycsL6YH3xcQlZeOjP7ut/9e/mg1Jf1h53qrP5JVnmTz+WcyfLDRgQu0AENKu2h/DINTljYtyMv1VsfUX21a9WOS+TERMBXM367y8+Li8qALBxLbA7XSLr7hukFuljd5jWYj3b19KWz/q2vSahDNddnv1bqyYk77rBFFJ+BbTVS15Lu7m8Km/l1J9cyiIFPWdUnxYeKp+vPmPuWycG9gG/+b71hSGKRdJeYstpW53ihgtaIis+KCTjprZOXFhzDgi/bF1D2iUZwhqVi6hMJMx1RsbhxJ8xD7bsoBzaLwHmHWS6tN/0XquYbO2QzzjE/ZGnmG2pLN0oqENy0FHAP342W9SFoT1ttd6tjSHs5No66R3Z2eJnXWT+3bdHHsQbXxBry5q7TQteQ5N1/9nDIvZsk9jFKz+XvqkngKa0xVAv6jtdE4QHHGm6jIcH0mIjvWPWPSafS0+R5e1hBe/9jIg9PRzEaWjB57T6ihPjEjcLyJjox57m7qLuniOxkgcdZRYrD0MiAbwzvdz2DWKxHdgH3PA9c56+veKGdUJ3n7llfuv1PZ0qBuzdIfUwr/iMWOUA06KrkrUSCdNivOZuSXp49RkRSrplPxfX9nMPyXnx3ENmv/90TXqUI20xN1EdlN/8p/l3rS1eeWoy2yW5Zxvwo0uBh/8SUChpM9ljc5VFUoVjAOZ+dNp3g71myMPwgFxzev+ee1gs6//7HWcx09ZlxuIO90t8rL0cjdN6MxbJNvMa7t+TtXnZbQQ8/hYLc1CLZFpIHnyM6T169Rn5HBmS81I/Fx+5XV4Q/vIzbV0u45krxkezkwLHhl3Oa49+T47LaGJlCIVkPqitc6gDGYCZC4C5B7ov29gsNzFL/FwYARNk3hwEUVOLiGh7rKmfyJo+OzszvGgGSduK1UNUTW7tkPp+Cw+T4+RkQfNfifM+mb0I+IdPAuf+q2TFRybGt9qZC+VzYzpofnzUdKce/SbTgjbvIPuS4jJWQ0fu2mxmpAOSQfn7K+Rvu6Xj3EvFmnfKWfL9sdvNmFRAMudVjGFS24+vOy4dO5kQq11Dk3mt9O0xd4uy3CmXtm5Vbm41R/hRBeh1kjXiggfkgaMsXTs3SumOae1muSy38z6RkBfNMz8mGf9RmDEXQEL23fXfE5enHT2+U0d/wOm1UM+6KLuA/vs/b1pzAHN/bnk57eI2xCr32x+ax/H0C+T4nfd5YLb2Qr32UfNvNQpR2MSQvr3WMjbKuvTnn8jnU/eJxfQ3/ylu28duFzd/LsPRTYxZhfVH/j17nlFb+y88JsLgkVuDJazov6v4X8XwgFh+7WLu1mu1sA9bPKg6rr/9gXgBXtRCHdwGKVB0zwEOPsr8vuXl7NJBd/yPVZz37jZfJFo6zBfsXg+LpK+l1vab7goOa5Gc1m56KNSgD3f9Glj9e6t3Rd/HKoNanaNOJY8AGZXq518DNjxvTpuatLYVxPrqFntsb6MEyWf9FhKWRAKeCkq54PS3yLA60u9cDCvg9JNbT85wa6epRdzEuiWkuVWmWYbNKhErZn1D9rREAjj7IrlRZNyiMfQ3kQAOXpZ7CYgwNxw/ka8s6xvTomTvDjn/mtvEOptKSazg9NnOyysr5cA+q+tzzzbn+evqRVwtP0OSbJ68JzvOSY+/1V3brV3Av6ySthcfIets7ZQYtp2bzMxu9cBTfe6eI8vW1IiYUhnyp54FvKCJnw99RazRiYQ8jCfGZJu6Zkp5EUDWkdmnbvs2hnOlrl62bWCfdXpzq0xXGdjKmjI+Zr7gWaxTaUteS4cprJe9QSw1sxYCsxZZRcjRbwYevc1MzFCopIqmFumDcusft8LM7Nddw3/+ibxkfOCycOfr+Kh3sea9282/b/ovc91LjnOePwgqtAIwt89O/36zNBhgtZS//BRw7Fu812G3ZgFyT1TZ8727nffT6t9L3KyeFKO3qfbH2kckjAPIju1VdM8FTjlTXhYOOFKO3RN3yT7UR8AC5KWgcZqIs5EhKRUEyPXRNt0UfeMjYmVzus8YhvelMDzo/gLgd85MTsj+00NhlHdFjVylzkd94AW9nz/9itz/zvoXMZC4oV7Y/ng18CktNtgvRrKCoEWynEgkHMRm3BZJOzGc+PrFmUxmuxLLAtu+q6m13lxDHwanBRLxvHXG+eaq3EH9++SBod7K1ZCN9phLe4yfEpIb1prxUnbR+c5/1r5o+6WtS4SGHd2KZy8E3dCcHhkqPV2JxzV3y+fkhOk+6kq7ruvqgU98D/inr1v71tJhWlRVv5NJWadKXvuf/yMxcso9dsTrHTfFQlzvSE6C6txLxYqoVjI0IBaTqz8vYgIwrTlTU8AL6RJC+ohIdfXASacDi9Iuan1AAq/KA4B4VHQOXAq8/UPO/X3yHsmEjzrUnX6eqxcK/QVVL001PgrAkILZzzwQYh0pSbJSvOdTcvzfeI5kJqvwBz0pBbAmF22zudmNlMQo6oJe/1uJHyVehgecR30CJExk5ybnrG692oEKs5ic0OIWNVq7gA99WcItFPPT1866J51drk/ek7aGa0N7nvh2M2RK7ZvVv3e+JxmGd1yt0wAF+rJOrP69lGa68l9F2GWGKu2Q+3VTCwDD+sKho58/I4PiBn/wFvfHoB4jPDlh2x7D4U8KSVKKhInN85q1a5bcjO2JB37nfWjRErC/eS12HoaE5SP7Zz/rk3ezWYTdn21dDoldMd6s6htNMfjobcBtaTeQ21CMKrZKoUbnGRsxLS1LTzF/P+pNwCHHmN/t+6WlQ8TkiacDZ39CainqJXAsaCZ3tU9UKaLXnpN9qyx49Y1WF2JtrXNIyWEnyuecA6zXml5nU1lXO3us2xamHmwUZi3IntbRI9uuhO5QnwxfaaSkjh5gipahXlPEvfE97us55FiphXrBV61eByecYntneCQQ/fYH3u15oT/0a2rlQa6Eg92CNtQHbFwHrLlLXJpBM3d1d+NxK8xQl2NPk/NQuXDtQku3ot/3O/l9fFS29/99UmIUH9ZqluoJHWpZdS8eHjArDxx2EvCJ/wtcepVYDQ1DxJMTD//F/FtZLDe9iKz7w1vOBT7wRflbP8cXHCrW16E+cdUDsp8PPd6cZ/t6c1+esBJ43Qnmb8oq7TpWu5FdBSMoTi8fhiEvjHu3S5jJ+udkvppaM2ZTveg+cadze04xw2rIUCf0WquA1brpZJGMcmve/JLsw7497i8URYZCshxJuH4Js6CVaW1iTYijlmaY9WawXWHFEpKuQs5nG0LrA5cFoghze7HyUG0E6Liy3OmjxAQd09ueSY0EcOgJZsLC0W/y70/PfODkd0lR76PfZLoQ7db5kUEzZlEJSWUVGdgnrmh1I+6eYxXgbrusZz7wT18D/uES6/Tj35o976zF1v44veS5WqMj8NbzxSr2/s+LGF/xfnOdKqvdbtUxDNlHA/vMuMKOGd7XfTIpAnn6bOe4UcXydzocT2SfK0tPkVqDgMTf6WWZbr3WWRj17zPjdBW6UJocTxdNN+RlRllTFYN91hhdJf737fSucam7jJe/M/t39aK03xY/Zy/A/rebxCq/+SVkTrZHbzettGofjA6Z57AS7S8+bsYIz1poHqtjT5PPx+903ga9rM/ebSKW1BCiy94g7v7uuXIOKeGtn7M1NVJnFTDdt8veIKWq7C+M09qBpada66YuOkza27XZah1VRPGcbH5JYrSdyjm5JVQla8xQg1mL5NMeJzrQKxZ69UJw4deBMz4sf2fGG3dg0CYk9SL8jnUlI2zzb38gpae2vhJdeOcZCsmyJOH4py9+Ra4DWTdt86h4Ia+RVyyeeJd11NgyXC0Zr3mIl+yeaz5svQi86jgEfcjEA8X02dZtidt74lQeyu7CdKO+MT2SS5rGZhGC514KnPdvuYU5dM/J3pXKOqLOs8Zp5nm/f5c5FOK8g63LuRV8BmT77ddO50yrVRKQh5vvuW6b5pWQ40fbdLGKzVok4QG6NVQJHBUDqbj685KAcvcNZhxl47Tgno1EQgTs3IMkGWrFeTL99e8Clr/DtNDp6PeG+kaxgL3+nQAS5ugpm14UN+mLj4tVSbcYqoSi318h1lUA2LY+e9v+9kf5XHR4OhlJY6jfXBaQ5KiBXuCX3xJXqBJ0u7dY406Vy3rOgc73OCX29FFdDMMqWgERKE7xfqoCgpGS/XDX9fJ9WrvzdaeS3wA5h2cvFhFtF0b2WNK+PRLrql4sDl8uQulDX7YlOtrOg0Wvs35X9xk9jvvCb4jwOnCpdZSmxmYZUQuwFvJXRLlP3XSVnLvqpfbVZ6Siw9iIewWCiTFktmvxEc7z/PQrcl1MTYpI7ugxr+/e3e5jYA/Z1jmwXxK+br3W2eodZptHBmXccoU+8lSJQSFZ9oQQMF0zxcSv34xypblVrDbqhuGIRx/VA6y2zupWdyudoqxjudI0TW7U9pI1WVe6nyUyosh1WsxAeCGZgOwrlQSSaSiHfthRWcqK150QfOxvwBp32Jy2fMxc4B3A7sW0NnmINk6D6waofZFImDGVe7ebD/gFhzouFgp7ke3uue79sffLnOA2Y8ROpVlwiHxusRUWHx2SB7E+vF/f3nCrO/JkeRE4YaWUrPrnb0psHADXigRHvF7O0/d8WqxDNbWm6Ny5Uayj+oNSF10vP2VaYm6+RiyWytU79yCzvJVafuHrrNnigNQF1MXe3u3Azg0iHEYGgR9/UbK7f/lt4Pf/Zc6nxImTQAZkJCK1DYpn/mZazA5Lj/AyPKBZ5RISogFIaR5Afrv+e2YCyPFvBeYeYI05nrXIXB8g+1m1v2Et8Phfpb7k9vXmC1N9o+lifvQ2cz+6eRQSNg+HPSxBhYPoFsHOHlmPKiWnJyOpa3//ThF7T94rYlnVFQ3DUL+ZxKPc5XddL9baW37inkS05Djz/J6z2Ho/0y2oysLdMUO2Y1q7bJeRMo/TTVfJOdK/V15M7JbWFx4D7r1RXoj0LO4oFsm7rgfu/a35/W9/tCWklg6lEohGohJGyNTU5p7okvUcTGS7OdS63JZxa7Bpmjz0U1PZ5YAU09rjjRNp7xZBouoEunq2IwrKlg6XN2VXJem9niDtxF0mome+1Du89VrghLdLIkZdvWRBOgXu29HL69iH9ItCwkWsWObR3pG7ZsrxXf17M1lIJeGEWzEsx+eYt8jNXhWTP8Xm+gxybSYSzofcbbpnW0m5FkeHJJNXfwh5cfBRiCxcEwmrFSqRkH4YNtfjivdLgop+r2jvFgvOY3dkD5W5a7P5kmd/WK+5G1iWfpGZd7AIRz0Or326WMzP+aQkE619REoCqf4ZhtS01IfSnBw3M+/37RDxkEiark434aViJvfvErE4MmiO/NM9V2Jr1z4iLx3KZf2Gs81yWdvXA7/4P8BBS60jK805UNZ/5r9IRvyS45xfrg88Erj7enlhUCMUqTqJgNx/Dj1eRJJ+32xqcRZyaoQoZUFs7YDlvFdC8shTgGcfkPNMXxaQl9qxEdle9eK/f7eMdqTE/jN/E2uucqlPjMv8ax8RQXjY8uzELr3Sw8B+sfgpYbzxxezQh4WHAUuOSQ9hq53fujHiwKViQdRR1QsSCYkPfu5B4IGbJaN9ffoF7KdftS6z6LDsclt7t5uu9EyMZIiL2l4Af2pSRjs66k3WIVZLAArJciTh8ncpUVMrAiSRBFLaqBL2h6u9//obYiFIJGzxYTGLMKcEDlfPdq7rVjf8mGMkARGQi4/QHma2+EQv6urNB7jviE8hwyuCuIZPPF0sCuohVpMeNCDstWPTkTjyZBHJsxfJi09Ds3/8chARbO9/4P4l5GVsdCg7lnHGPBHTJ6wU0aGEwvIzpJh8XKgi5PYYtmQy+4Vz+hxrX448Waw8I4NiWfvE/5VrUyW8dM8xxYSK/+vqEVE2a6FphVMCdOHr5FirbPW2LhG0f/gv06LpxvCgWL5VncZOF09IU4sIrz1bxdWuFxN/y7lmgtnQADA6YvZPb2/vtuwxodULf1tXtkdAR1VMcCuJtH+ns/EgmQCcRo1MJKxGgJpaa5kp5dp+4z+IxVRPrtK9ALV1InzUdm5/Lds1+8ergXM/J6LzusutVui//00SinT0TOuxEXMAADsLDgUOOVrErtN1pF8bJ58ppbGef1i+zzkAOE6Lfz7mzcDzD8k55DTMsOLQ4x2EpBafrCzf9nvz8IAIenvtULfKAsMDIjD1UdBKALq2y5JyUJJIF4RugHcfgzxU4+pQBHwf6DlYcvJFPgrXGobVIhK2/x/8soi3t33Ae75AOlKbyW2ceH2e7jliDVPMXpTelhyPQSIplk1lPTcAf5EbcJ2RQya0W7oqu3P6hVL39O0fkqQl/aG1/Ix4E+wSyQAvC2kOsmV4H3y0Ndt67SNS+FoJwePealrAlCWqMx1HqFtF9b/nHCDu1eZW4L2fDR5Occ0XJX5RiVy9QLcdVbD9gT9Za/zOnG+OwLRzYzoZCCKg3UJ3FE5eHidq6rKtpa9/pxnfd/Sb5VM//1d+CKFCKlq0+Gt17tQ3iltdP3eczlkV56lcwzrb18ux3fSic/yofVhL+zyqgoSd0/9JEn/0/uj3xEOOlt9Pv1C2Y+UHJcbzxLdLUp1+bLrnAIenS3o9dofz+gDn2Mt9mvAdHZaXIN0jk0pJfO41l0kWubIQv/i4VBZQHHGyxKEuPVW+u2bBFw9aJMuRuMfxLib5FFRRCJu1rfofd6Z0FPJokAwdO2qne44k18SBJbO0Vqwe9vgo+zVy8DEyxjcQcTQiINsk6YB+HtQ63F6zQkO81hUBfd8cdpJst4p5U/F0Bx8lVg1leQoyNnNQVJ1NhSqq7cS8Q0Q4KoEw5wBrGMh9v7PO39IhrkI9aUZZ2/RhC6e1mg/sZBL4wJfkId01S+Ls6htNC96Jbxf3d79DiMb9f5BPVbDeLSHLXjJt6akieOsbnV90VNzgOZ+STNxj3iLCVe2nUMXTDck2VrzuBLEwn/B2sZCppLjj3iahBAuWSL/CJHnNXChDcTY0BX/pUO20TxdXsnKrt3UBZ3xELNF/+6NYHlWtWjt7t1tjRO3hD04cfLRzEqVepzNZYyaJKTpninXSiWWnWodDffM/AvffZCbgtE8XT8Dr3yVj1C85TuJtd/tZvfvNc//+m+SlYNkbrCEp9Y3A286Xv496o5R8Wh6jByEmKCTLEd1dqi6QZI24k+zjwOZMzNatLNd2iQlJN9y6qcpK2MfaLQqqk3lQkvbtC+qiDUuUygGO4QO2eeZqyRd63cowBNCRGetkXT1Q3wTAVh7E3vcwMbmJpH+Cgn05p0zjJceJ+NALjU85+TkjkEgGHx5WjSS0+vdiRatvFMFmd/MqWjpEfOp0zpQHsr6dtfUANNFXUwOgJu12T4gFTyUtHHSUhD5c8Wn53jgtWzDqFk4ndIvggUtNkZJIAO1dMm3rqyKETjrdPEYLDzWtmWddJLGgBy1LDwHqIcB1DEPcr/f9TpZ5/btkejIp5bIUyYQ1ntH1xdhh2pveK6ERBy0Lcc2n56utE2GtXgrmHChW4fZu4MGbxVLrlm29e4tVSI6nheTSU8Qq5/Ty7pYDkMv9eeFh8pKz7TWx8B79JqlP27tbaoGqYUVPWCkvqR0zREgO7E9XAdgvsbyq8sPEeDq+03ZveOZvYsUeGZQwmRXnWc+t7jnyr2RqLJuUXo+IPxaTffoB0DNfTti8xxiWgPBr7czj4PYhhbN6aEYdnaMQqPjEXNDHuQW8T4MZc92L+Nr70jbdag1ys7brVo0oMYa7twLv/Ki4RCNnbAdYb32DuM5ratN9sO2DMGV27DS3iuvULR5OJboEafvwk8zvhiFte9VTDEoikbbeDYso0129Tsw5wGqpPv0CGSlI55i3iBDo7MkWBM2tIiSXHCv1BVu73B+0qu6oHr/ZPVeE5ge/LMkum160JuEA5tB6bugP+4V6/cr08TjrIvmamrIOnahjr3s5a6HEFPoVTh8fBd58rjnEpdu226/FMJbwae1mZnxQ9PP34GPE4paaMq2Pakz73VvdayPu2gLozgNlkexZAPzTCkkg2rNN+qeGcO1wEZK5GEQSAP7xUinFo9zLza3y75xPmUacZNLcvvYZQN9uyfAGJDnstHPl75t/LOWr9HADQCyw99wofx9whDmYQtam5CF0KUcoJMsddWOtq4+vNE7cWCwUMVgkO2bIG5tfwHwUXK9Rl36qB4NXTFNYIecolIOYwyKsP2i/ssSLx3FrnCYuSJWoYFnMltHb2GwTkj772WkeR+udw7RDjjb74LWuXInDKxA12cZpuWTSxyJjyDWl4hP3bhdBZh/HOwjJpBzT2YtF1DidA170zJds69//SL5PawPepI26Y89WzQyFeaiUJOqcKQ/4vj0O4ik9b2uXmbSj2psxV/7NOUDO32cfMC1GrV3W011P+gGs7mu9vqr9WLiJSEcCWvwnJ2Qb/KzsWQW8Q7i24XHu1NaLwPeK+WztAD72bbECq2EXAYkV1d2/S46TzPPWTsmcV5U0FEpINjTKOlV92mcf1IRkwIESQmHI+lQBeDs1tdn7d9ZCEZKKLekRb0aHzezyZ9MJNc1t4sno221aylUheMfuUEiSuMm3SzWOc9bJ1VVXLyb+5gBFwV1L5RQQ19j09A8NTaYbJqvWl00E+j0fGpqyhWQQHZlLcWs/7JaRqOWQEklY0kWDhjqEjgv26J9X1zt7vMf/9STAOZmLRdJ3GZdEF7+2DMjDUAmixmYRPVGEpFq/XzKJnfomsepPjIkoPHaFxHE6PbwPO0mSNKa1w3IwVYJJskbizexWdCXOTnsfcOevgRNXZrfd3Cpu9rbpwF/TMbV217bTOfv+z4vFfN5BpuDJJZY9kfnPn97d/vM4tu803eEHL+GSgHPcpL2d7jnZ8aL6ctPazZFkdm8RS96WlyV7+eFbrG7gettLu/4S35mjkHR6iTcy/znj9Hw7cKm4txV7twM//oK4vxUqi33BEnlhWnO3dXk3KCRJ7OTLpVpTJ8HEaji6XEg4vIn3zAfGRvM0JGMO1NUHC+pW6DfMhiZnV1RWTUB7HFuD1QXomu3r4ir2xSbeLORyU4ogdurqpBxU5mZofyi7PHz17QxS1Nuzax4/elkT4xDkYWPM7NQ3+Li2nZbzOv5A1jmgLGdRrJJR91FNEuieL4WqEwkpL/PGfzDdhjqnvU8e+Idp7nn7PF5W6rYu4JxLsn/XOWiZxPAN9WXXM3Q6NgtfJ1Z4fb3JXM4XhzjgppbsuDrAebjAsO1nJocUkkHbd2rj+LfJiDzJGuvoV/oABnr2sqLB9szQ3fmqhmVUHM9fw2cfJLLP0wMcsriHB7ITyACxoh52oiQeTY4D7/mUlBpyymQHKkNI3n///fje976HNWvWYPv27bjppptw9tln56FrJBD5Oql65smJbM+Ai3Jv1N/YlPBN1uQmUkO5iQLQswAYG5JYI1X7TScnveVnvbOJJ8eHYA598Fp/3nSkh2WxcZp5k8zShEEskkGsmBEtkqVAbZ37fmjvNusq2nETkvq0xmZ5gdNfQN3OgfbpMp+eDBE63jbgvG4vELV1wLhNKNXVSxkjL6un634IePAbm6UkzL6dIhLtoxjZUftE346gFkn10m5H34aOGWK1cxKSUQgSQqLIWFidjr3b9Wr77nTOdM0ELvoP5z647RNAXNs6iw4XC97sxe7PhaDJS07bMzrsPo63WsReO7W+0fklyIkjXy8vbRd+DahrlHPP89wpPSEZ2vY+NDSEZcuW4corr8xHf0hQVFCx03iscVBbJ2/9cQg2/aYVlyu+vlFcTvrbay40pNvLS9ycn5C0T3C6LIP0K4Jru67OnCfOc8mru15j+wZxzwfaFQmPJAkvkZnD8Q9yf/dqv6FZhOKMed4PejXko1PbQVzbWU27dFwVlravPx+4bW+cGaqJRLiXiPpGM7NdubfthaMzKCGpn6cBH69RKhXkitvLgOfxDRNiZLdIOtz3J+yhBxrv+Cf33+zx6Cr7/4SV7vuyZ761RqkbkXZzwnm/Xfh1ifv8528Cn/phekjXNAcfLcL3o98yC6S3dpkeOi9rdiVYJE8//XScfvrp+egLCUNrh9RLy9eN3ZUcb2hxueJ1oaCPeKBobpNszlIg7C6LXIw6QnuJpMSWJRLeb92xdQbW+opZIieAazvob40tzkM4lqpFsq7erLoQ5bpOJJ33hWWak1XO48HU1GKNwQts2fFv2koAIZll4fGwwAZNwAratfpGuU6SSWfXaSZSQzt/nWLnGqeJEErWmLVPXUVDgP66DcEa1BrmtJwbTl6RoOWrwrqbDz5ahiR84Gb5fvYngD9dLcehqdV7WSdq6+TacnMXZ4hwjiQSzse6a5YZ9wkAH/8ucOf/yvXz9g95v2h4/VaCFUIYI1nOFFxExkCh6i1OnxWzkHS4Y/a4FNK10zZdshAz+MT4xfkQDLKsugmGXkcE93EiIW4r/bv9d8flPFzbbutxnc1r+VxUZgDV5DSLqoWoJ3V4jaVb3+g8PaiAsn/36rZysysrSL7uOW61J3WLaM98qTHpZcnyJIRrO2s5+NTHTO+funpJKknWZD/w27pMr4cuaNysyAnbdyfc+tQ9R/ZVXUP2C+L02dnjl2faC2uRjDhvkJqoR5wsWd2plCSkXPQfch56jjOd47XtV67Krd0gsaWJhP/IXvq8blSCRTIsY2NjGBszD05/f4lYiUg4auslEDiIe8CLQrxN5ZrAE+Q6ravPjtUBnG8A09rk4b9jQ3oen7YdS7jUBLAERXBtR5kvWGPuP3m5K6Nknrv+FsW6EPnHgDicXC3t2eP4ej3QG5vFGm+3trom29jCArLm8S0HYM7j+RDPAbdzwrI+A1nbEganlwt7oltU9F2owm3soy0la7R9r29HLi+JLkKyoUmKfw/1W4VkU4sIXVch6WUlC+Ha9tukmlqHrHobza0yCo4iSCWAXN8R6xoAhKynmgBghHH7B2mzwmMkw7Jq1Sq0t7dn/s2fP99/IVJ69MwTy0mudbqiWCTD3me7YoqbjBOnEUbccLqJtE9PCwiX+DjvBoNNC1uyJWo8kS4ashKNIri2PVYVvi2P3+pC7h8ngloTnISk3jUn916gfedglQuiIzP98ngJmLXIpyEP3ISzXvHBQAA3vf6bfZJt/poa97Has5bzadspRtLL8xAoltKrrTS68KutE1f3jHku7enrjStG0m89LuTrhSQXJdkxQ/ZfpHUGsEgGZVqb9724BC2SeReSl112Gfr6+jL/Nm+219gjZUFNrVhNgg5/ZkcFFOelYKxGY3N+blJZ124eA+3cLJIz5jk8+AJYaIKKMD+3ZSIhsadBEpy8LIvJpLgpZ8zLPp8i1cIskEWya5bs/55cXoZzEJI6TvvD7eETNdnGaQG367+hOdzLkh237XWq+BAEx3cnB2EXJdElqvHJTRe6nvM+6wRshfqTUgc1iEfGrb+eFskQ7fhde8UIy/LqUo1KLvWJcXW0nBsu+yai4OvsEctxo0tVkxIUknl3bTc0NKChocF/RlLZdHRLjFBUIVp0gl68MQhML/dkVGtakFmDlCmarmV2Ryovl16H20hAcVoeIy3g45LPtUpA0H0WNlu5pcPDmuJTsiXMcXS9fnN8uAV5+fMqi5SFi0Uy0vkVZJmwNV5jskj6ZYbbF8sIOIf+Nk6LL2vbb5fZ12MfKjUqUe+PjvfDGmSN6tMzX2qLNrcCOzbKtKlJa9x3zqTP0+mzZIx2O5UgJAcHB/HKK69kvq9fvx5PP/00urq6sGBBwOQDUp1EFpE+d6U5BwDbXovYdjGI002bU0ey0YfTa2qxJQWEja1zIGxNTcd5fCd4r8sz3hJS8mV4ULJhIxV79iLgPqurNxMz+vak+2azPikam8WKkfktYX3Y6OEkjmLKp08WPeNyfHJNonN1bSekIHgqlRbXNvdwqPM/okUyiGvbrcC+23IJl78DLGpBv6cGqafqFeM+Y65PH8Ls7JCu7TjLPEXCyQuUtNbxb2iSlxl7eNHkZPiwIM+upPvidllWgpB84okn8OY3vznz/dJLLwUAXHDBBbjuuuti6xghgSnGTSiIOyrutgvBzIXA6JC4sJNJGWnEjVwsklF/B7JFR6y7KyEirr1BRqIIIySD7I8w+0yVt0ompS9tneZveskY+4Nl9gHANs2S0dppll8xgPA7LIBrO1fB7WqRTFhHGwpskAxgkUwEbTCAazvIb24zBrqXRLRI6tTWmZ6AKGIkSGay17w69soDcd3znNpRwi9M0qFhiOhWiVjNrZIj4MTUBICYRmhL2K41exmnti53b04RCf0EftOb3gSjBBUxqWByGbO2YohiOdGYe6BYdbav925DBew7ErSInBc5CMnOmXJjtw+RFtZcG/SBMn2WOR5uIOJWkmkc3dYeQtIuyiwPHpd4rqC4XYu5VmNwTRTymxAmnMNFXPouF6BtJ4ukV2xq6GQbt1lCWDY7Zxb3JRUQ1/DEWHb8X1zdcnqhUbVZg7q2Zy+WElPJpOlur6nNfoma1i5u7rau/JS1SySAOYuB3j1mrdBIyZb5p9j2ZEL8aeuUYQuDZFjmKwkm8MtTTA+muBdO1uQe4B7H+2MuFkl7iZwMEeO0/NZf32g+LOIirpdwvZ++bdoFje27bwKci1jRrSV5qw8bUIwFbith/R6bazvI9tutoW7tey9qne63rJvQzENYSpB5G5pcLGox3bcbp1mHkcyyQAegplb+6WPaO21PZ49Z2q13T6TuZpFVe7I8jCjl0UtS3SRrgJkLxEVXMgS8K8WVnZiwfcbWYBhsN7m43GPWGcK3GTpzNMwDMWRfioHfcfCy6s1e7H9d6cvrVpm4hif1XHdEC6Sj9dG2eMJlPscFoxDQBx4oltdpHrsQdtlmp/Yivc849SHgEImAx/CSiM9SWlsvIxA59iNsTILfvk2IKA4dq1t5UEgSEgT7TTDIjSNZ42JFi2QqC7C+PF/OxbZIulFbZ42j8+1DzOsPQz7CgnytYR4WyUBJAkHcsG44jO4BBPQuOHXFw0Lpv3DAaTmsM0rx/6jnXI99TPYwlum4YiRDzOvqUQBiU2IJuN8Hw+7nUMcoqGD1a8ah72UQSkghSSoDdQE2udTeypWatFU0DNNnB3zw5nKjsLkaFXoWb2zEYJHMx6t7IiGZ1naXmevNv5jmg3wIyQI+aHJ1tbV3S5xc1yz/eQGfB7jdxGj/zW96QEtSXFZRN2FiQGKYvcS1va3GZtMaFpQcdWQoHLvl0ddix2764fsCHGZej98dx12nkCSkMMxeJMLNy32SK2FjmSIZHt3cXAGW1YVkpBEafMgSLPko/xPxgaLcTIHw6ncuD7QA+yMf56eva9tD0ATB4trWBZCRHlLOPpMPoQSQx3xeQxs6Gh/trmCf9kPN40Cz13CyNlWXrHGoPhGyb47ngdsNKS5xEsK17Vd2KxZiFKtRLZJ+87ZN92jGySLps+oSgEKSVAY1tfJGH6SWmi9Bbo4BLR5Bae+WbXDNyovZtV0IA4CTBTcfMZKKti7Zf7MWes/nJbyiWp+C0D3HLOkTK2GeNLbxqgPhck4bKdmm5lZgZtDRfnIQsQAwpWXlRhpu1fbAj5RsE3De2np30RA6wcbtBTOipWxah//6c8EtRtV9Ae/2nEIwmlqkXJnXC2Tg95Uc70v2sj1RcbT4l76SZNY2IUGJKQzGcdm2Lq1MRQj0Yelcx0HOk2r0s4TVN4rFSrcc5csiCchNWN+Hrm3l6cbsaBDSHgxexaBzWm/I7clpH9ssYLV1IZNuwu57W1+nJgO25Sa8Ag7J6dVUmP1nKcWUg4APsmiY86CjG2hskjI3fUEzjh3aD3U4c7AWds4Edm/Jnl7fkD+3eNQ4Vq95/e4BTiK09HUkLZKkCiiE2yRKO+3dcuMIE8+YrBG3dX2DxJnpb+PT2uTBnk/3vk6UwrhhLCj5oi6GIVuDjufe3i37qculmHGhiWSQdFkgyNjauT4E7eu2CEmH38O2l0/Xtlczoco3Be2Dj2vbLoyaWmJI0AtRkNw33tXr5xyWDYLvUJMh+uc2b3t39kuXvSauUz8c4yZLC1okCYlEDBd3W5eUXgnrXnMTnskkMGtR/t7Q7TROA7rnAnu2yvcgbpl8urb9qK0DehZ4l2QKuu965gPbN/jPV1Mj85YSDc3AYF/05WctAiYnskcnCUKuiUFBC583NjvX/9TP0ciu7TyLmqhN+e5ahwYb00ImSBJVztbHHCySQeMrs2YLuBOdxFqo+6guJHUvRCswMuDeZtdMOU/HRqVWslMoRHs3MD6Wn7j3mKCQJJWLGis6rvqTccdTRZk/SnuOq4jjLT4hWfI988U95lvYOsB68ymCE8nglkQ/auuzhy8rF5paxDJSH9QyazsmdfXBrJFO5OqG75wJ7N8pfzd5ZDk3tUj85p5t1ul2wRD79ec1IRfXtm1Zx93oNFGb5rSttfVSSzSuerde68pJfwdd2KehOQdI8fDhfut0RyEdwrXtZm12dFVrx0TFxRuGvCQ5HYeaWv+47yJDIUkql+mzZXSCsJaT+kZgdDh7eq4jQ1QqDU3uVjf7bory4J4+J/wyjvgcs1ze+BPJgEI6RtSoO81tHjO5WFrC1HGMVWv5ZRb70NIuInFqUsSsm5DPuG5tYj+OkUIiGqrcyeO9RG/arS+BaonaG4uCk2XXYWhJx0UjnoT2F56aWqDOYXtzPi9cLJJBQwcSCSARs5gvIBSSpHIJVRJGo7VLlm20B0aHjWuyUd8owtazMK8bJRAnE0dsYRQ8y6jEtY7W3Gpvzj2wcCEFis4Zsm/iyFotFE7XTdg+1tRolmW/hb1CKwK6trMIY1oLkDATpqi3F473pCBKMg8EiZG06Mgc+ua07MwFwEBv8CoJToLPfq4E7UPCRVRm8LESlyEUkoTYSSadY1VCB8jbmDEPmByPJshK4X7THcUymGWSjKMneSDHfhXjgZBISpxqKIpcRD7u4ukhdaQ1RjJIA3ESVknqi6aXbe0EBvZ7lAkrFYLsV01Jxl3Nob4RmO5W9N5J5Pol24RYt5tFskJEoxMUkoQEJaxr2+5WSSajJSiUArX1IVxgHoS+lxbo5hvlJl8Wz4U4YmFzb6J4K8iHRdKDXJrLKkjuQMcMsbIFHUrPiNH6FeYlwDHXxsMiWeys7bxZJB2WK4MhD8NCIUlIFLxuBnMPcg+cjkyRVEtDEzA2El/GoGutSxdmhRyWMiquJW6K5M4vKWI895zEUkGNgraVKe9D/97obVh/9PzqiLpPtLRL6Eum1qCLkIkjzjPvBLVIhpg9yKpyGRkrJ1zEY5CXgwqgOraSkLjxEpLJJEq+RGvQ+2b3XCkoHtWSqu+m7jnhsqYbmgon5NweJNPa5KXAMQ6xDEySpdTFae0uLyRxqQgHfF3bEAtfGCEZCg/rVNcsYHTIjJlOJG11BnVrYpB1lZClK7Qws83f3i0lqqYmIrYXdvU+92u/KgUWMau1Vastp+59JXSY4oJCkpAoFNo9Eft9NGCDyWS0hKUM2n7K18guQXE6ZMri6lbEPZGIr3xUUbAd54KHSGorLEpRdh/XdjGZ1ib/AhGgr465NnHep8K4tgP01+4Cnr0Y2L5e+00X0km5fxgph4oacbi2XV5wZy+WdfpaFrU+6FUC1MhPYyNauarKU5IUkoREotA3g1IyLRWIQoj1GfNkzOa46ktWJPm2BhUymziO8j+lei06XC+q4HgcYTb5vhy9YrATCTPZb/NLtt9Crkf3crR1yTCRjc3O8waNC/eKkWxuDVduqwyhkCQkCvm+qU6fLUW+JyfyvKIqJ5GgiCxnQntQ9coLAUfJyYW4LKBBxKvTPammVopw5zwUYkjyMXiDQtUG9YsldaOxWQrb1zUADXlIfpzWLvdtVw9M5VkkSzyQi5ASJd/WsubWwhe4zge5jPwS9z6OOhqLGyrez82aUQpkPawj7NO8W+DyGCOZNbs2/9io97wNzRLHGAavczbfu9HN/VpTW4QEnQAb25kOdXAqtQaItRDItubNWiix21GtfImExKXGKSIto9nUiPXULWyh8nQkLZKERKLgMZKl6k7zIdR+ikH0eJFLwXEnWjslxjLwUIPEghqZJ2jR6DhIJICaOkni8LNE98wrTJ+C4HX998wH+vbG++KpMtnVMQIQLkYywDyNzVLhws1aOq1dxLzdvVxTCzS5SJei3SbDJEZVnpKkkCQkEuV0M9DubJ0zgb7dtuzQAlAToQZlHLt4+mxgZAjo6onfKhN15KRyI18vMZ09YnWKoz5pGHrmyXjLrR3mtOmzgfExYGBfbm1nvTgVILmnoSl+0dvWJa7ZunpTSDpdj67HLkQyn+Pi6RqfcXsR8oVlACGfba9vAob6vecpMygkCakmWtrF5VIoC2dLBzDYG8wamNWlGJRkFQS6exPDcW6bLpmykYb29CCRKLyIBGSd3bYXKXWe5CoknYpuO/1d6iQS3pb2phbZj271ZfX90NrpXhXBTluXlETyHD8+a2Uh5i0EPv1RLu8KegmlkCSk2iikm7xjhjxIogiGcjL6lipxHOraOimDUorhFaXUpyancc9LqH85o12QNbXBXemtncELc7d3hx/+MeH6pTgEGe4x7peyIkMhSQjJHzlZnagkS4aogq1qDmEiwFj0JSByCsnsxenSWpQZlQ6ztgkpVarlIdw1S+IXu+fafqiWHZBPYihIXuo0t8oIIjU1QGtXcfpQZRoxELV11ZOI1tAk/4K68CsMvioQEoamFmBksEAlXyrxqe/AtDYRA3arV5VsPnFh9qJg86nEMcMonKu7e47UCuzdnZ7gst5yjZHU6eyR5KSuWcCuzemJJboxxepWIiHZ81UKhSQhYeiaJUKyaVqxe1JZOAoAKsmcyUcCU6GoDZmxW8h4SVVsWglJ13VXgJJs6RBLWyIhyTBD/UBbKQ0bWqb7tYKgkCQkDMlkiPFxS4Ryu88mkxJbVV85WY3FI33w6xuB8dGKC/InBUIJ5SjJMPmm1JJtqhAKSUJKlfqYRl4opczWIMxcIFaPllKyepQ5M+YBk+PWcYYLQhlZQKNAgU4IhSQhJUttHTBrkQy5FYWOHikm7DYEWalSW196Vo9yo7ZehKOqoZlMxvdiUhUEfPmaMRcYGwEaXUJd9Je4cnuhIyQgFJKElDK5jOzQ2mEdvYNUDzPny1jSpTwOeCWQrDHjJUmRoEAvNhSShBBSaSRrmBCm4zYUH6ksaPUtCry6CCGEVCYz5olLf0bIsajzokdCNlrh4aWxQe1YdGiRJIQQUpk0NgONC4rdC4GCh1QotEgSQgjJD23pkWZU0g8hsUOFXmxokSSEEJIf2qYDjS3VM1SeJyEFz7RWYHB/EUo2ERIOCklCCCH5IZEAGsqo7NC0dimZVQrlp+obgdmLgRo+pklpwzOUEEIKTUs7MNgHtJdZjc9Kp7MHaO2UGq5xE8UDm49+EBIzFJKEEFJoOnqA1i4KhVIjkcitdqt343lqt8phyZ+iw2QbQggpNIkERSQhpCKgkCSEEEIIIZGgkCSEEELyQbLG/JsuWFKhMEaSEEIIyQe1dZLAwyEa8wgFerGhkCSEEFIa1DcC46N5THgpAi0dxe5BZUMdWXQoJAkhhJQG3XOkLNK0tmL3hBASEApJQgghpUFNLWtrElJmMHCDEEIIIYREgkKSEEIIIWUKgySLDYUkIYQQQsoTZsQXnUhH4Morr8SiRYvQ2NiIE088EY899ljc/SKEEEII8aapBWhuBTpmFLsnVUtoIfmb3/wGl156Kb7+9a/jySefxLJly7By5Urs2rUrH/0jhBBCCHEmkQCmzwZaO4vdk6oltJD8/ve/j49+9KO48MILcdhhh+HHP/4xmpub8fOf/zwf/SOEEEIIISVKKCE5Pj6ONWvWYMWKFWYDySRWrFiBhx9+OPbOEUIIIYSQ0iVUHck9e/ZgamoKM2fOtEyfOXMmXnzxRcdlxsbGMDY2lvne398foZuEEEIIIaTUyHu606pVq9De3p75N3/+/HyvkhBCCCGEFIBQQrK7uxs1NTXYuXOnZfrOnTsxa9Ysx2Uuu+wy9PX1Zf5t3rw5em8JIYQQQkjJEEpI1tfX49hjj8Xdd9+dmZZKpXD33Xdj+fLljss0NDSgra3N8o8QQgghhJQ/ocfavvTSS3HBBRfguOOOwwknnIAf/OAHGBoawoUXXpiP/hFCCCGEkBIltJA899xzsXv3bnzta1/Djh07cNRRR+H222/PSsAhhBBCCCGVTcIwDKOQK+zv70d7ezv6+vro5iaEEEIIKUGC6jUOUkkIIYQQQiJBIUkIIYQQQiJBIUkIIYQQQiJBIUkIIYQQQiJBIUkIIYQQQiIRuvxPrqgkcY65TQghhBBSmiid5lfcp+BCcmBgAAA45jYhhBBCSIkzMDCA9vZ2198LXkcylUph27ZtaG1tRSKRyOu6+vv7MX/+fGzevJk1K8sYHsfKgMexMuBxrAx4HCuDfB5HwzAwMDCAOXPmIJl0j4QsuEUymUxi3rx5BV0nx/iuDHgcKwMex8qAx7Ey4HGsDPJ1HL0skQom2xBCCCGEkEhQSBJCCCGEkEhUtJBsaGjA17/+dTQ0NBS7KyQHeBwrAx7HyoDHsTLgcawMSuE4FjzZhhBCCCGEVAYVbZEkhBBCCCH5g0KSEEIIIYREgkKSEEIIIYREgkKSEEIIIYREoqKF5JVXXolFixahsbERJ554Ih577LFid6lquf/++/Gud70Lc+bMQSKRwB//+EfL74Zh4Gtf+xpmz56NpqYmrFixAi+//LJlnn379uH8889HW1sbOjo68JGPfASDg4OWeZ555hmceuqpaGxsxPz58/Hd734335tWVaxatQrHH388Wltb0dPTg7PPPhvr1q2zzDM6OoqLL74Y06dPR0tLC8455xzs3LnTMs+mTZtwxhlnoLm5GT09Pfi3f/s3TE5OWua57777cMwxx6ChoQEHHXQQrrvuunxvXtVw9dVXY+nSpZkixsuXL8dtt92W+Z3HsPz4zne+g0Qigc985jOZaTyO5cE3vvENJBIJy79DDz0083vJH0ejQrnhhhuM+vp64+c//7nx/PPPGx/96EeNjo4OY+fOncXuWlVy6623Gl/+8peNP/zhDwYA46abbrL8/p3vfMdob283/vjHPxp///vfjTPPPNNYvHixMTIykpnn7W9/u7Fs2TLjkUceMf72t78ZBx10kHHeeedlfu/r6zNmzpxpnH/++cZzzz1nXH/99UZTU5NxzTXXFGozK56VK1ca1157rfHcc88ZTz/9tPGOd7zDWLBggTE4OJiZ56KLLjLmz59v3H333cYTTzxhnHTSScbrX//6zO+Tk5PGEUccYaxYscJ46qmnjFtvvdXo7u42Lrvsssw8r732mtHc3Gxceumlxtq1a40f/ehHRk1NjXH77bcXdHsrlZtvvtn4y1/+Yrz00kvGunXrjC996UtGXV2d8dxzzxmGwWNYbjz22GPGokWLjKVLlxqf/vSnM9N5HMuDr3/968bhhx9ubN++PfNv9+7dmd9L/ThWrJA84YQTjIsvvjjzfWpqypgzZ46xatWqIvaKGIaRJSRTqZQxa9Ys43vf+15mWm9vr9HQ0GBcf/31hmEYxtq1aw0AxuOPP56Z57bbbjMSiYSxdetWwzAM46qrrjI6OzuNsbGxzDxf+MIXjCVLluR5i6qXXbt2GQCM1atXG4Yhx62urs747W9/m5nnhRdeMAAYDz/8sGEY8lKRTCaNHTt2ZOa5+uqrjba2tsyx+/znP28cfvjhlnWde+65xsqVK/O9SVVLZ2en8dOf/pTHsMwYGBgwDj74YOPOO+803vjGN2aEJI9j+fD1r3/dWLZsmeNv5XAcK9K1PT4+jjVr1mDFihWZaclkEitWrMDDDz9cxJ4RJ9avX48dO3ZYjld7eztOPPHEzPF6+OGH0dHRgeOOOy4zz4oVK5BMJvHoo49m5nnDG96A+vr6zDwrV67EunXrsH///gJtTXXR19cHAOjq6gIArFmzBhMTE5Zjeeihh2LBggWWY3nkkUdi5syZmXlWrlyJ/v5+PP/885l59DbUPLx+42dqago33HADhoaGsHz5ch7DMuPiiy/GGWeckbWveRzLi5dffhlz5szBAQccgPPPPx+bNm0CUB7HsSKF5J49ezA1NWXZqQAwc+ZM7Nixo0i9Im6oY+J1vHbs2IGenh7L77W1tejq6rLM49SGvg4SH6lUCp/5zGdw8skn44gjjgAg+7m+vh4dHR2Wee3H0u84uc3T39+PkZGRfGxO1fHss8+ipaUFDQ0NuOiii3DTTTfhsMMO4zEsI2644QY8+eSTWLVqVdZvPI7lw4knnojrrrsOt99+O66++mqsX78ep556KgYGBsriONbmtDQhpGq5+OKL8dxzz+GBBx4odldIBJYsWYKnn34afX19+N3vfocLLrgAq1evLna3SEA2b96MT3/607jzzjvR2NhY7O6QHDj99NMzfy9duhQnnngiFi5ciBtvvBFNTU1F7FkwKtIi2d3djZqamqyspp07d2LWrFlF6hVxQx0Tr+M1a9Ys7Nq1y/L75OQk9u3bZ5nHqQ19HSQeLrnkEtxyyy249957MW/evMz0WbNmYXx8HL29vZb57cfS7zi5zdPW1lYWN9ZyoL6+HgcddBCOPfZYrFq1CsuWLcMPf/hDHsMyYc2aNdi1axeOOeYY1NbWora2FqtXr8YVV1yB2tpazJw5k8exTOno6MAhhxyCV155pSyux4oUkvX19Tj22GNx9913Z6alUincfffdWL58eRF7RpxYvHgxZs2aZTle/f39ePTRRzPHa/ny5ejt7cWaNWsy89xzzz1IpVI48cQTM/Pcf//9mJiYyMxz5513YsmSJejs7CzQ1lQ2hmHgkksuwU033YR77rkHixcvtvx+7LHHoq6uznIs161bh02bNlmO5bPPPmt5MbjzzjvR1taGww47LDOP3oaah9dv/kilUhgbG+MxLBNOO+00PPvss3j66acz/4477jicf/75mb95HMuTwcFBvPrqq5g9e3Z5XI85p+uUKDfccIPR0NBgXHfddcbatWuNj33sY0ZHR4clq4kUjoGBAeOpp54ynnrqKQOA8f3vf9946qmnjI0bNxqGIeV/Ojo6jD/96U/GM888Y5x11lmO5X+OPvpo49FHHzUeeOAB4+CDD7aU/+nt7TVmzpxpfPCDHzSee+4544YbbjCam5tZ/idGPv7xjxvt7e3GfffdZylVMTw8nJnnoosuMhYsWGDcc889xhNPPGEsX77cWL58eeZ3VaribW97m/H0008bt99+uzFjxgzHUhX/9m//ZrzwwgvGlVdeyZIjMfLFL37RWL16tbF+/XrjmWeeMb74xS8aiUTC+Otf/2oYBo9huaJnbRsGj2O58LnPfc647777jPXr1xsPPvigsWLFCqO7u9vYtWuXYRilfxwrVkgahmH86Ec/MhYsWGDU19cbJ5xwgvHII48Uu0tVy7333msAyPp3wQUXGIYhJYC++tWvGjNnzjQaGhqM0047zVi3bp2ljb179xrnnXee0dLSYrS1tRkXXnihMTAwYJnn73//u3HKKacYDQ0Nxty5c43vfOc7hdrEqsDpGAIwrr322sw8IyMjxic+8Qmjs7PTaG5uNt797ncb27dvt7SzYcMG4/TTTzeampqM7u5u43Of+5wxMTFhmefee+81jjrqKKO+vt444IADLOsgufHhD3/YWLhwoVFfX2/MmDHDOO200zIi0jB4DMsVu5DkcSwPzj33XGP27NlGfX29MXfuXOPcc881XnnllczvpX4cE4ZhGLnbNQkhhBBCSLVRkTGShBBCCCEk/1BIEkIIIYSQSFBIEkIIIYSQSFBIEkIIIYSQSFBIEkIIIYSQSFBIEkIIIYSQSFBIEkIIIYSQSFBIEkIIIYSQSFBIEkIIIYSQSFBIEkIIIYSQSFBIEkIIIYSQSFBIEkIIIYSQSPx/CTRL8LuU3nwAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 800x500 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAHDCAYAAAAupnzhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYsklEQVR4nO3dd3hUVf7H8fckIYWSgpGEQGjSFBAUJEYB1yUaFV1x/a2IKIoIiqBgUBELsMoKgihFiqAr7q4K6lppyoKIYgwQehFRQYomgCEFCGlzfn9cMjAaSii5mbmf1/PcZzIzZzLfyRX4ePK957iMMQYREREREYcJsLsAERERERE7KAiLiIiIiCMpCIuIiIiIIykIi4iIiIgjKQiLiIiIiCMpCIuIiIiIIykIi4iIiIgjKQiLiIiIiCMpCIuIiIiIIykIi4g40MyZM3G5XGzfvt3uUkREbKMgLCIiIiKOpCAsIiIiIo6kICwiIn9gjCE/P9/uMkREzikFYRERoUGDBtx444189tlntGvXjrCwMF599VW7yxIROacUhEVEBIAtW7bQvXt3rrnmGiZMmECbNm3sLklE5JwKsrsAERGpHH744QcWLFhAcnKy3aWIiFQIzQiLiAgADRs2VAgWEUdREBYREcAKwiIiTqIgLCIiAISFhdldgohIhVIQFhERERFHUhAWEREREUdSEBYRERERR1IQFhERERFHchljjN1FiIiIiIhUNM0Ii4iIiIgjKQiLiIiIiCMpCIuIiIiIIykIi4iIiIgjKQiLiIiIiCMpCIuIiIiIIwXZXYCvcbvd/PLLL9SoUQOXy2V3OSIiIiLyO8YY8vLyiIuLIyDg+PO+CsLl9MsvvxAfH293GSIiIiJyEjt37qRu3brHfV5BuJxq1KgBWD/Y8PBwm6sRERERkd/Lzc0lPj7ek9uOR0G4nErbIcLDwxWERURERCqxk7Wx6mI5EREREXEkBWERERERcSQFYRERERFxJAVhEREREXEkBWERERERcSQFYRERERFxJAVhEREREXEkBWERERERcSQFYRERERFxJAVhEREREXGk0wrCkydPpkGDBoSGhpKQkMDy5ctPOP69996jefPmhIaG0qpVK+bNm+f1vDGGYcOGUbt2bcLCwkhKSmLr1q1eY7KysujRowfh4eFERkbSu3dvDhw44Hn+8OHD3HPPPbRq1YqgoCC6du1aZi1Llizh0ksvJSQkhMaNGzNz5szT+RGIiIiIiI8rdxCePXs2KSkpDB8+nFWrVtG6dWuSk5PZs2dPmeO/+eYbunfvTu/evVm9ejVdu3ala9eubNiwwTNmzJgxTJw4kWnTppGWlka1atVITk7m8OHDnjE9evRg48aNLFy4kDlz5rB06VL69u3reb6kpISwsDAefvhhkpKSyqxl27ZtdOnShauvvpo1a9YwaNAg7rvvPj777LPy/hhERERExMe5jDGmPC9ISEjgsssu45VXXgHA7XYTHx/PQw89xBNPPPGH8d26dePgwYPMmTPH89jll19OmzZtmDZtGsYY4uLiGDx4MI8++igAOTk5xMTEMHPmTG6//XY2b97MRRddxIoVK2jXrh0ACxYs4IYbbmDXrl3ExcV5vec999xDdnY2H330kdfjQ4YMYe7cuV4h/Pbbbyc7O5sFCxac0ufPzc0lIiKCnJwcwsPDT+k1IiIiIlJxTjWvlWtGuLCwkPT0dK8Z14CAAJKSkkhNTS3zNampqX+YoU1OTvaM37ZtGxkZGV5jIiIiSEhI8IxJTU0lMjLSE4IBkpKSCAgIIC0t7ZTrP1ktjpSVCbt/hIJ8uysRERERqVBB5Rm8b98+SkpKiImJ8Xo8JiaG7777rszXZGRklDk+IyPD83zpYycaU6tWLe/Cg4KoWbOmZ8ypOF4tubm55OfnExYW9ofXFBQUUFBQ4Lmfm5t7yu9X6eXsg+fvhpJi636NmhAdB+fXOXJbF2o3gOi6EBhoa6kiIiIiZ1u5grATjRo1ir///e92l3Fu7Nl1NAQD5GVZx7YN3uMCq0BMPajd0ArGcY2gbhOoEVWh5YqIiIicTeUKwtHR0QQGBpKZmen1eGZmJrGxsWW+JjY29oTjS28zMzOpXbu215g2bdp4xvz+Yrzi4mKysrKO+77lqSU8PLzM2WCAoUOHkpKS4rmfm5tLfHz8Kb9npZafZ902aAF9RsK+X6zjt19g727I3AEZ26HwMPzyo3UcKyoG6jU7etRtCqFVK/xjiIiIiJyOcgXh4OBg2rZty6JFizzLk7ndbhYtWsSAAQPKfE1iYiKLFi1i0KBBnscWLlxIYmIiAA0bNiQ2NpZFixZ5gm9ubi5paWn069fP8z2ys7NJT0+nbdu2ACxevBi3201CQsIp15+YmPiHpduOraUsISEhhISEnPJ7+JT8I8vPVa0OVWscDbTHcrshK8MKxL9ug1+3Wz3Fe3fC/kzrWLvUGutyQe1GcEEraHSxdatZYxEREamkyt0akZKSwt133027du1o374948eP5+DBg/Tq1QuAnj17UqdOHUaNGgXAwIEDueqqqxg3bhxdunRh1qxZrFy5kunTpwPgcrkYNGgQI0eOpEmTJjRs2JBnnnmGuLg4T9i+8MILue666+jTpw/Tpk2jqKiIAQMGcPvtt3utGLFp0yYKCwvJysoiLy+PNWvWAHgC9gMPPMArr7zC448/zr333svixYt59913mTt37un+/HzboSNBOKz68ccEBFj9wtFx0PKKo48fPgg7t8KO72DHFti5BfbvOTpz/NVH1rha8dCoFVxwMTS9FMJrnrOPIyIiIlIe5Q7C3bp1Y+/evQwbNoyMjAzatGnDggULPBeh7dixg4CAo4tRXHHFFbz99ts8/fTTPPnkkzRp0oSPPvqIli1besY8/vjjHDx4kL59+5KdnU2HDh1YsGABoaGhnjFvvfUWAwYMoHPnzgQEBHDrrbcyceJEr9puuOEGfv75Z8/9Sy65BLA27ABr9nnu3Lk88sgjTJgwgbp16/Laa6+RnJxc3h+DfyhtjThRED6e0GrQpI11lMr5zeov/nEd/LTemkHes9M6vj0yEx93ATRvB80vg4YtIKjKmX4KERERkdNS7nWEnc6v1hH+7yT4+mO49k64/p6z//0P5sK2jfDTOti6FnZ97/18cCg0bgMXXgYtEiGqVpnfRkRERKQ8TjWvadUIJzt0BjPCp6JaOLRMtA6AA9mwJR2+W2Hd5u2HTd9ax38nWRfbtboCWnWA2PpWz7GIiIjIOaIg7GT5p9AjfDZVj4S2na3D7YZff4LvVsLGb2H7RmvGeNf3MH8mRNc5GorrX2j1KouIiIicRQrCTuZZNaJGxb93QADUaWwdnW+3Zoc3fgvrv4bvV8G+3fDFe9YRFQOX/Aku/bO1hrFmikVEROQsUBB2Ms+qEdXsrQOsZdYuv946Dh+yZorXfw0bU60l2hbPto6Y+nDp1VYojo47+fcVEREROQ4FYSfzrBphw4zwiYRWhTadrKOwwOohXvUFbEqDzJ+t1on5M62WifbJ1mxxRbV3iIiIiN9QEHayYzfUqKyCQ6DNVdaRfwDWL4P0xbB1Nfy82To+mgqtO0LCddZGHuonFhERkVOgIOxUhQVQXGR97SuzqWHVrRng9smQmwXp/4O0BdZW0Cv/Zx3n1T4y5jqIjLa7YhEREanEFISdqrQtIiAAQqraW8vpCK8JV98Gf/qbNSuctgBWL4HffrXaJj77l7UTXoebrbWKdYGdiIiI/I6CsFPlH7Ruw6r7dkh0uaDBRdbRtR+s+wq+nW/tbLfua+uIqQdX/gUuu8baEU9EREQEBWHnOlRJL5Q7EyFhcNm11vHLT/DNp7BiodU68cErMPd1aJcEHbtaq0+IiIiIoykIO1V+JVo67VyIawT/NxBuvM8Kw8s+sQLxsk+t46IEq62icWvfnhEXERGR06Yg7FSeIOxHM8JlCa1mzQB3uBl+WAtffQgbvrGWYtuUZm3ocfXfrFUpAvXHQURExEn0L79TlbZGVOal084mlwuatLGOvbvgyw9g+Wew+wf4zyiY8xp0ugUSu6iPWERExCG04KpTeWaEHRKEj3V+Xfi/h2H423D9Pdaudtl74ZPp8NydsOBfcDDX7ipFRETkHFMQdionB+FS1SLg2jvhmbfg9sFQK96aKf/sX1YgnvMa5O23u0oRERE5R9Qa4VSeXeX8vEf4VFQJhoTrrdUm1n0NC9+yVp1YNAuWfmi1S1x9mzboEBER8TMKwk7lWT7NwTPCvxcQaF0017oTbPwWFv4HdmyBpR9YK01cfh0k9VAgFhER8RMKwk6l1ojjc7mgZSK0uBy+XwWf/8faoGPZp9YFdlf+BTrfDtUj7a5UREREzoCCsFOpNeLkXC5o1tY6flgL896AbRtgyfuQOhc6/dVaek3/MyEiIuKTdLGcU3laI7RU2Clp3Boeehn6Pg91m0JBvtVL/Nyd8L+3rfsiIiLiUzQj7FRO2VDjbHK54ML20PwyWP81zJsJmT/D3H9a6xJf1xMuv0Ebc4iIiPgIzQg7UUnJ0RlMp2yocTa5XHBxR3h8OvR4AqLj4EA2vD8RxvSxdq4zxu4qRURE5CQUhJ2odDYYIFRB+LQFBEK7JHjin3DrQ9a6xHt2wuvDYPJg2PGd3RWKiIjICSgIO1H+kf7gkKoQGGhvLf4gMAg63AxPvQlJ3a11iX9cBy8PgH//A7Iy7K5QREREyqAg7ESeFSM0G3xWhVWHLr1h6Exod43VQrHqC3i+F3w6Aw4fsrtCEREROYaCsBMd0hrC51RULegxBFKmQJNLoKQIFs+GUb1gxUJwu+2uUERERFAQdqZ87SpXIeo2gX5j4L6REF0Hcn+Dt1+ASYOsHetERETEVgrCTpR/0LrVZhrnnstl7VA3ZAbceB8Eh8L2TTB+AMwaB3n77a5QRETEsRSEneiQZoQrXFCwtS3zkzOhbZK1vFrafHj+Hvjyv9aSdiIiIlKhFISdKF89wraJiIY7n4CHJ1itE4cPwkdT4aUH4efNdlcnIiLiKArCTuRZNUKtEbZp2AIeeQVue8Q6D7/8CBMehvcneK/zLCIiIueMgrATlbZGhFaztw6nCwiExC4w9A247FqrXWLZp9bqEumLtDudiIjIOaYg7ESaEa5cqkfCHY9D/xehVrx1Ad1/RsG0IbB3l93ViYiI+C0FYSdSj3Dl1LgNPPYqXH8PBFWB71fBmD6w4F9QXGR3dSIiIn5HQdiJFIQrr6BguPZOePw1aNbWCsCf/QvG9YOfv7O7OhEREb+iIOxEpT3Cao2ovM6vA/ePhrueslonMrZbF9N9/CoUHra7OhEREb+gIOw0xhzdUEMzwpWbywWXXg1DXoe2ncG4Ycl7MPZ++GGt3dWJiIj4PAVhpyk4ZAUqUBD2FdUj4M6h1lbNEdGwbzdMHgzvjbfWIRYREZHToiDsNIeO9AcHVYHgEHtrkfJpcTkMec1acg3gmznwwn2wKc3eukRERHyUgrDTeC6UU3+wTwqrbm3C8eCLcF5tyN4LM56CWeM0OywiIlJOCsJOk3/kQjm1Rfi2Jm3g8Rlw1a1WL3HafPUOi4iIlJOCsNOUtkZUVRD2ecGh0LWfNTtcMxayMmDKo/DRVCgssLs6ERGRSk9B2Gm0hrD/adwaHpsOl99grQry5X/hpX6wY4vdlYmIiFRqCsJOoyDsn0KrQrcU6PMPCD8PMnfAhIdg/ptQUmx3dSIiIpWSgrDTaDMN/3ZRAjw+HS75E7jd8Pm/YfxDkPGz3ZWJiIhUOgrCTqMZYf9XLQJ6Pg09n7L+h2fXVqtVYtknVuuEiIiIAArCzqMg7ByXXA2PvwbN20FRIbw/Ef45DA7k2F2ZiIhIpaAg7DSe1ggFYUeIOA/6PG+tLhFYBTakwti+sCXd7spERERspyDsNPlHNl3QhhrOERBgrTf8yCsQUw9yf4NpQ+CT6VBcZHd1IiIitlEQdhptqOFcdS6AlClw5U3W/S/ehQkPw56d9tYlIiJiEwVhp9GGGs4WHAr/NxDu/TtUC7cupBvXD76dpwvpRETEcRSEneZw6cVyao1wtFZXWptwNLkECg/D7Jfg38/D4YN2VyYiIlJhFISdpKjQOgDCqtlbi9gvIhoeeAFu7GP1Ea/+Al56EHb/YHdlIiIiFUJB2ElKV4xwBUBIVXtrkcohIAA6d4OHxkPk+bB3t7UBx7JP1SohIiJ+T0HYSTxtEdWsACRSqsFF8Oir0CLRWkni/Qnwr5FqlRAREb+mNOQkh7SZhpxAtXDo/Szc/AAEBMKaL60L6XZttbsyERGRc0JB2ElKWyN0oZwcj8sFf/o/eOhliKoF+36B8Q/D1x+rVUJERPyOgrCTlP6aW0unyck0uAgGT4OWiVBSBP+dBG8+p1YJERHxKwrCTnJIm2lIOVQLh3uPaZVYuxRe6g+/bre7MhERkbNCQdhJ8tUjLOVU2irx8Pgjq0rsgvEDYNUXdlcmIiJyxhSEnaQ0CFdVj7CUU/0LYfDUoxtw/Psf8OEUKCm2uzIREZHTpiDsJGqNkDNRPRIeGA1J3a37Sz+AyYMh5zdbyxIRETldCsJOotYIOVMBgdClN9z7dwitCts2wrgH4Md1dlcmIiJSbgrCTlI6I6xVI+RMtboSUqZA7QaQtx+mPApL3tcSayIi4lMUhJ0k/8jSV1pHWM6G8+vCwElw6Z/B7YaPp1lLrBXk212ZiIjIKVEQdpJ89QjLWRYSBncOhb8OOLrE2viHrI04REREKjkFYScp3WJZrRFyNrlc0LErDHgJatSEjO3wcn/Ykm53ZSIiIid0WkF48uTJNGjQgNDQUBISEli+fPkJx7/33ns0b96c0NBQWrVqxbx587yeN8YwbNgwateuTVhYGElJSWzdutVrTFZWFj169CA8PJzIyEh69+7NgQMHvMasW7eOjh07EhoaSnx8PGPGjPlDLePHj6dZs2aEhYURHx/PI488wuHDh0/nx+BbSkqg4JD1tVoj5Fxo2MLqG67X3OpHf3Wo+oZFRKRSK3cQnj17NikpKQwfPpxVq1bRunVrkpOT2bNnT5njv/nmG7p3707v3r1ZvXo1Xbt2pWvXrmzYsMEzZsyYMUycOJFp06aRlpZGtWrVSE5O9gqoPXr0YOPGjSxcuJA5c+awdOlS+vbt63k+NzeXa6+9lvr165Oens7YsWMZMWIE06dP94x5++23eeKJJxg+fDibN2/m9ddfZ/bs2Tz55JPl/TH4nsPH/E9DWDX76hD/FhltzQy3TwZzpG/4rRegsMDuykRERP7IlFP79u1N//79PfdLSkpMXFycGTVqVJnjb7vtNtOlSxevxxISEsz9999vjDHG7Xab2NhYM3bsWM/z2dnZJiQkxLzzzjvGGGM2bdpkALNixQrPmPnz5xuXy2V2795tjDFmypQpJioqyhQUFHjGDBkyxDRr1sxzv3///ubPf/6zVy0pKSnmyiuvPOXPn5OTYwCTk5Nzyq+pFPbsMmZQZ2OG3Gh3JeIEbrcxX35gTMo11n934/oZs3+P3VWJiIhDnGpeK9eMcGFhIenp6SQlJXkeCwgIICkpidTU1DJfk5qa6jUeIDk52TN+27ZtZGRkeI2JiIggISHBMyY1NZXIyEjatWvnGZOUlERAQABpaWmeMZ06dSI4ONjrfbZs2cL+/fsBuOKKK0hPT/e0cvz000/MmzePG264oTw/Bt+kNYSlIrlc0OkWeOAFayfDnd/DSw/CTxtO/loREZEKUq4gvG/fPkpKSoiJifF6PCYmhoyMjDJfk5GRccLxpbcnG1OrVi2v54OCgqhZs6bXmLK+x7Hvcccdd/Dss8/SoUMHqlSpwgUXXMCf/vSnE7ZGFBQUkJub63X4JAVhsUOTS6y+4bhGR9cb/maO3VWJiIgADls1YsmSJTz//PNMmTKFVatW8cEHHzB37lyee+65475m1KhRREREeI74+PgKrPgs8mymoQvlpIKdVxsengCtO0FJMbw33jpKiu2uTEREHK5cQTg6OprAwEAyMzO9Hs/MzCQ2NrbM18TGxp5wfOntycb8/mK84uJisrKyvMaU9T2OfY9nnnmGu+66i/vuu49WrVpxyy238PzzzzNq1CjcbneZ9Q8dOpScnBzPsXPnzjLHVXqaERY7hYTB3c/ADfdabRPfzIFpT8BBH/0Ni4iI+IVyBeHg4GDatm3LokWLPI+53W4WLVpEYmJima9JTEz0Gg+wcOFCz/iGDRsSGxvrNSY3N5e0tDTPmMTERLKzs0lPP7ou6eLFi3G73SQkJHjGLF26lKKiIq/3adasGVFRUQAcOnSIgADvjxwYGAhYS7iVJSQkhPDwcK/DJykIi91cLrjmDuj9nBWMf1gDEx6CPbvsrkxERByq3K0RKSkpzJgxgzfffJPNmzfTr18/Dh48SK9evQDo2bMnQ4cO9YwfOHAgCxYsYNy4cXz33XeMGDGClStXMmDAAABcLheDBg1i5MiRfPLJJ6xfv56ePXsSFxdH165dAbjwwgu57rrr6NOnD8uXL2fZsmUMGDCA22+/nbi4OMDq/w0ODqZ3795s3LiR2bNnM2HCBFJSUjy13HTTTUydOpVZs2axbds2Fi5cyDPPPMNNN93kCcR+65B2lZNKosXlVqtEVC3YuxvGD4DvV9ldlYiIONHpLEkxadIkU69ePRMcHGzat29vvv32W89zV111lbn77ru9xr/77rumadOmJjg42LRo0cLMnTvX63m3222eeeYZExMTY0JCQkznzp3Nli1bvMb89ttvpnv37qZ69eomPDzc9OrVy+Tl5XmNWbt2renQoYMJCQkxderUMaNHj/Z6vqioyIwYMcJccMEFJjQ01MTHx5sHH3zQ7N+//5Q/u88unzb7ZWsZqwX/srsSEUtuljHjH7L+u0y5xphln9pdkYiI+IlTzWsuY7TtU3nk5uYSERFBTk6Ob7VJvPkcrPkSbulvLWslUhkUFcLscZB+pDWq4y1w8wPg77+hERGRc+pU85qjVo1wtEPqEZZKqEow9HjCuogO4KsP4bWnj/a0i4iInEMKwk5RusWylk+Tyqb0Irp7hkGVEPhuBUwYCPt+sbsyERHxcwrCTuGZEa5mbx0ix9O6Ezz0MkScB5k/w/iH4Mf1dlclIiJ+TEHYKfJLV43QjLBUYvFNYdBkqNsUDubA1MdgxUK7qxIRET+lIOwExhztuayqHmGp5CKj4aGXju5E9/YL8Nm/rf+ORUREziIFYScoyIfSnfN0sZz4guBQ6Pk0/LmbdX/Bm/DOWCguOvHrREREykFB2AlK2yICq1gXI4n4goAAuKkP/G2Q9fWKz2H6k1pRQkREzhoFYSfIP2jdVq1uXaEv4kuuuBHuG2lty7x1tbWiRFaG3VWJiIgfUBB2Am2vLL7uwvbw0HiIiD66osSOLXZXJSIiPk5B2AnytZmG+IE6F8CgSRDXCPL2w+TBsOEbu6sSEREfpiDsBPnaTEP8ROT51lrDzdtB4WH453BY+qHdVYmIiI9SEHYCT2uENtMQPxBazeoZTuxiLan24WT4cAq4S+yuTEREfIyCsBN4WiM0Iyx+IjDIWk3ixj7W/aUfwBt/t2aJRURETpGCsBNoMw3xRy4XdO4GPZ+CoCpWv/CUx+BAjt2ViYiIj1AQdoJDulhO/NglV0O/MVYP/M+bYaKWVxMRkVOjIOwEpRtqqDVC/FWjVtbyapHnw95dMP5h2LXV7qpERKSSUxB2ArVGiBPE1oeBpcurZcErg2FLut1ViYhIJaYg7ARqjRCniIyGAS9B49ZQcMjakjl9kd1ViYhIJaUg7ATaUEOcJKw63D8KLvmTtaTaf0bB4tnWUmsiIiLHUBB2Am2oIU4TFAx3PglX3Wrd/3QGfDQV3G576xIRkUpFQdjfFRdCUYH1tWaExUkCAqBrP/jL/db9pR/Av0ZCUaG9dYmISKWhIOzvSvuDXS4IqWpvLSJ2uPpvcNeT1iYca5fCq08c/S2JiIg4moKwvzu2PzhAp1sc6tI/W33DIVXhx3UwcRBk77W7KhERsZmSkb8rDcKh1eytQ8RuTS6Bh16G8PMgY7u18caenXZXJSIiNlIQ9neHjmymoQvlRKDOBTBwIpxfF/bvsWaGd2yxuyoREbGJgrC/09JpIt5qxsDD4yG+KRzMgSmPauMNERGHUhD2dwrCIn9UPRIefNFqlyjIhxlPw5ov7a5KREQqmIKwv/O0RigIi3gJrQp9/wGtO0FJkbW02rJP7a5KREQqkIKwv/PMCKtHWOQPgoKh51OQeKO189z7E+Dz/2gXOhERh1AQ9neeXeU0IyxSpoBA+NtAuKaHdX/+TPhwsnahExFxAAVhf3dIPcIiJ+VywQ294Jb+1v2vPoK3RkNxka1liYjIuaUg7O/yj/QIqzVC5OQ63QJ3DrVmiVcthteHWRfTiYiIX1IQ9ndqjRApn7ad4b7noEoIfLcCpg2Bg7l2VyUiIueAgrC/U2uESPld2B4eHGttRLN9E7ySAtn77K5KRETOMgVhf6fWCJHT0+AiGPAyRJRuyfww7N1ld1UiInIWKQj7M3cJHD5kfa3WCJHyq90AHj5mS+ZJj8AvP9ldlYiInCUKwv4s/+DRr9UaIXJ6asbAQy9D3AWQt99qk9i+ye6qRETkLFAQ9melF8oFh0JgkL21iPiyGlEwYBw0aGH9uZr6OHy/yu6qRETkDCkI+zPPihHqDxY5Y2HV4YHR0LQtFB6G6U/B+mV2VyUiImdAQdifHSq9UK6avXWI+IuQMOjzHLTqACVFMPPvsPJ/dlclIiKnSUHYn5XOCGvFCJGzJygY7n4G2l1jbcP81mj4+mO7qxIRkdOgIOzPtJmGyLkRGAjdH4OOXa37/50E/3vH1pJERKT8FIT9WelmGqEKwiJnXUAA3NIfrulh3Z/7Onw6A4yxty4RETllCsL+rHQzDV0sJ3JuuFxwQy/4S1/r/uLZ8P4Eq2VCREQqPQVhf5av7ZVFKsTVt8Ftj1jB+Js5Vt9wSbHdVYmIyEkoCPszBWGRipPYBe58EgICYdVia0WJokK7qxIRkRNQEPZnpcun6WI5kYpx6dVw79+hSjBsSIXpTx7d5lxERCodBWF/VrrFspZPE6k4LS6Hvs9baw7/sMbahe5grt1ViYhIGRSE/VnpxXJqjRCpWI3bwINjrQtVd3wHUx6FvP12VyUiIr+jIOzPDmkdYRHb1GsOA16GGlHwy0/wymDI3md3VSIicgwFYX9ljHaWE7Fb7QZWGI48H/bsgFcegawMu6sSEZEjFIT9VeFhcJdYX4dVs7cWESerVRceehnOqw2//QqTHoG9u+yuSkREUBD2X6UrRgQGQXCovbWIOF3NWGtmuFY9yN4Lk1Lg1+12VyUi4ngKwv7q2DWEXS57axERiIyGAeMgrhHkZcHkFNi11e6qREQcTUHYX2kzDZHKp0YUPPgi1GtmLak2+VHYvsnuqkREHEtB2F9pMw2RyqlaOPQbAw1bwuGDMG0I/LDW7qpERBxJQdhfaTMNkcortBrcPwqaXAIF+TB9KHy3wu6qREQcR0HYX2kzDZHKLSQM+vwDLkqAokJ4bRisX2Z3VSIijqIg7K+0mYZI5VclGHqNgNadoKQIZv4dVn9hd1UiIo6hIOyvtJmGiG8IqgJ3PQXtksDthn+PguWf2V2ViIgjKAj7K09rhDbTEKn0AgOh++OQ2AWMG94ZC19/bHdVIiJ+T0HYX3laIzQjLOITAgLgb4Og01+t+/+dBF+8a2tJIiL+TkHYX2kdYRHf43JB135wzR3W/U+mw2f/BmPsrUtExE8pCPsrBWER3+RywQ33wg29rPsL3oQ5rykMi4icAwrC/srTI6zWCBGfdE0Pa3YYYPFs+GiqwrCIyFmmIOyvSjfU0PJpIr7rqlutvmGApR/AfydaK0uIiMhZoSDsj4qLoPCw9bVaI0R82xU3wu2DrZaJZZ/Cuy+Du8TuqkRE/MJpBeHJkyfToEEDQkNDSUhIYPny5Scc/95779G8eXNCQ0Np1aoV8+bN83reGMOwYcOoXbs2YWFhJCUlsXXrVq8xWVlZ9OjRg/DwcCIjI+nduzcHDhzwGrNu3To6duxIaGgo8fHxjBkz5g+1ZGdn079/f2rXrk1ISAhNmzb9Qz0+r7Q/2OWytnIVEd+WcD3cMQRcAZA231perURhWETkTJU7CM+ePZuUlBSGDx/OqlWraN26NcnJyezZs6fM8d988w3du3end+/erF69mq5du9K1a1c2bNjgGTNmzBgmTpzItGnTSEtLo1q1aiQnJ3P48GHPmB49erBx40YWLlzInDlzWLp0KX379vU8n5uby7XXXkv9+vVJT09n7NixjBgxgunTp3vGFBYWcs0117B9+3bef/99tmzZwowZM6hTp055fwyVW2kQDq1mLckkIr6vXRLcNdT6M73yf/DWaCgptrsqERHfZsqpffv2pn///p77JSUlJi4uzowaNarM8bfddpvp0qWL12MJCQnm/vvvN8YY43a7TWxsrBk7dqzn+ezsbBMSEmLeeecdY4wxmzZtMoBZsWKFZ8z8+fONy+Uyu3fvNsYYM2XKFBMVFWUKCgo8Y4YMGWKaNWvmuT916lTTqFEjU1hYWN6P7ZGTk2MAk5OTc9rf45zbttGYQZ2NebaH3ZWIyNm29itjBidbf8b/OdyYotP/+0xExF+dal4r13RhYWEh6enpJCUleR4LCAggKSmJ1NTUMl+TmprqNR4gOTnZM37btm1kZGR4jYmIiCAhIcEzJjU1lcjISNq1a+cZk5SUREBAAGlpaZ4xnTp1Ijg42Ot9tmzZwv79+wH45JNPSExMpH///sTExNCyZUuef/55Sk7wK8aCggJyc3O9jkpPS6eJ+K+LO0CvERBYBdZ9DTOfheJCu6sSEfFJ5QrC+/bto6SkhJiYGK/HY2JiyMjIKPM1GRkZJxxfenuyMbVq1fJ6PigoiJo1a3qNKet7HPseP/30E++//z4lJSXMmzePZ555hnHjxjFy5MjjfuZRo0YRERHhOeLj4487ttI4dGTpNO0qJ+KfWlwO9z0HVYJhYyq8PgwKC+yuSkTE5ziqgdTtdlOrVi2mT59O27Zt6datG0899RTTpk077muGDh1KTk6O59i5c2cFVnyaPDPCulBOxG81bwd9/gHBofDdSnjtaSjIt7sqERGfUq4gHB0dTWBgIJmZmV6PZ2ZmEhsbW+ZrYmNjTzi+9PZkY35/MV5xcTFZWVleY8r6Hse+R+3atWnatCmBgYGeMRdeeCEZGRkUFpb9q8WQkBDCw8O9jkrPE4Q1Iyzi15pcAn1HQUgYbF0N05+Ew4fsrkpExGeUKwgHBwfTtm1bFi1a5HnM7XazaNEiEhMTy3xNYmKi13iAhQsXesY3bNiQ2NhYrzG5ubmkpaV5xiQmJpKdnU16erpnzOLFi3G73SQkJHjGLF26lKKiIq/3adasGVFRUQBceeWV/PDDD7iPWZD++++/p3bt2l69xT7v0JEgrM00RPzfBa3ggRcgtCr8tB5efeLo/wyLiMgJlbs1IiUlhRkzZvDmm2+yefNm+vXrx8GDB+nVqxcAPXv2ZOjQoZ7xAwcOZMGCBYwbN47vvvuOESNGsHLlSgYMGACAy+Vi0KBBjBw5kk8++YT169fTs2dP4uLi6Nq1K2DN2l533XX06dOH5cuXs2zZMgYMGMDtt99OXFwcAHfccQfBwcH07t2bjRs3Mnv2bCZMmEBKSoqnln79+pGVlcXAgQP5/vvvmTt3Ls8//zz9+/c/7R9gpaSL5UScpcFF0G+sdV3A9k0w9fGj1wqIiMjxnc6SFJMmTTL16tUzwcHBpn379ubbb7/1PHfVVVeZu+++22v8u+++a5o2bWqCg4NNixYtzNy5c72ed7vd5plnnjExMTEmJCTEdO7c2WzZssVrzG+//Wa6d+9uqlevbsLDw02vXr1MXl6e15i1a9eaDh06mJCQEFOnTh0zevToP9T+zTffmISEBBMSEmIaNWpk/vGPf5ji4uJT/uw+sXzaP4dbSyt99ZHdlYhIRdq11Zin/mr9+R/b15i8bLsrEhGxxanmNZcxxtgdxn1Jbm4uERER5OTkVN5+4cmPwg9r4K4n4dI/212NiFSkX7dZM8J5+6F2A2umuEaU3VWJiFSoU81rjlo1wjHUGiHiXLUbQv9xEH4e/LodXhkMOfvsrkpEpFJSEPZHCsIizhZTDwa8BJHnw54dVhjev+fkrxMRcRgFYX+kDTVE5Pw68NDLUDMW9u2GV1Igq+yNj0REnEpB2N+43VBwZB1RzQiLOFvNWGtmODrOCsGTHoG9u+2uSkSk0lAQ9jeHD0Lp9Y8KwiISVcsKw7XiIXsvTE6BzB12VyUiUikoCPub0raI4FAIqmJvLSJSOUREW2E4tgHk/AaTB1sX0omIOJyCsL/JP2jdajZYRI5VIwr6vwhxF1hLq00eDLt/tLsqERFbKQj7m/wjM8IKwiLye9Uj4cGxEN8UDubAlEdh5/d2VyUiYhsFYX9zSEunicgJVAuHfmOg/oVWK9WUx6xtmUVEHEhB2N8cPhKEtXSaiBxPWHV44AVo1Mq6wHbaEPhpvd1ViYhUOAVhf1N6sVxYNXvrEJHKLbQq9H0emlwCBfnw6lDYusbuqkREKpSCsL/x7CqnGWEROYmQMLhvJDRvB4WHYcaT8N1Ku6sSEakwCsL+pjQIV1WPsIicguAQuPdZuOhyKCqE156Bjd/aXZWISIVQEPY3ulhORMqrSjD0Gg4Xd4CSInhjBKz72u6qRETOOQVhf+NZPk2tESJSDkFVoOfTcMnVUFIMbz4Lq5fYXZWIyDmlIOxv1BohIqcrMAjufALaJYHbDf9+Hlb+z+6qRETOGQVhf6PWCBE5EwGB0P0xSLgejBvefgHS5ttdlYjIOaEg7G/yFYRF5AwFBMJtj8CVN4ExMGscLPvU7qpERM46BWF/YswxrRHqERaRMxAQALc+DJ3+at1/fwJ8+YG9NYmInGUKwv6k8LB1kQtoRlhEzpzLBV37wZ+7Wfc/mgKLZttbk4jIWaQg7E9KZ4MDAiE41N5aRMQ/uFxw431w7V3W/Tkz4PP/2FuTiMhZoiDsT45ti3C57K1FRPyHywXX3w039LLuz58J896w2rFERHyYgrA/8awYUc3eOkTEP13TA/7S1/p64Vvw6QyFYRHxaQrC/kSbaYjIuXb1bXBLf+vrL96Fj6YqDIuIz1IQ9ifaTENEKkKnW+Bvg6yvl35grSjhdttakojI6VAQ9ifaTENEKsoVN8Ltj1r9w9/MgXdfAneJ3VWJiJSLgrA/8bRGKAiLSAVIuA56PAGuAEhbAG+PhRKFYRHxHQrC/iT/oHWrzTREpKK07Qw9n7KWbUz/H/zn+aPrmYuIVHIKwv7k0JEZ4VDNCItIBWpzFdwzDAKDYM2X8OZIKC6yuyoRkZNSEPYnulhOROzS6kq49+8QVAXWfw1vjICiQrurEhE5IQVhf1IahLV8mojY4aIEuG8kVAmBTWnw+jPW1u8iIpWUgrA/8Vwspw01RMQmzdpC339Y27xvSYcZT0NBvt1ViYiUSUHYnxw6ZotlERG7NG4D94+GkKrwwxp4dSgcPmh3VSIif6Ag7E/ytY6wiFQSjVpCvxcgtBps2wDThhz9O0pEpJJQEPYXJcVHe/EUhEWkMqh/ITz4ovVbqp+/gymPwcEcu6sSEfFQEPYXpUungXqERaTyiG8C/cdB9UjYtdUKw3n77a5KRARQEPYfpb9yDK1mLWwvIlJZxDWywnCNmvDLTzD5Ucj5ze6qREQUhP2G+oNFpDKLrQ8DXoKIaMj8GSYPhux9dlclIg6nIOwvSlsjtJmGiFRWtepaYTiqFuzdBa88AlmZdlclIg6mIOwvtJmGiPiC6DgY8DKcVxt++9UKw/t+sbsqEXEoBWF/odYIEfEVNWOsmeHz68L+PfBKCuzZZXdVIuJACsL+wrOZhoKwiPiAyPOtC+hi6kPOPisMZ/xsd1Ui4jAKwv7Cs72yWiNExEdEnAf9X4TaDSEvywrDu7baXZWIOIiCsL/wtEZoDWER8SE1oqwwHN/U2mxj8qOwfZPdVYmIQygI+wtPa4RmhEXEx1SLgH5joGFLOHwQpj4OW9fYXZWIOICCsL/QxXIi4svCqsP9o6BpW2u7+BlPwqY0u6sSET+nIOwvFIRFxNeFhMF9z0HLRCgqhH8Oh7VL7a5KRPyYgrC/8GyoodYIEfFhVYLhnuFwyZ+gpBjeHAkrFtpdlYj4KQVhf6EZYRHxF4FBcOdQaJ8Mxg1vvwDLPrW7KhHxQwrC/sDtti4wAc0Ii4h/CAiEboOhY1fr/vsTYMn7tpYkIv5HQdgfFBwCY6yvtXyaiPiLgAC4pT90vt26//E0+OzfR/++ExE5QwrC/qC0P7hKCAQF21uLiMjZ5HLBjffBDb2s+wvehE9nKAyLyFmhIOwP8rW9soj4uWt6QNd+1tdfvAv/nWS1hYmInAEFYX9QGoRDFYRFxI9ddSvc9og1S7zsE5j1IpSU2F2ViPgwBWF/4Fk6TUFYRPxcYhfo8YTVP7zic/j3P6C4yO6qRMRHKQj7g/wjK0aEacUIEXGAtp3h7mEQWMXacOONEdYGHCIi5aQg7A/yj8wIaw1hEXGKizvAfc9aG3BsSoMZT0FBvt1ViYiPURD2B4d0sZyIOFDzy6DvKGtr5q2rYdoTR6+ZEBE5BQrC/sCzq5xaI0TEYRq3hn5jrN+Ibd8IrwyGvP12VyUiPkJB2B94WiO0mYaIOFD9C2HAS1AjCn75ESYOgqxMu6sSER+gIOwPPK0RmhEWEYeKawQPjYeasbBvN0wcCJk/212ViFRyCsL+wNMaoR5hEXGw8+tYYTimHuTsg0mPwI4tdlclIpWYgrA/UBAWEbFERsOAl6FeMziYC1Megx/W2F2ViFRSCsL+wLOhhlojRESoHgH9xkLjNlBwCF4dChtS7a5KRCohBWFfZ8wxG2poRlhEBIDQqtD3eWiZaO0898ZwSF9kd1UiUskoCPu6ogIoObK9qIKwiMhRVYLhnhHQLgncbnhrNHz9sd1ViUgloiDs60pXjAgIsBaVFxGRowIDofvj0LGr9Ru0/06ChW9ZX4uI451WEJ48eTINGjQgNDSUhIQEli9ffsLx7733Hs2bNyc0NJRWrVoxb948r+eNMQwbNozatWsTFhZGUlISW7du9RqTlZVFjx49CA8PJzIykt69e3PggPcOQuvWraNjx46EhoYSHx/PmDFjjlvTrFmzcLlcdO3atXwfvrI5djMNl8veWkREKqOAALilP1x7l3V/3hvwyXSFYREpfxCePXs2KSkpDB8+nFWrVtG6dWuSk5PZs2dPmeO/+eYbunfvTu/evVm9ejVdu3ala9eubNiwwTNmzJgxTJw4kWnTppGWlka1atVITk7m8OHDnjE9evRg48aNLFy4kDlz5rB06VL69u3reT43N5drr72W+vXrk56eztixYxkxYgTTp0//Q03bt2/n0UcfpWPHjuX9+JWPZzMNtUWIiByXywXX3w1d+1n3l7wHs8eBu8TeukTEXqac2rdvb/r37++5X1JSYuLi4syoUaPKHH/bbbeZLl26eD2WkJBg7r//fmOMMW6328TGxpqxY8d6ns/OzjYhISHmnXfeMcYYs2nTJgOYFStWeMbMnz/fuFwus3v3bmOMMVOmTDFRUVGmoKDAM2bIkCGmWbNmXu9dXFxsrrjiCvPaa6+Zu+++29x8883l+vw5OTkGMDk5OeV63Tmz/htjBnU25qUH7a5ERMQ3pC0w5pFrrL87/znCmKKCk79GRHzKqea1cs0IFxYWkp6eTlJSkuexgIAAkpKSSE0te2ma1NRUr/EAycnJnvHbtm0jIyPDa0xERAQJCQmeMampqURGRtKuXTvPmKSkJAICAkhLS/OM6dSpE8HBwV7vs2XLFvbvP7rv/LPPPkutWrXo3bv3KX3mgoICcnNzvY5KRWsIi4iUT/tkuGcYBFaBdV/BjKfh8CG7qxIRG5QrCO/bt4+SkhJiYmK8Ho+JiSEjI6PM12RkZJxwfOntycbUqlXL6/mgoCBq1qzpNaas73Hse3z99de8/vrrzJgx49Q+MDBq1CgiIiI8R3x8/Cm/tkIoCIuIlN/FHaDPSAgOhe9XwZRHIW//yV8nIn7FMatG5OXlcddddzFjxgyio6NP+XVDhw4lJyfHc+zcufMcVnkaSjfTCNNmGiIi5dKsLfR/EapFwM7vYdIg+O1Xu6sSkQoUVJ7B0dHRBAYGkpmZ6fV4ZmYmsbGxZb4mNjb2hONLbzMzM6ldu7bXmDZt2njG/P5ivOLiYrKysry+T1nvU/rcjz/+yPbt27nppps8z7vdbsCaXd6yZQsXXHDBH+oPCQkhJCSkzM9WKZTOCFfVjLCISLnVaw4PT4BpQ2Dvbpg4CO4fBXGN7K5MRCpAuWaEg4ODadu2LYsWHd2dx+12s2jRIhITE8t8TWJiotd4gIULF3rGN2zYkNjYWK8xubm5pKWlecYkJiaSnZ1Nenq6Z8zixYtxu90kJCR4xixdupSioiKv92nWrBlRUVE0b96c9evXs2bNGs/xl7/8hauvvpo1a9ZUvpaHU6XWCBGRM1OrLgycALUbQu5vMOkR+HGd3VWJSAUod2tESkoKM2bM4M0332Tz5s3069ePgwcP0qtXLwB69uzJ0KFDPeMHDhzIggULGDduHN999x0jRoxg5cqVDBgwAACXy8WgQYMYOXIkn3zyCevXr6dnz57ExcV51vi98MILue666+jTpw/Lly9n2bJlDBgwgNtvv524uDgA7rjjDoKDg+nduzcbN25k9uzZTJgwgZSUFABCQ0Np2bKl1xEZGUmNGjVo2bKl10V2PkXLp4mInLmIaHjoZWjYEg4ftGaI1y+zuyoROcfK1RoB0K1bN/bu3cuwYcPIyMigTZs2LFiwwHNh2o4dOwgIOJqvr7jiCt5++22efvppnnzySZo0acJHH31Ey5YtPWMef/xxDh48SN++fcnOzqZDhw4sWLCA0NBQz5i33nqLAQMG0LlzZwICArj11luZOHGi5/mIiAg+//xz+vfvT9u2bYmOjmbYsGFeaw37pfyD1m1V9QiLiJyRsOrwwAvw75GwIRXe+DvcNgguv8HuykTkHHEZo611yiM3N5eIiAhycnIIDw+3uxwY0wd+3Wb95d2srd3ViIj4vpISeO9lSFtg3b+hFyTdod07RXzIqeY1x6wa4bfUIywicnYFBkK3wVb4BWtL5g9egSMXWIuI/1AQ9nWeVSPUGiEicta4XNDlXrilv3X/64/hP89DcaG9dYnIWaUg7MtKiqEg3/o6rJq9tYiI+KNOt8BdT0JgEKxeol3oRPyMgrAvK50NBrVGiIicK5f+Ge47Zhe6ydqFTsRfKAj7skNHgnBoVQgItLcWERF/1rwdPHhkF7pd38OEh2HPLrurEpEzpCDsy3ShnIhIxal/ZBe6mrHWVswTH4btm+yuSkTOgIKwL/NspqEL5UREKkStujBoEsQ3hYO5MOVRbbwh4sMUhH1ZaWtEVc0Ii4hUmBpR0H8cXJQARYXWxhtff2x3VSJyGhSEfZlaI0RE7BESBvc+a+06Z9zw30nw6QytNSziYxSEfZmnNUJBWESkwgUGwm2PWDvPASyeDW+N1lrDIj5EQdiXHdJmGiIitnK54Joe0P1xa/WeVYvh1Se9l7cUkUpLQdiXqTVCRKRyaH8t9H0eQqrCD2tg0iDYv8fuqkTkJBSEfZmCsIhI5dGsLTz0EoSfB79ut9Ya/uUnu6sSkRNQEPZlh470CKs1QkSkcqjTGAZNhJj6kLPPmhn+fpXdVYnIcSgI+7L8g9ZtaDV76xARkaOiYuDh8XDBxXD4ELw6FL6db3dVIlIGBWFflq8ZYRGRSqlqDbh/NFz6Z3CXwOxxMOc1La8mUskoCPuyfG2oISJSaVUJhjuHwrV3WfcXzYJ/jYTCAnvrEhEPBWFf5XYf0xqhICwiUim5XHD93XDH4xAYBGuXwpTBkLff7spEBAVh31VwyNrNCNQaISJS2V12LTzwgvX39c/fwfiHrJUlRMRWCsK+qrQtokqwdYiISOXWuDUMnATRdSArAyY+DFvS7a5KxNEUhH1VaRBWW4SIiO+oVddaXq1RK2tFielDIXWu3VWJOJaCsK86pAvlRER8UrUI6PcCtE2yrvd492X4ZLpWlBCxgYKwrypdOi1M/cEiIj4nKBh6DIHkntb9L96FN5+FwsP21iXiMArCvkpLp4mI+DaXC67raS2xFlgF1n0Nkx6B7L12VybiGArCvqq0NSJMQVhExKe17QwPjrFaJnZthZf6w/ZNdlcl4ggKwr7K0xqhICwi4vMatYKUyVC7IeRlweTBsGKh3VWJ+D0FYV9VupmG1hAWEfEPNWPh4QnQ8gooLoK3X4BPZ1hbNIvIOaEg7KsOaUZYRMTvhFaFXiMg6Q7r/uLZ8PpwOHzQ1rJE/JWCsK/KV4+wiIhfCgiALvdaF9EFVYFN38KEgbDvF7srE/E7CsK+yrNqhFojRET8UtvOMOBlCD8PMrbD+AHwwxq7qxLxKwrCvsqzakQ1e+sQEZFzp35zeGQyxDeFg7kwdQh8M8fuqkT8hoKwr9KGGiIizhAZbc0MX3K1deHce+Ph/YnWBXUickYUhH2VNtQQEXGO4BC460m44V7r/rJPYMpjkJtlb10iPk5B2BcVFhydCdDFciIizuBywTV3QO/nrNUltm2Al/pp8w2RM6Ag7ItK2yICAiCkqr21iIhIxWqZCI9MgZh6kPMbvDIYvp1nd1UiPklB2BeVbqYRVt2aIRAREWepVRcGvQIXd4CSIpj9Erw7HooL7a5MxKcoCPsibaYhIiKhVeGe4VbfsMsFqXNg8qOQs8/uykR8hoKwL9JmGiIiAkf7hvv8w/o3YfsmGPcg/LTB7spEfIKCsC/yBGEtnSYiIsCF7SFlCtRuAHlZMOVRa2UJY+yuTKRSUxD2RZ7WCG2mISIiR0THwcBJ0OYqKCm21hp+ewwUHra7MpFKS0HYF2l7ZRERKUtIGPR8Gm7qA64AWLnQ2pp5zy67KxOplBSEfZF6hEVE5HhcLvhzN3hwLNSIgl+3w0sPwpov7a5MpNJREPZFCsIiInIyjVvD4GlwwcVQcAjefA4+mKytmUWOoSDsi0p7hNUaISIiJxJxHvQbC51vt+5/9SG8kgL7M+2tS6SSUBD2RZoRFhGRUxUYCDfeB/eNtP7d+HkzjOsH362wuzIR2ykI+yIFYRERKa8Wl8PgqVC3KRzMhelPwvw3wV1id2UitlEQ9kWe1ggFYRERKYfzasPD4+HKm6w1hj//N0wdot3oxLEUhH2RNtQQEZHTVSUY/m8g3DkUgkPhhzUw9n7YvNzuykQqnIKwrykpgYJ862u1RoiIyOlq29laVaLOBXAwx2qV+PhVrSohjqIg7GtKZ4NBQVhERM5MrbrWbnQdu1r3l7wHEwfCvl9sLUukoigI+5r8I/3BIVWtK4FFRETORJVg+OsAuPfv1rKcO7+HFx+AVV/YXZnIOacg7Gs8/cHV7K1DRET8S6sr4dFXoWFLawOOf/8DZo072o4n4ocUhH3NoSNBWJtpiIjI2RZVC/qPg2vvtLZqTpsPL/eHXVvtrkzknFAQ9jWlrRHqDxYRkXMhMBCuv8fakS78PMjcAeMfgkWzteaw+B0FYV+Tf9C6VRAWEZFzqUkbeGy61TJRUgxzZsCUx7Q9s/gVBWFf49lMQ60RIiJyjlWPgF4j4PbB1prDP66DMX0hfZHdlYmcFQrCvkbbK4uISEVyuSDhemt2uP6FcPgg/GeUdTHdsUt6ivggBWFfoyAsIiJ2iI6Dh8bDdXdDQIC1vNqYPtbOdCI+SkHY1xzSxXIiImKTwEBIvgsengDRdSB7r9U3/PE0KCywuzqRclMQ9jX5Wj5NRERsVv9CeHQaXH4DGANL3ocX74ftm+yuTKRcFIR9jVojRESkMggJg24pcN9Ia5m1vbtg4iD4ZDoUFdpdncgpURD2NQrCIiJSmbS4HIa8Bu2SwLjhi3dh3APw83d2VyZyUgrCvkbLp4mISGVTtQb0eAJ6Pws1alqbcEx4GOa8BsWaHZbKS0HYlxhzzIYa1eytRURE5PdaXmHNDrftbM0OL5oFL/aDHZodlspJQdiXFByy/mIBCNOMsIiIVELVwuHOoXDv36F6JGT+bM0Of/IqFB62uzoRLwrCvuTQkf7goCoQHGJvLSIiIifS6kp44nW49Gpwu+GL9+CF+2BLut2ViXicVhCePHkyDRo0IDQ0lISEBJYvX37C8e+99x7NmzcnNDSUVq1aMW/ePK/njTEMGzaM2rVrExYWRlJSElu3bvUak5WVRY8ePQgPDycyMpLevXtz4ID3jjbr1q2jY8eOhIaGEh8fz5gxY7yenzFjBh07diQqKoqoqCiSkpJOWnulogvlRETEl1SLgLueslaWiDwfsjJg2hB4azQcyLG7OpHyB+HZs2eTkpLC8OHDWbVqFa1btyY5OZk9e/aUOf6bb76he/fu9O7dm9WrV9O1a1e6du3Khg0bPGPGjBnDxIkTmTZtGmlpaVSrVo3k5GQOHz76K5QePXqwceNGFi5cyJw5c1i6dCl9+/b1PJ+bm8u1115L/fr1SU9PZ+zYsYwYMYLp06d7xixZsoTu3bvzxRdfkJqaSnx8PNdeey27d+8u74/BHvmlm2moLUJERHxIi8thyOvQ8RZry+aV/4PR91q3xthdnTiZKaf27dub/v37e+6XlJSYuLg4M2rUqDLH33bbbaZLly5ejyUkJJj777/fGGOM2+02sbGxZuzYsZ7ns7OzTUhIiHnnnXeMMcZs2rTJAGbFihWeMfPnzzcul8vs3r3bGGPMlClTTFRUlCkoKPCMGTJkiGnWrNlxP0txcbGpUaOGefPNN0/145ucnBwDmJycnFN+zVmz9itjBnU2ZvxDFf/eIiIiZ8P2Tca8cJ/179mgzsZMG2LMvl/srkr8zKnmtXLNCBcWFpKenk5SUpLnsYCAAJKSkkhNTS3zNampqV7jAZKTkz3jt23bRkZGhteYiIgIEhISPGNSU1OJjIykXbt2njFJSUkEBASQlpbmGdOpUyeCg4O93mfLli3s37+/zNoOHTpEUVERNWvWLM+PwT5qjRAREV9X/0IYPBVuuNe65uW7lVbv8MK3tdSaVLhyBeF9+/ZRUlJCTEyM1+MxMTFkZGSU+ZqMjIwTji+9PdmYWrVqeT0fFBREzZo1vcaU9T2OfY/fGzJkCHFxcX8I6scqKCggNzfX67CNgrCIiPiDwCC45g54bAY0bg1FBTDvnzCmrxWMRSqIY1eNGD16NLNmzeLDDz8kNDT0uONGjRpFRESE54iPj6/AKn9Hm2mIiIg/qVUXHnzRWm6tRk1rm+ZXn4CZz0L2XrurEwcoVxCOjo4mMDCQzMxMr8czMzOJjY0t8zWxsbEnHF96e7Ixv78Yr7i4mKysLK8xZX2PY9+j1Isvvsjo0aP5/PPPufjii0/4mYcOHUpOTo7n2Llz5wnHn1OaERYREX/jclkbcAz9J3T6KwQEwNqlMKoXLJoNxUV2Vyh+rFxBODg4mLZt27Jo0SLPY263m0WLFpGYmFjmaxITE73GAyxcuNAzvmHDhsTGxnqNyc3NJS0tzTMmMTGR7Oxs0tOPrj24ePFi3G43CQkJnjFLly6lqKjI632aNWtGVFSU57ExY8bw3HPPsWDBAq+e4+MJCQkhPDzc67CNgrCIiPirsOpwy4OQMhUatrA235gzA8beD9+vsrs68VflvQpv1qxZJiQkxMycOdNs2rTJ9O3b10RGRpqMjAxjjDF33XWXeeKJJzzjly1bZoKCgsyLL75oNm/ebIYPH26qVKli1q9f7xkzevRoExkZaT7++GOzbt06c/PNN5uGDRua/Px8z5jrrrvOXHLJJSYtLc18/fXXpkmTJqZ79+6e57Ozs01MTIy56667zIYNG8ysWbNM1apVzauvvur1PsHBweb99983v/76q+fIy8s75c9v66oRrw61rrD9dl7Fv7eIiEhFcbuNSfvMmKdvPbq6xOvDjdm72+7KxEecal4rdxA2xphJkyaZevXqmeDgYNO+fXvz7bffep676qqrzN133+01/t133zVNmzY1wcHBpkWLFmbu3Llez7vdbvPMM8+YmJgYExISYjp37my2bNniNea3334z3bt3N9WrVzfh4eGmV69efwiwa9euNR06dDAhISGmTp06ZvTo0V7P169f3wB/OIYPH37Kn93WIDz+Yesvg7VfVfx7i4iIVLRDeca8P9GYlGusf/8GJxvz8avW4yIncKp5zWWMVrIuj9zcXCIiIsjJyan4NonR90LmDuvCgiZtKva9RURE7PLrdvh46tHtmatHwvX3QML1EBhoY2FSWZ1qXnPsqhE+6dCRHuGq6hEWEREHqd0A7h8Nff4BterBgWx4bzyMe0D9w3JGFIR9yeHSi+W0fJqIiDiMywUXJcDj0+GW/tZSor9ug6mPw/QnYfePdlcoPkhB2FcUFVoHQFg1e2sRERGxS2AQdLoFnnwTOt4CAYGwebk1O/yf0ZBV9iZaImVREPYVpZtpuAIgpKq9tYiIiNitWjj8tT888U+45E9gDKT/D56/Bz6cYrVPiJyEgrCv8LRFVLMWGxcRERE4vw70fBpSpkDTS6GkGJZ+ACN7wmf/hoJ8uyuUSkyJylcc0mYaIiIixxXfFPqNgQdegLpNoOAQLHgTRt4Fi2crEEuZguwuQE5RaWuELpQTERE5vmZtocklsPZLmPcG7PsFPp0BX7wHf+4GV94EwaF2VymVhGaEfcXhg9atlk4TERE5sYAAuORqq3/49kfhvNpWz/Anr8Jzd8KS960tnMXxFIR9hWdGWEFYRETklAQGQcJ1MPQNuH0w1Iy1AvHH06yWiSXvq2XC4RSEfUW+eoRFREROS2CQtQvdkzOh25FAnLffCsTP9YAF/4KDOXZXKTZQj7CvKA3CVdUjLCIicloCg+Dy6+Gya2DF57BoltVD/Nm/4It34fIb4E+3QlSM3ZVKBVEQ9hWe1ghtpiEiInJGAoOs0Ns+GdZ+ZQXi3T9Yy659/TFc+mfrwrraDeyuVM4xBWFfka/tlUVERM6qgEBrM442V8GWdGuZta2rYeVC67iwPXT6q7UShctld7VyDigI+4rSGWGtGiEiInJ2uVzQvJ11/PwdLJ4F65dZWzdvXg4x9aztnNslQUiY3dXKWaQg7CvyjyyfpovlREREzp36zaHXCNi7C776CJZ/Bpk74P0JMPd1q6Wiw81QU33E/kBB2Ffka0MNERGRCnN+XfjrALj+HisMf/UR/PardVHdkvehRQJc3gUuvMxqsRCfpCDsK0q3WFZrhIiISMUJqw5X3Qodu8Km5dYFdVtXw4ZU64g835olTrjO+lp8ioKwLygpsfZMB7VGiIiI2CEgEFomWkfmz5A6z1qCLXsvLHgTPvs3XJQAiV2g+WUQqFliX6Ag7AsOHzj6tYKwiIiIvWLqQ9d+0KU3rPsKUufCj+tgY6p11IiylmBrlwR1GmvFiUpMQdgXlLZFhIRZax+KiIiI/aoEQ9vO1pG5A76db80S5+2HL/9rHbUbQNtrrDGR0XZXLL+jVOULtL2yiIhI5RZTD26+H27sDd+ttALxxlT4dTvMmQFzX4PGbax1i1tdCdUjbS1XLArCvkBBWERExDcEBkGLy60j/wCs+RJW/g9+Wm9dZLd1tbUU2wWtoXUnuLiD1UohtlAQ9gWezTS0dJqIiIjPCKtuXTyX2AX2/WKF4rVLYdfWo6H4v5PgglZwcUcrPNeMtbtqR1EQ9gWeGeFq9tYhIiIipyc6DpK6W8e+X2DtV7BuKezYAj+stY4PXoHYBtbqExddDg0u0uoT55iCsC/wBGHNCIuIiPi86Djo3M06sjKsULwxFbZtgIzt1rF4tvWb4ObtrOXYmlyqi+3OAQVhX1DaGqEeYREREf9SMxau/pt1HMqzLrTb9C1sXm7dX/WFdQDUiocmbaDJJdC4NVSLsLV0f6Ag7AvyD1q3CsIiIiL+q2oNuPRq63CXwPbNsDkNvl8FO7fCnp3WsexTa23iuEbQ6GKrhaLBRRBVS2sWl5OCsC/I18VyIiIijhIQCI1aWkeX3lab5A9rYesa6yK7jO2w+0fr+OpD6zXh50GDC61QXP8iqNsYgkPt/BSVnoKwLzik5dNEREQcLay6tf5wqyut+3n7rVC8fSNs32QF4tzfYN3X1gHgCoDz60LdCyCuMdS5wDq0XJuHgrAvOKwgLCIiIseoEXW0jQKg8DDs/N4Kxds3wc+brbC8Z4d1lPYZg7WZR61464ipZ4XlmHpQM8aaiXYQBWFfUDojXFVBWERERMoQHAoXXGwdpXKzYPcPR44jbRT7dsOBbOv4ab339wgIhMjzrUAcdeSoWQsia0F4TStAVwv3q7CsIFyZFR6GbRut/2hBy6eJiIjIqQuvCeHt4cL2Rx8ryD960d2enZC5A/buso6iQms5t6yM439Pl8taraJGJFSPsvY4CKkKoVWPuQ2zgnlgEARVgcAqEBRkBeuYeuf8Y5eHgnBllpsF04Ycva8ZYRERETkTIWEQ39Q6juV2Q84+2L8H9mdaR9aRr7P3Wm0Wh3LBmKMzymwv33tfeRP838Cz8znOEgXhyiwwCGo3tL5u2MK6GlRERETkbAsIsJZfi6oFtCx7TEmJFYbz9lvHgWw4fBAOH4KCQ0du863HigqhuAhKiqGkCIqLrRaLSkZBuDKLqgWPz7C7ChERERFru+caUX616kSA3QWIiIiIiNhBQVhEREREHElBWEREREQcSUFYRERERBxJQVhEREREHElBWEREREQcSUFYRERERBxJQVhEREREHElBWEREREQcSUFYRERERBxJQVhEREREHElBWEREREQcSUFYRERERBxJQVhEREREHCnI7gJ8jTEGgNzcXJsrEREREZGylOa00tx2PArC5ZSXlwdAfHy8zZWIiIiIyInk5eURERFx3Odd5mRRWby43W5++eUXatSogcvlOqfvlZubS3x8PDt37iQ8PPycvpecOzqP/kHn0T/oPPoHnUf/cC7PozGGvLw84uLiCAg4fiewZoTLKSAggLp161boe4aHh+sPuh/QefQPOo/+QefRP+g8+odzdR5PNBNcShfLiYiIiIgjKQiLiIiIiCMpCFdiISEhDB8+nJCQELtLkTOg8+gfdB79g86jf9B59A+V4TzqYjkRERERcSTNCIuIiIiIIykIi4iIiIgjKQiLiIiIiCMpCIuIiIiIIykIV2KTJ0+mQYMGhIaGkpCQwPLly+0uybGWLl3KTTfdRFxcHC6Xi48++sjreWMMw4YNo3bt2oSFhZGUlMTWrVu9xmRlZdGjRw/Cw8OJjIykd+/eHDhwwGvMunXr6NixI6GhocTHxzNmzJhz/dEcZdSoUVx22WXUqFGDWrVq0bVrV7Zs2eI15vDhw/Tv35/zzjuP6tWrc+utt5KZmek1ZseOHXTp0oWqVatSq1YtHnvsMYqLi73GLFmyhEsvvZSQkBAaN27MzJkzz/XHc4ypU6dy8cUXexbhT0xMZP78+Z7ndQ59z+jRo3G5XAwaNMjzmM6jbxgxYgQul8vraN68uef5Sn8ejVRKs2bNMsHBweaf//yn2bhxo+nTp4+JjIw0mZmZdpfmSPPmzTNPPfWU+eCDDwxgPvzwQ6/nR48ebSIiIsxHH31k1q5da/7yl7+Yhg0bmvz8fM+Y6667zrRu3dp8++235quvvjKNGzc23bt39zyfk5NjYmJiTI8ePcyGDRvMO++8Y8LCwsyrr75aUR/T7yUnJ5s33njDbNiwwaxZs8bccMMNpl69eubAgQOeMQ888ICJj483ixYtMitXrjSXX365ueKKKzzPFxcXm5YtW5qkpCSzevVqM2/ePBMdHW2GDh3qGfPTTz+ZqlWrmpSUFLNp0yYzadIkExgYaBYsWFChn9dfffLJJ2bu3Lnm+++/N1u2bDFPPvmkqVKlitmwYYMxRufQ1yxfvtw0aNDAXHzxxWbgwIGex3UefcPw4cNNixYtzK+//uo59u7d63m+sp9HBeFKqn379qZ///6e+yUlJSYuLs6MGjXKxqrEGPOHIOx2u01sbKwZO3as57Hs7GwTEhJi3nnnHWOMMZs2bTKAWbFihWfM/PnzjcvlMrt37zbGGDNlyhQTFRVlCgoKPGOGDBlimjVrdo4/kXPt2bPHAObLL780xljnrUqVKua9997zjNm8ebMBTGpqqjHG+p+igIAAk5GR4RkzdepUEx4e7jl3jz/+uGnRooXXe3Xr1s0kJyef64/kWFFRUea1117TOfQxeXl5pkmTJmbhwoXmqquu8gRhnUffMXz4cNO6desyn/OF86jWiEqosLCQ9PR0kpKSPI8FBASQlJREamqqjZVJWbZt20ZGRobX+YqIiCAhIcFzvlJTU4mMjKRdu3aeMUlJSQQEBJCWluYZ06lTJ4KDgz1jkpOT2bJlC/v376+gT+MsOTk5ANSsWROA9PR0ioqKvM5l8+bNqVevnte5bNWqFTExMZ4xycnJ5ObmsnHjRs+YY79H6Rj9+T37SkpKmDVrFgcPHiQxMVHn0Mf079+fLl26/OFnrfPoW7Zu3UpcXByNGjWiR48e7NixA/CN86ggXAnt27ePkpISr/8oAGJiYsjIyLCpKjme0nNyovOVkZFBrVq1vJ4PCgqiZs2aXmPK+h7HvoecPW63m0GDBnHllVfSsmVLwPo5BwcHExkZ6TX29+fyZOfpeGNyc3PJz88/Fx/HcdavX0/16tUJCQnhgQce4MMPP+Siiy7SOfQhs2bNYtWqVYwaNeoPz+k8+o6EhARmzpzJggULmDp1Ktu2baNjx47k5eX5xHkMOqNXi4j4qP79+7Nhwwa+/vpru0uR09CsWTPWrFlDTk4O77//PnfffTdffvml3WXJKdq5cycDBw5k4cKFhIaG2l2OnIHrr7/e8/XFF19MQkIC9evX59133yUsLMzGyk6NZoQroejoaAIDA/9wVWVmZiaxsbE2VSXHU3pOTnS+YmNj2bNnj9fzxcXFZGVleY0p63sc+x5ydgwYMIA5c+bwxRdfULduXc/jsbGxFBYWkp2d7TX+9+fyZOfpeGPCw8N94h8GXxAcHEzjxo1p27Yto0aNonXr1kyYMEHn0Eekp6ezZ88eLr30UoKCgggKCuLLL79k4sSJBAUFERMTo/PooyIjI2natCk//PCDT/x5VBCuhIKDg2nbti2LFi3yPOZ2u1m0aBGJiYk2ViZladiwIbGxsV7nKzc3l7S0NM/5SkxMJDs7m/T0dM+YxYsX43a7SUhI8IxZunQpRUVFnjELFy6kWbNmREVFVdCn8W/GGAYMGMCHH37I4sWLadiwodfzbdu2pUqVKl7ncsuWLezYscPrXK5fv97rf2wWLlxIeHg4F110kWfMsd+jdIz+/J47brebgoICnUMf0blzZ9avX8+aNWs8R7t27ejRo4fna51H33TgwAF+/PFHateu7Rt/Hs/4cjs5J2bNmmVCQkLMzJkzzaZNm0zfvn1NZGSk11WVUnHy8vLM6tWrzerVqw1gXnrpJbN69Wrz888/G2Os5dMiIyPNxx9/bNatW2duvvnmMpdPu+SSS0xaWpr5+uuvTZMmTbyWT8vOzjYxMTHmrrvuMhs2bDCzZs0yVatW1fJpZ1G/fv1MRESEWbJkiddSP4cOHfKMeeCBB0y9evXM4sWLzcqVK01iYqJJTEz0PF+61M+1115r1qxZYxYsWGDOP//8Mpf6eeyxx8zmzZvN5MmTtWTTWfTEE0+YL7/80mzbts2sW7fOPPHEE8blcpnPP//cGKNz6KuOXTXCGJ1HXzF48GCzZMkSs23bNrNs2TKTlJRkoqOjzZ49e4wxlf88KghXYpMmTTL16tUzwcHBpn379ubbb7+1uyTH+uKLLwzwh+Puu+82xlhLqD3zzDMmJibGhISEmM6dO5stW7Z4fY/ffvvNdO/e3VSvXt2Eh4ebXr16mby8PK8xa9euNR06dDAhISGmTp06ZvTo0RX1ER2hrHMImDfeeMMzJj8/3zz44IMmKirKVK1a1dxyyy3m119/9fo+27dvN9dff70JCwsz0dHRZvDgwaaoqMhrzBdffGHatGljgoODTaNGjbzeQ87Mvffea+rXr2+Cg4PN+eefbzp37uwJwcboHPqq3wdhnUff0K1bN1O7dm0THBxs6tSpY7p162Z++OEHz/OV/Ty6jDHmzOeVRURERER8i3qERURERMSRFIRFRERExJEUhEVERETEkRSERURERMSRFIRFRERExJEUhEVERETEkRSERURERMSRFIRFRERExJEUhEVERETEkRSERURERMSRFIRFRERExJEUhEVERETEkf4ftmKsAZ2XwyAAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 800x500 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAHDCAYAAADRBFkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFkklEQVR4nO3deXxU1f3/8fdkmyyQhM2EJRAQBNkVSMQiYE0NigtqERQEEaX6BVuLpYqtUG1rrG0prSLU/iLUuoAsIgoiEAFFURQEjGBcWAWSEJYkBEhC5vz+uMkkQ8KSQHJnJq/n43Efc3LmzJ3PcCu8e3LuGYcxxggAAADwcQF2FwAAAABcDARbAAAA+AWCLQAAAPwCwRYAAAB+gWALAAAAv0CwBQAAgF8g2AIAAMAvEGwBAADgFwi2AAAA8AsEWwAAAPgFgi0AnIddu3bJ4XBozpw5trz/nDlz5HA4tGvXLlveHwB8AcEWALzIM888o8WLF9tdhu644w7deOONdpcBANVCsAUAL3KmYHvPPffoxIkTatOmTa3XUFxcrJUrV2rw4MG1/l4AcDEF2V0AAODcAgMDFRgYWCfv9dFHHyk/P59gC8DnMGMLwCft27dP9913n2JiYuR0OtWlSxe9/PLLkqSsrCwFBQXpqaeeqvS6jIwMORwOvfDCC5Kkw4cP6ze/+Y26deumBg0aKDIyUjfccIO2bNlyzhoGDhyogQMHVuq/9957FR8f79H3t7/9TVdffbWaNGmisLAw9erVSwsWLPAY43A4VFBQoP/+979yOBxyOBy69957JZ15je2LL76oLl26yOl0qkWLFho/fryOHj1aqc6uXbtq27ZtuvbaaxUeHq6WLVvqueeeq/JzLV26VJ07d3Z/hq1bt+ree+9Vu3btFBoaqtjYWN133306dOhQpdfu27dPY8eOVYsWLeR0OtW2bVs99NBDKioqco85evSofv3rXys+Pl5Op1OtWrXSqFGjlJOTU2U9AHC+mLEF4HOysrJ01VVXyeFwaMKECWrWrJnee+89jR07Vnl5eXrkkUc0YMAAvfnmm5o6darHa+fNm6fAwEANHTpUkrRjxw4tXrxYQ4cOVdu2bZWVlaV///vfGjBggLZt26YWLVpclJr/+c9/6pZbbtGIESNUVFSkuXPnaujQoXr33XfdM6P/+9//dP/99yshIUHjxo2TJF166aVnPOcf/vAHPfXUU0pKStJDDz2kjIwMzZw5U59//rk+/vhjBQcHu8ceOXJEgwYN0u23364777xTCxYs0GOPPaZu3brphhtu8DjvsmXLdNNNN7l/XrlypXbs2KExY8YoNjZWX3/9tV566SV9/fXX+vTTT+VwOCRJ+/fvV0JCgo4ePapx48apU6dO2rdvnxYsWKDjx48rJCREx44d0zXXXKPt27frvvvu05VXXqmcnBwtWbJEP/74o5o2bXpR/rwB1FMGAHzM2LFjTfPmzU1OTo5H//Dhw01UVJQ5fvy4+fe//20kma+++spjTOfOnc1Pf/pT988nT540JSUlHmN27txpnE6nefrppz36JJnZs2e7+wYMGGAGDBhQqb7Ro0ebNm3aePQdP37c4+eioiLTtWtXj1qMMSYiIsKMHj260jlnz55tJJmdO3caY4zJzs42ISEh5vrrr/eo/4UXXjCSzMsvv+xRpyTzyiuvuPsKCwtNbGysueOOOzzeZ8eOHUaSWb169RlrN8aYN954w0gyH374obtv1KhRJiAgwHz++eeVxrtcLmOMMVOmTDGSzKJFi844BgBqiqUIAHyKMUYLFy7UzTffLGOMcnJy3EdycrJyc3O1adMm3X777QoKCtK8efPcr01PT9e2bds0bNgwd5/T6VRAgPVXYUlJiQ4dOqQGDRqoY8eO2rRp00WrOywszN0+cuSIcnNzdc0119T4PVatWqWioiI98sgj7vol6YEHHlBkZKSWLl3qMb5BgwYaOXKk++eQkBAlJCRox44dHuOWLl2qqKgo9evXr8raT548qZycHF111VWS5K7f5XJp8eLFuvnmm9W7d+9K9ZbN6i5cuFA9evTQbbfddsYxAFBTBFsAPuXgwYM6evSoXnrpJTVr1szjGDNmjCQpOztbTZs21XXXXac333zT/dp58+YpKChIt99+u7vP5XLpH//4hzp06CCn06mmTZuqWbNm2rp1q3Jzcy9a3e+++66uuuoqhYaGqnHjxmrWrJlmzpxZ4/fYvXu3JKljx44e/SEhIWrXrp37+TKtWrWqFBwbNWqkI0eOePQtXbpU119/vYKCyleqHT58WL/61a8UExOjsLAwNWvWTG3btpUkd/0HDx5UXl6eunbteta6f/jhh3OOAYCaYo0tAJ/icrkkSSNHjtTo0aOrHNO9e3dJ0vDhwzVmzBht3rxZPXv21JtvvqnrrrvOYx3nM888oyeffFL33Xef/vjHP6px48YKCAjQI4884n6vM3E4HDLGVOovKSnx+Pmjjz7SLbfcov79++vFF19U8+bNFRwcrNmzZ+v111+v1uevqTPtqFCx/uPHj2vNmjWaOXOmx5g777xTn3zyiSZNmqSePXuqQYMGcrlcGjRo0Dn/jACgLhFsAfiUZs2aqWHDhiopKVFSUtJZxw4ZMkS/+MUv3MsRvv32W02ePNljzIIFC3TttdcqNTXVo//o0aPnvJGpUaNGlX6VL6nSbOnChQsVGhqq999/X06n090/e/bsSq8931/Hl+1nm5GRoXbt2rn7i4qKtHPnznP+2VTlgw8+UGFhocfNZEeOHFFaWpqeeuopTZkyxd3/3Xffeby2WbNmioyMVHp6+lnf49JLLz3nGACoKZYiAPApgYGBuuOOO7Rw4cIqA9LBgwfd7ejoaCUnJ+vNN9/U3LlzFRISoiFDhlQ63+mzrvPnz9e+ffvOWcull16qb775xuM9t2zZoo8//rjSezgcDo+Z3F27dlX5RQwRERGVtuuqSlJSkkJCQvSvf/3Lo/7U1FTl5ubWaA/aZcuWqXfv3oqJifGoXVKlP6Pp06d7/BwQEKAhQ4bonXfe0RdffFHp3GWvv+OOO7Rlyxa99dZbZxwDADXFjC0An/Pss89q9erVSkxM1AMPPKDOnTvr8OHD2rRpk1atWqXDhw+7xw4bNkwjR47Uiy++qOTkZEVHR3uc66abbtLTTz+tMWPG6Oqrr9ZXX32l1157zWMW9Ezuu+8+TZs2TcnJyRo7dqyys7M1a9YsdenSRXl5ee5xgwcP1rRp0zRo0CDdfffdys7O1owZM9S+fXtt3brV45y9evXSqlWrNG3aNLVo0UJt27ZVYmJipfdu1qyZJk+erKeeekqDBg3SLbfcooyMDL344ovq06ePx41i52vZsmXudcplIiMj1b9/fz333HMqLi5Wy5YttWLFCu3cubPS65955hmtWLFCAwYM0Lhx43T55ZfrwIEDmj9/vtatW6fo6GhNmjRJCxYs0NChQ3XfffepV69eOnz4sJYsWaJZs2apR48e1a4bANxs248BAC5AVlaWGT9+vImLizPBwcEmNjbWXHfddeall17yGJeXl2fCwsKMJPPqq69WOs/JkyfNo48+apo3b27CwsLMT37yE7N+/fpKW3lVtd2XMca8+uqrpl27diYkJMT07NnTvP/++1Vu95Wammo6dOhgnE6n6dSpk5k9e7aZOnWqOf2v4W+++cb079/fXXPZ1l+nb/dV5oUXXjCdOnUywcHBJiYmxjz00EPmyJEjHmMGDBhgunTpUumzV6wzPT3dSDIbNmyoNO7HH380t912m4mOjjZRUVFm6NChZv/+/UaSmTp1qsfY3bt3m1GjRplmzZoZp9Np2rVrZ8aPH28KCwvdYw4dOmQmTJhgWrZsaUJCQkyrVq3M6NGjK23fBgDV5TCG3/0AQH333HPPadq0aTpw4ADbbgHwWayxBQAoPj5e//jHPwi1AHwaM7YAAADwC8zYAgAAwC8QbAEAAOAXCLYAAADwC36xj63L5dL+/fvVsGFDbnwAAADwQsYY5efnq0WLFgoIqJ25Vb8Itvv371dcXJzdZQAAAOAc9u7dq1atWtXKuf0i2DZs2FCS9QcVGRlpczUAAAA4XV5enuLi4ty5rTb4RbAtW34QGRlJsAUAAPBitblslJvHAAAA4BcItgAAAPALBFsAAAD4BYItAAAA/ALBFgAAAH6BYAsAAAC/QLAFAACAXyDYAgAAwC8QbAEAAOAXCLYAAADwCwRbAAAA+AWCLQAAAPwCwRYAAAB+IcjuAgAAAFDLSkqkohNS0UnrKKzQbtleatjI7govCoItAAD+rKREOlUkFRed5bG4/OeyPmOs1zsc5YccVfys0seACu1zjHE4pIAgyRlmHaHhpe1wKSRUCrDpF8oul3SyQCrIk47nS8fzytsFedbPZX0F+VZQDAySgoJLj5Dy9hn7gyv0n0dfyamqw+jpP3u0y8acKP+5pPjMn3vMVKn7NXX351yLCLYAAHijU0VS3hEp/7CUd1jKPyLlHbL6judVDqiniqTi4tLHwvJ+l8vuT1I9DocVbp3hFUJvuBQaVt7nDPcMw6eH47J2UWGFcFohoFYVXI/nScePScbH/ryqKyDA+vMNCSt9DJWCnXZXddEQbAEAqCvGWEGqLKzmHbba+Ucq/3w8/+K/f2CQNXsYXHoEnf4YbD0GBlsByJjyQ0YyKn10WW13f4Uxrgp9UunYsnaF17pOWbOMhSesWdLCk+Vjy/rtEhIqRURK4ZFSeEOrHVHaDo8sf84ZWjojXvp/KE4VWzOsp4rP3efRX1VfaX9QcHkADQmz3jPktMMZduY+j/Fh1vkcDvv+bGsZwRYAgJowxvo178kC6eTx8scTBdKxI1WH1fwjVnA5X4FB1trHyCZSZCOpYWPriIgsnWkLKf9VtzugOj1DasXQGhBYe38eF6rsz7PwhFR4XDpZ+uj+uUK78MS5fy46aQX0iEgpojSQhp/erhBc3aG1ofVnBp9EsAUA1C/GWL+qP1FQGphOC6bu9un9VYyr6a+tIyJLQ2ojKbKxdTQseywNsg0bWWHLj2fXPDgc5Wtu1fjCz+cqKV3TW0/+/CCJYAsAsEPZ7NyJAunEsfLjZIEVOt2/kj1l3fRS8Ve0JcXl/RV/bVtyqvTnotLnK7y24vjiwou77tQRIIVFlK/tDA2XGjSqMMN6+oxrI2v2FLXLm2enUWsItgDgK4yxZhjzSn+lXbZO89gRq+/YUeuO82Bn+RHiLP/VdHDpr649+k9rl40NCT33WrziIs9QWukoDa3H8632ydP6q/Mr+drgcFhhNCyi9GajiArtcCk0wjOwutun9YeEMisIeAmCLQDYrehk+frLsrvf8w+XhtWKfUes2ca64nBYaw0rhmNHQGkwzbdmQi9UQIAU1kAKa1gaKiOsoBgYJAWV3ugUGOS5dVJgUOlWSEHlWyKVPe/uDzpDf+l61LAIAinghwi2AFCbThVL2XulzN3Sof0Vtm2qMNNaeLx653SGlf9Ku2yNZsNGUoNo6/nisu2eCsu3fSo6Wd5fVKG/uIp+V4l1nrK1qGcL0w6HFUxDI0oDatkRYa0PPf258Aae4wiXAC4igi0AXAwlJVLOPilzl3Rgl/WYuUs6uK88KJ5NcIhnWG3YuHRNZqPym4oaRFs/O8Nq9aO416FWCsKla1MrhldnuH2b6QPAaQi2AFAdLpd0OLNygM3ae+Zv9gmNkGLjpUtald/tXjbLWhZgneHeM3NZ9qv/0Ai7KwGAaiHYAkBVjJGOZltLCA7sLH3cJWXvsX6tX5WQUCm2jRViY+Ol5qWPUU29J7QCgB8j2ALAiWPS3m9LA+wuK8Bm7bb2Ka1KULAU07o8wJaF2EYx/FoeAGxEsAVQv5SckvbvlPZsl3Z/Yx3Ze6oeGxAoXRJnzcI2b1s6G9tWatJcCmSPTADwNgRbAP7LGGs97J5vykPsvu+sm6JO1zhWatm+NMTGWwG2WUs20gcAH0KwBeA/ThyzwmtZkN3zjfWlBacLayC17ii17iS1udxqN2xU5+UCAC4ugi0A33SqWNq/wzPEZu+tPC4wSGrRrjTAdpLadJKatmQtLAD4IYItAO9njHTogGeI/fG7qr/5qklzK7y2vtx6bNne2iMWAOD3CLYAvNupYum/f5TSP6n8XHjD0iUFpSG2dSepQVTd1wgA8AoEWwDeyxhp3jQr1AYESq06WEG2zeXlSwrYHxYAUIpgC8B7vTdb+mKltR527NNS50S7KwIAeDHungDgnT55V1r5utUe+mtCLQDgnAi2ALxP+nppwb+sdvI90lU32FsPAMAnEGwBeJfd26VX/iQZl5Q4SEoeZXdFAAAfQbAF4D0O7pP+83upuFDq1Eca+gg3hwEAzhvBFoB3yD8ivTRZKsi1dj+4d4r15QoAAJwngi0A+xWekP7f76Wc/VLjWOmBP0vOMLurAgD4GIItAHuVlEiv/FnakyFFREq/SJEiG9tdFQDABxFsAdjHGGnhv6Rtn1pfezv2j9IlcXZXBQDwUQRbAPZZ9bq0fql1g9jIJ6S2XeyuCADgwwi2AOyxYYW0bLbVvn2C1L2fvfUAAHxejYLtjBkzFB8fr9DQUCUmJmrDhg1nHT99+nR17NhRYWFhiouL069//WudPHnygs4JwId984U07+9W+6fDpH632lsPAMAvVDvYzps3TxMnTtTUqVO1adMm9ejRQ8nJycrOzq5y/Ouvv67HH39cU6dO1fbt25Wamqp58+bpiSeeqPE5AfiwH7+T5jwluUqkXtdJg8faXREAwE84jDGmOi9ITExUnz599MILL0iSXC6X4uLi9PDDD+vxxx+vNH7ChAnavn270tLS3H2PPvqoPvvsM61bt65G5zxdXl6eoqKilJubq8jIyOp8HAB16XCWNP1hKf+w1OEKadwzUlCw3VUBAOpAXeS1as3YFhUVaePGjUpKSio/QUCAkpKStH79+ipfc/XVV2vjxo3upQU7duzQsmXLdOONN9b4nAB8UEGe9O/JVqht3lYaM5VQCwC4qKr1tT45OTkqKSlRTEyMR39MTIy++eabKl9z9913KycnR/369ZMxRqdOndKDDz7oXopQk3MWFhaqsLDQ/XNeXl51PgaAulZcJKVOkbL3SNHNrJnasAZ2VwUA8DO1vivCmjVr9Mwzz+jFF1/Upk2btGjRIi1dulR//OMfa3zOlJQURUVFuY+4OPa9BLyWyyW9miLtTJdCI6xQG93M7qoAAH6oWjO2TZs2VWBgoLKysjz6s7KyFBsbW+VrnnzySd1zzz26//77JUndunVTQUGBxo0bp9/97nc1OufkyZM1ceJE9895eXmEW8AbGSO9PUva+pEUGCyNfcpahgAAQC2o1oxtSEiIevXq5XEjmMvlUlpamvr27Vvla44fP66AAM+3CQwMlCQZY2p0TqfTqcjISI8DgBdau1D6cJHVvvu3UvuetpYDAPBv1ZqxlaSJEydq9OjR6t27txISEjR9+nQVFBRozJgxkqRRo0apZcuWSklJkSTdfPPNmjZtmq644golJibq+++/15NPPqmbb77ZHXDPdU4APujL1dZsrSTdMk668lp76wEA+L1qB9thw4bp4MGDmjJlijIzM9WzZ08tX77cffPXnj17PGZof//738vhcOj3v/+99u3bp2bNmunmm2/Wn//85/M+JwAf8/0W6bXnrPY1t0kDh9pbDwCgXqj2PrbeiH1sAS9yYJf0/CPSiWPW1+SOflIKCLS7KgCAzbxuH1sAOKujOdJLk61Q27aLNGIyoRYAUGcItgAujhPHpP88IR09KF3SWhr7RynEaXdVAIB6hGAL4MKdKpZmPyXt3yE1bCz94hkpgmVBAIC6RbAFcGGMkeb+XfruS8kZJo37s9S46j2oAQCoTQRbADVnjLR4prRxlbWW9t4pUqsOdlcFAKinCLYAam75K+VfwDD8UalTH3vrAQDUawRbADWz+k1pxf+s9u0TpD7X21sPAKDeI9gCqL5P3pWWvGS1B98nXTPE1nIAAJAItgCqa2OatOCfVjvpLinpbnvrAQCgFMEWwPn76mPp9b9YN431u1W68T67KwIAwI1gC+D8ZGyU/vsnyeWSev9Mum285HDYXRUAAG4EWwDntvNr6eWpUkmx1L2fNPw3UgB/fQAAvAv/MgE4u73fSS89IRWdtLbzuucJKTDQ7qoAAKiEYAvgzLJ2S/9+XDpZILXrJo2ZKgWF2F0VAABVItgCqNqhA9LM30oFuVLcZdIDf5JCQu2uCgCAMyLYAqjsaI704iQp95AUGy/9IkUKjbC7KgAAzopgC8DTsaPSrN9KhzOlpi2kB/8iRUTZXRUAAOdEsAVQ7sQxadbjUtYeKbqZ9NBzUlQTu6sCAOC8EGwBWApPSP/5nbTve6lBtBVqG8faXRUAAOeNYAtAOlUkvfwHa7/asAbW8oNL4uyuCgCAaiHYAvVdSYn0yp+lbzdaux6Me0ZqeandVQEAUG0EW6A+c7mkN/4qffWxFBQs3f9HKb6z3VUBAFAjBFugvjJGWvgvaeMqKSBQGj1F6nCF3VUBAFBjBFugPjJGeuc/0ifvSg6HNOJxqWtfu6sCAOCCEGyB+mjV69LqN632nb+WrrzW3noAALgICLZAfbN2kbRsttUe8pB01Y321gMAwEVCsAXqk8/ekxa/aLUHjZYG3GFvPQAAXEQEW6C++HKNNO8fVnvgUOn6kbaWAwDAxUawBeqDbZ9Jr6ZIxmUtPbhlnHXTGAAAfoRgC/i77zdLc56SXCXSlT+Vhv6KUAsA8EsEW8Cf5R6S5jwtFRdZ23nd/Vtrz1oAAPwQwRbwV8ZI8/4uFeRJLdtLo56UAoPsrgoAgFpDsAX81cdLpO0bpOAQaeRk6xEAAD9GsAX8UfZeaclLVvumB6TYNvbWAwBAHSDYAv6m5JS1A0JxoXTZlVK/W+2uCACAOkGwBfzNitekvd9K4Q2lu34rBfCfOQCgfuBfPMCf7NomrXrNav/8l1J0U3vrAQCgDhFsAX9ReEJ67S+SyyX1uk664lq7KwIAoE4RbAF/8fYsKWefFN1MuuNhu6sBAKDOEWwBf5C+Xlq/1PpGsbsfk8Ia2F0RAAB1jmAL+Lr8I9YXMUjSgJ9LHXraWg4AAHYh2AK+zBjpzWnSsaNS87bSjWPsrggAANsQbAFf9tlyaxlCYDDfLgYAqPcItoCvytkvvTXDat94r9Sina3lAABgN4It4ItKSqTXnpWKTkqXdpcG/tzuigAAsB3BFvBFH8y1vowhNNzaBSEg0O6KAACwHcEW8DV7MqTlr1jt2x+WGsfYWw8AAF6CYAv4kqKTpd8uViL16C/1TrK7IgAAvAbBFvAl7/xHyt4jRTaRhv7K+kIGAAAgiWAL+I5vPpfWvW217/qNFBFlbz0AAHgZgi3gCwpypTf+ZrX73Sp16mNvPQAAeCGCLeDtjJHm/1PKOyRd0lq6+QG7KwIAwCsRbAFv98UqacuH1pZeIx+XQkLtrggAAK9EsAW82eEsadHzVnvQKCnuMnvrAQDAixFsAW/lKpFe/4t08rgU31n66XC7KwIAwKsRbAFvtWaB9MNWa+nBiMelQL5dDACAsyHYAt5o3w/SstlW+7b/k5q2sLceAAB8AMEW8DbFRdJrKVLJKalrXynxBrsrAgDAJ9Qo2M6YMUPx8fEKDQ1VYmKiNmzYcMaxAwcOlMPhqHQMHjzYPebYsWOaMGGCWrVqpbCwMHXu3FmzZs2qSWmA71v2snRgl9QgWrpzIt8uBgDAeap2sJ03b54mTpyoqVOnatOmTerRo4eSk5OVnZ1d5fhFixbpwIED7iM9PV2BgYEaOnSoe8zEiRO1fPlyvfrqq9q+fbseeeQRTZgwQUuWLKn5JwN80XdfWmtrJWn4b6SGjeytBwAAH1LtYDtt2jQ98MADGjNmjHtmNTw8XC+//HKV4xs3bqzY2Fj3sXLlSoWHh3sE208++USjR4/WwIEDFR8fr3HjxqlHjx5nnQkG/M6JY9Lrz1ntvoOlLlfZWw8AAD6mWsG2qKhIGzduVFJSUvkJAgKUlJSk9evXn9c5UlNTNXz4cEVERLj7rr76ai1ZskT79u2TMUarV6/Wt99+q+uvv77KcxQWFiovL8/jAHzewuelowelpi2lWx+0uxoAAHxOtYJtTk6OSkpKFBMT49EfExOjzMzMc75+w4YNSk9P1/333+/R//zzz6tz585q1aqVQkJCNGjQIM2YMUP9+/ev8jwpKSmKiopyH3FxcdX5GID3+XK1tDFNcgRIIx6TnGF2VwQAgM+p010RUlNT1a1bNyUkJHj0P//88/r000+1ZMkSbdy4UX//+981fvx4rVq1qsrzTJ48Wbm5ue5j7969dVE+UDuO5kjz/2m1f3a39WUMAACg2oKqM7hp06YKDAxUVlaWR39WVpZiY2PP+tqCggLNnTtXTz/9tEf/iRMn9MQTT+itt95y75TQvXt3bd68WX/72988lj2UcTqdcjqd1Skd8E4ul/TGc9b62rjLpOtH2l0RAAA+q1oztiEhIerVq5fS0tLcfS6XS2lpaerbt+9ZXzt//nwVFhZq5EjPf7iLi4tVXFysgADPUgIDA+VyuapTHuB71i6Qvt0kBTulkZOlwGr9f00AAFBBtf8VnThxokaPHq3evXsrISFB06dPV0FBgcaMGSNJGjVqlFq2bKmUlBSP16WmpmrIkCFq0qSJR39kZKQGDBigSZMmKSwsTG3atNHatWv1yiuvaNq0aRfw0QAvt2ub9G6q1b71QekS1ooDAHAhqh1shw0bpoMHD2rKlCnKzMxUz549tXz5cvcNZXv27Kk0+5qRkaF169ZpxYoVVZ5z7ty5mjx5skaMGKHDhw+rTZs2+vOf/6wHH+TOcPipgjzplT9JrhLpioHS1TfZXREAAD7PYYwxdhdxofLy8hQVFaXc3FxFRkbaXQ5wdsZIqVOkr9dbW3s9+qIUGnHu1wEA4MPqIq/V6a4IACStXWiF2sBgafTvCbUAAFwkBFugLu3eLr3zH6s95EGpVQd76wEAwI8QbIG6cjxf+m/putoe/aWf3GJ3RQAA+BWCLVAXjJHe+Kt0JEtq0lwaNlFyOOyuCgAAv0KwBerCh4uk9E9K19U+KYU1sLsiAAD8DsEWqG27v/FcVxt3mb31AADgpwi2QG06nm/tV1tyinW1AADUMoItUFuMkeb+TTqcybpaAADqAMEWqC0fLZa++lgKDJJG/Z51tQAA1DKCLVAb9nwjLfm31b7lF1LrjvbWAwBAPUCwBS62E8es/WpLTknd+0nXDLG7IgAA6gWCLXAxVVxX2zhWGv4b1tUCAFBHCLbAxbTubWnrOmtd7WjW1QIAUJcItsDFsvdb6e3SdbU3j5Nad7K3HgAA6hmCLXAxnDgm/fePUkmx1O0nUv/b7K4IAIB6h2ALXChjpHnTpEMHWFcLAICNCLbAhfp4ibTlw/L9asMb2l0RAAD1EsEWuBB7v5MWz7LaN90vtWFdLQAAdiHYAjV1skB6pXRdbde+0oA77K4IAIB6jWAL1ETZutqc/VKjS6Thk1hXCwCAzQi2QE188o60ea0UEGitq42ItLsiAADqPYItUF0/fictnmm1b7pfiu9sbz0AAEASwRaonpMF0n//JJ0qlrr0lQb+3O6KAABAKYItcL6Mkd78h5SzT4puJt3FuloAALwJwRY4X+uXSl+usdbVjn6SdbUAAHgZgi1wPvb9IL01w2rfNJZ1tQAAeCGCLXAuJ49L/33aWlfbOVEawLpaAAC8EcEWOBtjpPn/kA6Wrqu9+7dSAP/ZAADgjfgXGjibT5dJm1ZbYXbU76WIKLsrAgAAZ0CwBc7kxDFpyUtW+8axUtsu9tYDAADOimALnMmahda+tc3jpWuH2l0NAAA4B4ItUJXj+dKHC6329aNYVwsAgA/gX2ugKmsXWrshNG8rde9ndzUAAOA8EGyB0xXkSWsXWe3ke5itBQDAR/AvNnC6tQulwuNSi3ZSN2ZrAQDwFQRboKKCPOnDt6w2s7UAAPgU/tUGKlqzoHS29lKp60/srgYAAFQDwRYoU5ArfVQ6WzuInRAAAPA1/MsNlFmzQCo8IbW8VOp6td3VAACAaiLYApJ0LFf6aLHVTh4lORy2lgMAAKqPYAtI0pr5pbO17ZmtBQDARxFsgWNHy2drBzFbCwCAryLYAqvnS0UnpVaXSV362l0NAACoIYIt6rdjR6V1b1ttZmsBAPBpBFvUbx+8ac3Wxl0mdU60uxoAAHABCLaov/KPSB8vsdrshAAAgM8j2KL+Wl06W9u6I7O1AAD4AYIt6qf8I9I6ZmsBAPAnBFvUTx+8KRUXSq07SZcn2F0NAAC4CAi2qH/yDpevrWUnBAAA/AbBFvXPB/Os2do2naROfeyuBgAAXCQEW9QveYelT96x2oNGM1sLAIAfIdiifkmbKxUXSW0ulzr2trsaAABwERFsUX/kHpLWv2u1ma0FAMDvEGxRf3wwz5qtje8idexldzUAAOAiI9iifsjNqbC2lp0QAADwRwRb1A9pc6VTxVLbLtJlV9pdDQAAqAU1CrYzZsxQfHy8QkNDlZiYqA0bNpxx7MCBA+VwOCodgwcP9hi3fft23XLLLYqKilJERIT69OmjPXv21KQ8wNPRHGn9UqvN2loAAPxWtYPtvHnzNHHiRE2dOlWbNm1Sjx49lJycrOzs7CrHL1q0SAcOHHAf6enpCgwM1NChQ91jfvjhB/Xr10+dOnXSmjVrtHXrVj355JMKDQ2t+ScDyqS9UTpb21XqcIXd1QAAgFriMMaY6rwgMTFRffr00QsvvCBJcrlciouL08MPP6zHH3/8nK+fPn26pkyZogMHDigiIkKSNHz4cAUHB+t///tfDT6ClJeXp6ioKOXm5ioyMrJG54CfOnpQ+tMoqaRY+r+/EmwBALBJXeS1as3YFhUVaePGjUpKSio/QUCAkpKStH79+vM6R2pqqoYPH+4OtS6XS0uXLtVll12m5ORkXXLJJUpMTNTixYurUxpQtbS5Vqi9tLvUvqfd1QAAgFpUrWCbk5OjkpISxcTEePTHxMQoMzPznK/fsGGD0tPTdf/997v7srOzdezYMT377LMaNGiQVqxYodtuu02333671q5dW+V5CgsLlZeX53EAlRzJltYvs9rJ7IQAAIC/C6rLN0tNTVW3bt2UkJDg7nO5XJKkW2+9Vb/+9a8lST179tQnn3yiWbNmacCAAZXOk5KSoqeeeqpuiobvqjhb26Gn3dUAAIBaVq0Z26ZNmyowMFBZWVke/VlZWYqNjT3rawsKCjR37lyNHTu20jmDgoLUuXNnj/7LL7/8jLsiTJ48Wbm5ue5j79691fkYqA+OZEufvme1B42ytxYAAFAnqhVsQ0JC1KtXL6Wlpbn7XC6X0tLS1Ldv37O+dv78+SosLNTIkSMrnbNPnz7KyMjw6P/222/Vpk2bKs/ldDoVGRnpcQAeVr1uzda278HaWgAA6olqL0WYOHGiRo8erd69eyshIUHTp09XQUGBxowZI0kaNWqUWrZsqZSUFI/XpaamasiQIWrSpEmlc06aNEnDhg1T//79de2112r58uV65513tGbNmpp9KtRvR7Kkz5Zb7UGj7a0FAADUmWoH22HDhungwYOaMmWKMjMz1bNnTy1fvtx9Q9mePXsUEOA5EZyRkaF169ZpxYoVVZ7ztttu06xZs5SSkqJf/vKX6tixoxYuXKh+/frV4COh3lv5hlRyytra69LudlcDAADqSLX3sfVG7GMLt8NZ0jOjrWA74R/Spd3srggAAMgL97EFvN6q1yvM1hJqAQCoTwi28B+HMyusrWUnBAAA6huCLfzHytckV4l02ZVSO2ZrAQCobwi28A+HDkgbSm9OZCcEAADqJYIt/MPK163Z2o69pLZd7K4GAADYgGAL35ezX/r8favNbC0AAPUWwRa+b9XrkssldeotxXc+93gAAOCXCLbwbTn7pc9L19YmsxMCAAD1GcEWvm3la6WztX2YrQUAoJ4j2MJ3HdwnfbHSarO2FgCAeo9gC9+14n/WbO3lCVKbTnZXAwAAbEawhW/K3C1tTLPaN9xraykAAMA7EGzhm5b/VzJG6tZPirvM7moAAIAXINjC9+z7XtryoeRwSIPYCQEAAFgItvA9y/9rPV4xUGrRzs5KAACAFyHYwrfs/kZKXy85Ati3FgAAeCDYwre8N9t67PMz6ZI4e2sBAABehWAL3/HDViljoxQQKF0/0u5qAACAlyHYwjcYIy0rna296gapSXN76wEAAF6HYAvf8O0macdXUlCw9LMRdlcDAAC8EMEW3q/ibO3VN0vRzeytBwAAeCWCLbzfts+kPd9IIaFS0l12VwMAALwUwRbezeUq3wnhmiFSw0a2lgMAALwXwRbebes6ad8PkjNcunao3dUAAAAvRrCF93KVSMvnWO2Bd0gRUbaWAwAAvBvBFt5r02opa48U3lAacIfd1QAAAC9HsIV3Kjklvf+K1b72Timsgb31AAAAr0ewhXf6fIWUs19qEG3dNAYAAHAOBFt4n1NF0vv/s9pJd0nOMHvrAQAAPoFgC+/z6XvS0YNSVFPrCxkAAADOA8EW3qXopLTiNav9sxFScIi99QAAAJ9BsIV3+fgdKf+w1DhWShxkdzUAAMCHEGzhPU4el9LmWu3rR0pBwfbWAwAAfArBFt7jo7ekglypWUup98/srgYAAPgYgi28w/F86YM3rfag0VJgoL31AAAAn0OwhXdYs0A6WSA1j5d6DrS7GgAA4IMItrDfsVzpw0VWe9C9UgD/swQAANVHgoD9PpgnFZ6QWnWQuv3E7moAAICPItjCXrmHpHVvW+0bx0gOh731AAAAn0Wwhb3S3pCKC6X4zlKnPnZXAwAAfBjBFvY5kiV9stRqM1sLAAAuEMEW9lnxmlRSLLXvKXW4wu5qAACAjyPYwh4H90kbllvtG+61tRQAAOAfCLawx4r/SS6XdHmC1K6r3dUAAAA/QLBF3cvaLW38wGozWwsAAC4Sgi3q3vJXJOOSuvWT4i6zuxoAAOAnCLaoW/t+kDavtXZAGDTK7moAAIAfIdiibi2fYz32HCi1aGdnJQAAwM8QbFF3dn8jpa+XHAHM1gIAgIuOYIu6895s67HPz6RL4uytBQAA+B2CLerGD1uljI1SQKB0/Ui7qwEAAH6IYIvaZ4z03hyrfdUNUpPmtpYDAAD8E8EWte/bTdaMbVCw9LMRdlcDAAD8FMEWtcuY8rW1V98sRTeztx4AAOC3CLaoXds+s3ZDCAmVku6yuxoAAODHCLaoPS5X+Wxtv1ulho3srQcAAPg1gi1qz9Z11jeNOcOln95pdzUAAMDPEWxRe1a+Zj0OvEOKiLK3FgAA4PdqFGxnzJih+Ph4hYaGKjExURs2bDjj2IEDB8rhcFQ6Bg8eXOX4Bx98UA6HQ9OnT69JafAWmbul/T9IgUFS/9vtrgYAANQD1Q628+bN08SJEzV16lRt2rRJPXr0UHJysrKzs6scv2jRIh04cMB9pKenKzAwUEOHDq009q233tKnn36qFi1aVP+TwLtsXms9duwthTe0txYAAFAvVDvYTps2TQ888IDGjBmjzp07a9asWQoPD9fLL79c5fjGjRsrNjbWfaxcuVLh4eGVgu2+ffv08MMP67XXXlNwcHDNPg28x5YPrcee/e2tAwAA1BvVCrZFRUXauHGjkpKSyk8QEKCkpCStX7/+vM6Rmpqq4cOHKyIiwt3ncrl0zz33aNKkSerSpcs5z1FYWKi8vDyPA17kwC4pc5cUGCx1vdruagAAQD1RrWCbk5OjkpISxcTEePTHxMQoMzPznK/fsGGD0tPTdf/993v0/+Uvf1FQUJB++ctfnlcdKSkpioqKch9xcXHn/yFQ+7aULkPo1FsKa2BvLQAAoN6o010RUlNT1a1bNyUkJLj7Nm7cqH/+85+aM2eOHA7HeZ1n8uTJys3NdR979+6trZJRE2Xra3uwDAEAANSdagXbpk2bKjAwUFlZWR79WVlZio2NPetrCwoKNHfuXI0dO9aj/6OPPlJ2drZat26toKAgBQUFaffu3Xr00UcVHx9f5bmcTqciIyM9DniJA7ukrD2lyxD62l0NAACoR6oVbENCQtSrVy+lpaW5+1wul9LS0tS379lDzPz581VYWKiRI0d69N9zzz3aunWrNm/e7D5atGihSZMm6f33369OefAGZbO1l7MMAQAA1K2g6r5g4sSJGj16tHr37q2EhARNnz5dBQUFGjNmjCRp1KhRatmypVJSUjxel5qaqiFDhqhJkyYe/U2aNKnUFxwcrNjYWHXs2LG65cFOxpQH254DbS0FAADUP9UOtsOGDdPBgwc1ZcoUZWZmqmfPnlq+fLn7hrI9e/YoIMBzIjgjI0Pr1q3TihUrLk7V8E4HdkrZe6SgYKnLVXZXAwAA6hmHMcbYXcSFysvLU1RUlHJzc1lva6f35kgrXrW2+Br7tN3VAAAAL1IXea1Od0WAH/NYhjDA3loAAEC9RLDFxXFgp5S9t3QZArshAACAukewxcXh3g0hQQoNt7cWAABQLxFsceFYhgAAALwAwRYXbv8O6eCPUnCI1JndEAAAgD0ItrhwZbO1nViGAAAA7EOwxYUxRtrCMgQAAGA/gi0uzP4fpIP7rGUIfCkDAACwEcEWF8a9G0Ki5AyztxYAAFCvEWxRcx67IfS3txYAAFDvEWxRc/u+l3L2S8FOdkMAAAC2I9ii5spmazuzDAEAANiPYIuaqbgMoQfLEAAAgP0ItqiZH7+XDh0oXYaQaHc1AAAABFvU0OY11iPLEAAAgJcg2KL6PHZDGGhrKQAAAGUItqi+vd9KhzOlkFCpc4Ld1QAAAEgi2KImtnxoPXZOtMItAACAFyDYono8liEMsLcWAACACgi2qJ69GeXLEC5nGQIAAPAeBFtUT9lsbZerWIYAAAC8CsEW588YaXPp+lqWIQAAAC9DsMX525MhHcmyZmo7sQwBAAB4F4Itzp97GUJfKcRpby0AAACnIdji/BgjbWE3BAAA4L0Itjg/e76RjmRbX5/bqY/d1QAAAFRCsMX5YRkCAADwcgRbnJvLxZcyAAAAr0ewxbnt+UY6epBlCAAAwKsRbHFuZbO1Xa+WgkPsrQUAAOAMCLY4O5dL2sKXMgAAAO9HsMXZ7d5eugwhXOrY2+5qAAAAzohgi7NjGQIAAPARBFucGcsQAACADyHY4sx2bZNyc6TQcKlTL7urAQAAOCuCLc6sbLa269VSEMsQAACAdyPYomoul7Sl7EsZBtpaCgAAwPkg2KJqu76Wcg9JoRFSxyvtrgYAAOCcCLaoWsXdEFiGAAAAfADBFpW5XNKWj6w2uyEAAAAfQbBFZTu/lvLKliGwGwIAAPANBFtUtnmN9di9nxQUbGspAAAA54tgC0+uEmnrOqvdo7+9tQAAAFQDwRaeypYhhDWQLmM3BAAA4DsItvBUthtCt5+wDAEAAPgUgi3KuUrKv22M3RAAAICPIdii3I50Kf+IFN5Q6nCF3dUAAABUC8EW5ViGAAAAfBjBFhaWIQAAAB9HsIXlh6+kY0dZhgAAAHwWwRaWLWXLEPpJgUH21gIAAFADBFtIJSXSlo+sNssQAACAjyLYQtqx1VqGEBEpdehpdzUAAAA1QrCF524ILEMAAAA+imBb35WUSFvXWe2eA20tBQAA4EIQbOu7H7aUL0No39PuagAAAGqMYFvfba64G0KgvbUAAABcgBoF2xkzZig+Pl6hoaFKTEzUhg0bzjh24MCBcjgclY7BgwdLkoqLi/XYY4+pW7duioiIUIsWLTRq1Cjt37+/Zp8I589jGQK7IQAAAN9W7WA7b948TZw4UVOnTtWmTZvUo0cPJScnKzs7u8rxixYt0oEDB9xHenq6AgMDNXToUEnS8ePHtWnTJj355JPatGmTFi1apIyMDN1yyy0X9slwbt9vlgpypYgoliEAAACf5zDGmOq8IDExUX369NELL7wgSXK5XIqLi9PDDz+sxx9//Jyvnz59uqZMmaIDBw4oIiKiyjGff/65EhIStHv3brVu3fqc58zLy1NUVJRyc3MVGRlZnY9Tv82bJn26TOp7k3TnI3ZXAwAA/Fhd5LVqzdgWFRVp48aNSkpKKj9BQICSkpK0fv368zpHamqqhg8ffsZQK0m5ublyOByKjo6u8vnCwkLl5eV5HKimklPSV2XLEPrbWwsAAMBFUK1gm5OTo5KSEsXExHj0x8TEKDMz85yv37Bhg9LT03X//fefcczJkyf12GOP6a677jpjmk9JSVFUVJT7iIuLq87HgCR984VUkCc1iJYu7WF3NQAAABesTndFSE1NVbdu3ZSQkFDl88XFxbrzzjtljNHMmTPPeJ7JkycrNzfXfezdu7e2SvZPp4qlJS9Z7d5J7IYAAAD8QrW+Zqpp06YKDAxUVlaWR39WVpZiY2PP+tqCggLNnTtXTz/9dJXPl4Xa3bt364MPPjjr2gun0ymn01md0lHRh4uk7D3WbO31I+2uBgAA4KKo1oxtSEiIevXqpbS0NHefy+VSWlqa+vbte9bXzp8/X4WFhRo5snKQKgu13333nVatWqUmTZpUpyxUx9GD0vv/s9o3j5PCGthbDwAAwEVSrRlbSZo4caJGjx6t3r17KyEhQdOnT1dBQYHGjBkjSRo1apRatmyplJQUj9elpqZqyJAhlUJrcXGxfv7zn2vTpk169913VVJS4l6v27hxY4WEhNT0s6Eqb8+Sik5KbbtYyxAAAAD8RLWD7bBhw3Tw4EFNmTJFmZmZ6tmzp5YvX+6+oWzPnj0KCPCcCM7IyNC6deu0YsWKSufbt2+flixZIknq2bOnx3OrV6/WwIEDq1siziRjo/VNY44A6Y5fSgF88RwAAPAf1d7H1huxj+15OFUs/XWclL1XumaIdPsEuysCAAD1iNftYwsftnahFWobREs33Gt3NQAAABcdwbY+OJItrXjVat/CDWMAAMA/EWzrA/cNY12l3j+zuxoAAIBaQbD1dxkbpS0flt4w9rDkcNhdEQAAQK0g2PqzU0XSwuetdr9bpZaX2lsPAABALSLY+rM1C6WDP0oNG0k3jLa7GgAAgFpFsPVXR7Klla9Zbb5hDAAA1AMEW3/lccMY3zAGAAD8H8HWH33zhXXDWECA9PNfcsMYAACoFwi2/uZUkbToBavdb4jUop2t5QAAANQVgq2/WbOg/IaxQaPsrgYAAKDOEGz9yZEsaUXpDWO3/IIbxgAAQL1CsPUni2dJxYVSu25Sr+vsrgYAAKBOEWz9xTefS1s/sm4Y4xvGAABAPUSw9QfcMAYAAECw9QurF0gH90kNG3PDGAAAqLcItr7ucFb5N4zdyg1jAACg/iLY+rq3Z1o3jF3aXbryp3ZXAwAAYBuCrS/bvkHauo4bxgAAAESw9V2niqRFM6z2NbdJzdvaWw8AAIDNCLa+avV8KYcbxgAAAMoQbH3R4Uxp5etW+9ZfSKER9tYDAADgBQi2vmgxN4wBAACcjmBbEy6XlLnbnvfevkH66uPSG8Z+yQ1jAAAApYLsLsAnffelNOsxKb6z1Hew1HOAFBJa++9bXOEbxvrfLjWPr/33BAAA8BEE25o4sFMKCJR2bbOOt16UeidZIbc2v8529ZtSzn4psomUfE/tvQ8AAIAPItjWxMCfW2tbN7wvfbpMOnRAWve2dbTpVDqLO1Byhl289zycKa3ihjEAAIAzcRhjjN1FXKi8vDxFRUUpNzdXkZGRdfvmLpe1NGH9Umvtq6vE6g8Nl3pdZ4Xclu0v/H1Sp0jpn0jte0j/9zfW1gIAAJ9SF3mNGdsLFRAgdexlHflHpA0rpE+XWksGPn7HOlp3tALuFdfWbBZ322dWqA0IlG7nG8YAAACqwoxtbXC5pB+2WLO4W9dJJaesfmeYdGXpLG5ch/M7V3GR9Nz9VlAeONRahgAAAOBjmLH1VQEBUocrrOPYUenzFVbIPbhPWv+udbS6TOp7o7VWNzT8zOcqu2EsihvGAAAAzoYZ27pijPR9xVncYqs/JNQKt30HS3GXeS4zOHRA+stYa9b2nt9JV15rT+0AAAAXiBlbf+JwSB16Wsexo9LnK0tncX+0dlb4dJl1k1nfwVKvn1q7Hix+0Qq17XtKVwy0s3oAAACvx4ytnYyRfthqBdwtH3nO4l52hZS+3rphbNJLUmwbe2sFAAC4AMzY+juHw9q+q30P6fbc0lncZVL2HivUStKA2wm1AAAA54Fg6y0ioqwvfhhwh7Qj3VqacKpIup4bxgAAAM4HwdbbOBzSpd2sAwAAAOctwO4CAAAAgIuBYAsAAAC/QLAFAACAXyDYAgAAwC8QbAEAAOAXCLYAAADwCwRbAAAA+AWCLQAAAPwCwRYAAAB+gWALAAAAv0CwBQAAgF8g2AIAAMAvEGwBAADgFwi2AAAA8AtBdhdwMRhjJEl5eXk2VwIAAICqlOW0stxWG/wi2Obn50uS4uLibK4EAAAAZ5Ofn6+oqKhaObfD1GZsriMul0v79+9Xw4YN5XA4lJeXp7i4OO3du1eRkZF2l4daxLWuH7jO9QfXun7gOtcfFa91w4YNlZ+frxYtWiggoHZWw/rFjG1AQIBatWpVqT8yMpL/YOoJrnX9wHWuP7jW9QPXuf4ou9a1NVNbhpvHAAAA4BcItgAAAPALfhlsnU6npk6dKqfTaXcpqGVc6/qB61x/cK3rB65z/VHX19ovbh4DAAAA/HLGFgAAAPUPwRYAAAB+gWALAAAAv0CwBQAAgF/wy2A7Y8YMxcfHKzQ0VImJidqwYYPdJeEsPvzwQ918881q0aKFHA6HFi9e7PG8MUZTpkxR8+bNFRYWpqSkJH333XceYw4fPqwRI0YoMjJS0dHRGjt2rI4dO+YxZuvWrbrmmmsUGhqquLg4Pffcc7X90VBBSkqK+vTpo4YNG+qSSy7RkCFDlJGR4THm5MmTGj9+vJo0aaIGDRrojjvuUFZWlseYPXv2aPDgwQoPD9cll1yiSZMm6dSpUx5j1qxZoyuvvFJOp1Pt27fXnDlzavvjodTMmTPVvXt392bsffv21Xvvved+nmvsn5599lk5HA498sgj7j6utX/4wx/+IIfD4XF06tTJ/bzXXWfjZ+bOnWtCQkLMyy+/bL7++mvzwAMPmOjoaJOVlWV3aTiDZcuWmd/97ndm0aJFRpJ56623PJ5/9tlnTVRUlFm8eLHZsmWLueWWW0zbtm3NiRMn3GMGDRpkevToYT799FPz0Ucfmfbt25u77rrL/Xxubq6JiYkxI0aMMOnp6eaNN94wYWFh5t///nddfcx6Lzk52cyePdukp6ebzZs3mxtvvNG0bt3aHDt2zD3mwQcfNHFxcSYtLc188cUX5qqrrjJXX321+/lTp06Zrl27mqSkJPPll1+aZcuWmaZNm5rJkye7x+zYscOEh4ebiRMnmm3btpnnn3/eBAYGmuXLl9fp562vlixZYpYuXWq+/fZbk5GRYZ544gkTHBxs0tPTjTFcY3+0YcMGEx8fb7p3725+9atfufu51v5h6tSppkuXLubAgQPu4+DBg+7nve06+12wTUhIMOPHj3f/XFJSYlq0aGFSUlJsrArn6/Rg63K5TGxsrPnrX//q7jt69KhxOp3mjTfeMMYYs23bNiPJfP755+4x7733nnE4HGbfvn3GGGNefPFF06hRI1NYWOge89hjj5mOHTvW8ifCmWRnZxtJZu3atcYY67oGBweb+fPnu8ds377dSDLr1683xlj/JyggIMBkZma6x8ycOdNERka6r+1vf/tb06VLF4/3GjZsmElOTq7tj4QzaNSokfl//+//cY39UH5+vunQoYNZuXKlGTBggDvYcq39x9SpU02PHj2qfM4br7NfLUUoKirSxo0blZSU5O4LCAhQUlKS1q9fb2NlqKmdO3cqMzPT45pGRUUpMTHRfU3Xr1+v6Oho9e7d2z0mKSlJAQEB+uyzz9xj+vfvr5CQEPeY5ORkZWRk6MiRI3X0aVBRbm6uJKlx48aSpI0bN6q4uNjjWnfq1EmtW7f2uNbdunVTTEyMe0xycrLy8vL09ddfu8dUPEfZGP4OqHslJSWaO3euCgoK1LdvX66xHxo/frwGDx5c6Xpwrf3Ld999pxYtWqhdu3YaMWKE9uzZI8k7r7NfBducnByVlJR4/OFJUkxMjDIzM22qChei7Lqd7ZpmZmbqkksu8Xg+KChIjRs39hhT1Tkqvgfqjsvl0iOPPKKf/OQn6tq1qyTrOoSEhCg6Otpj7OnX+lzX8Uxj8vLydOLEidr4ODjNV199pQYNGsjpdOrBBx/UW2+9pc6dO3ON/czcuXO1adMmpaSkVHqOa+0/EhMTNWfOHC1fvlwzZ87Uzp07dc011yg/P98rr3NQtUYDwEUwfvx4paena926dXaXglrQsWNHbd68Wbm5uVqwYIFGjx6ttWvX2l0WLqK9e/fqV7/6lVauXKnQ0FC7y0EtuuGGG9zt7t27KzExUW3atNGbb76psLAwGyurml/N2DZt2lSBgYGV7sbLyspSbGysTVXhQpRdt7Nd09jYWGVnZ3s8f+rUKR0+fNhjTFXnqPgeqBsTJkzQu+++q9WrV6tVq1bu/tjYWBUVFeno0aMe40+/1ue6jmcaExkZ6ZV/CfujkJAQtW/fXr169VJKSop69Oihf/7zn1xjP7Jx40ZlZ2fryiuvVFBQkIKCgrR27Vr961//UlBQkGJiYrjWfio6OlqXXXaZvv/+e6/8b9qvgm1ISIh69eqltLQ0d5/L5VJaWpr69u1rY2WoqbZt2yo2Ntbjmubl5emzzz5zX9O+ffvq6NGj2rhxo3vMBx98IJfLpcTERPeYDz/8UMXFxe4xK1euVMeOHdWoUaM6+jT1mzFGEyZM0FtvvaUPPvhAbdu29Xi+V69eCg4O9rjWGRkZ2rNnj8e1/uqrrzz+j8zKlSsVGRmpzp07u8dUPEfZGP4OsI/L5VJhYSHX2I9cd911+uqrr7R582b30bt3b40YMcLd5lr7p2PHjumHH35Q8+bNvfO/6Wrfbubl5s6da5xOp5kzZ47Ztm2bGTdunImOjva4Gw/eJT8/33z55Zfmyy+/NJLMtGnTzJdffml2795tjLG2+4qOjjZvv/222bp1q7n11lur3O7riiuuMJ999plZt26d6dChg8d2X0ePHjUxMTHmnnvuMenp6Wbu3LkmPDyc7b7q0EMPPWSioqLMmjVrPLaNOX78uHvMgw8+aFq3bm0++OAD88UXX5i+ffuavn37up8v2zbm+uuvN5s3bzbLly83zZo1q3LbmEmTJpnt27ebGTNmsD1QHXr88cfN2rVrzc6dO83WrVvN448/bhwOh1mxYoUxhmvszyruimAM19pfPProo2bNmjVm586d5uOPPzZJSUmmadOmJjs72xjjfdfZ74KtMcY8//zzpnXr1iYkJMQkJCSYTz/91O6ScBarV682kiodo0ePNsZYW349+eSTJiYmxjidTnPdddeZjIwMj3McOnTI3HXXXaZBgwYmMjLSjBkzxuTn53uM2bJli+nXr59xOp2mZcuW5tlnn62rjwhjqrzGkszs2bPdY06cOGH+7//+zzRq1MiEh4eb2267zRw4cMDjPLt27TI33HCDCQsLM02bNjWPPvqoKS4u9hizevVq07NnTxMSEmLatWvn8R6oXffdd59p06aNCQkJMc2aNTPXXXedO9QawzX2Z6cHW661fxg2bJhp3ry5CQkJMS1btjTDhg0z33//vft5b7vODmOMqf48LwAAAOBd/GqNLQAAAOovgi0AAAD8AsEWAAAAfoFgCwAAAL9AsAUAAIBfINgCAADALxBsAQAA4BcItgAAAPALBFsAAAD4BYItAAAA/ALBFgAAAH6BYAsAAAC/8P8BOdzS8nmkiaIAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 800x500 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAq0AAAHDCAYAAAAOSiMcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHfElEQVR4nO3deXyU1d3///dkmwTIwpKEBMKOrAKRXQREEEREcUVEUUGrNbR6u1Rpv3Xp/WtjraW3VqVqFbUuYVFQEdHILiIIEgXBoGUJQhLWrEDW8/vjIkOGJJAJSa5J5vV8PK7HnLnmXJnP5HJ5czhzjsMYYwQAAAB4MT+7CwAAAADOhdAKAAAAr0doBQAAgNcjtAIAAMDrEVoBAADg9QitAAAA8HqEVgAAAHg9QisAAAC8HqEVAAAAXo/QCgAAAK9HaAXgs/bs2SOHw6E33njDlvd/44035HA4tGfPnnp/7yeffFIOh6Pe3xcAaorQCgB17C9/+YsWL15sdxm6/vrrdeWVV9pdBgDUCKEVAOpYVaH1tttu04kTJ9S+ffs6r6GoqEjJycmaMGFCnb8XANSFALsLAABf5e/vL39//3p5r7Vr1yo3N5fQCqDBYqQVgNfYv3+/pk+frujoaDmdTvXq1Uuvv/66JCkzM1MBAQF66qmnKlyXmpoqh8OhF154QZJ09OhRPfzww7rwwgvVrFkzhYWFafz48fruu+/OWcOll16qSy+9tML5O+64Qx06dHA79+yzz+riiy9Wy5YtFRISov79+2vhwoVufRwOh/Lz8/Xmm2/K4XDI4XDojjvukFT1nNaXXnpJvXr1ktPpVGxsrBISEpSVlVWhzt69e2v79u0aNWqUmjRpojZt2uiZZ56p9HN98skn6tmzZ4XPUF5xcbH+93//V507d5bT6VSHDh30+9//XgUFBW79Nm3apHHjxqlVq1YKCQlRx44dNX36dLc+SUlJ6t+/v0JDQxUWFqYLL7xQzz33XJXvDQDnwkgrAK+QmZmpIUOGyOFwaObMmYqMjNSnn36qGTNmKCcnRw888IBGjhyp+fPn64knnnC7dt68efL399eNN94oSdq1a5cWL16sG2+8UR07dlRmZqZefvlljRw5Utu3b1dsbGyt1Pzcc8/p6quv1tSpU1VYWKikpCTdeOONWrJkiWtE8z//+Y/uuusuDRo0SL/61a8kSZ07d67yZz755JN66qmnNGbMGP36179Wamqq5syZo2+++Ubr1q1TYGCgq++xY8d0xRVX6LrrrtNNN92khQsX6tFHH9WFF16o8ePHu/3cpUuX6qqrrjrr57nrrrv05ptv6oYbbtBDDz2kDRs2KDExUTt27NCiRYskSQcPHtTYsWMVGRmpxx57TBEREdqzZ48++OAD189JTk7WlClTNHr0aP31r3+VJO3YsUPr1q3T/fff78FvGADKMQDgBWbMmGFiYmLM4cOH3c7ffPPNJjw83Bw/fty8/PLLRpLZunWrW5+ePXuayy67zPX85MmTpqSkxK3P7t27jdPpNH/605/czkkyc+fOdZ0bOXKkGTlyZIX6br/9dtO+fXu3c8ePH3d7XlhYaHr37u1WizHGNG3a1Nx+++0VfubcuXONJLN7925jjDEHDx40QUFBZuzYsW71v/DCC0aSef31193qlGTeeust17mCggLTunVrc/3117u9z65du4wks3LlSte5J554wpT/X0BKSoqRZO666y63ax9++GEjyaxYscIYY8yiRYuMJPPNN99U+Dxl7r//fhMWFmaKi4ur7AMAnmJ6AADbGWP0/vvva+LEiTLG6PDhw65j3Lhxys7O1rfffqvrrrtOAQEBmjdvnuvabdu2afv27Zo8ebLrnNPplJ+f9Z+3kpISHTlyRM2aNVO3bt307bff1lrdISEhrvaxY8eUnZ2t4cOH1/g9vvjiCxUWFuqBBx5w1S9Jd999t8LCwvTJJ5+49W/WrJluvfVW1/OgoCANGjRIu3btcuv3ySefKDw8XJdcckmV77106VJJ0oMPPuh2/qGHHnL9DEmKiIiQJC1ZskRFRUWV/qyIiAjl5+crOTn5bB8XADxCaAVgu0OHDikrK0uvvPKKIiMj3Y4777xTkvXX0q1atdLo0aM1f/5817Xz5s1TQECArrvuOte50tJS/eMf/1DXrl3ldDrVqlUrRUZG6vvvv1d2dnat1b1kyRINGTJEwcHBatGihSIjIzVnzpwav8fevXslSd26dXM7HxQUpE6dOrleL9O2bdsKa602b95cx44dczv3ySefaOzYsQoIqHpG2N69e+Xn56cuXbq4nW/durUiIiJc7z1y5Ehdf/31euqpp9SqVStdc801mjt3rtu81/vuu08XXHCBxo8fr7Zt22r69OlatmxZNX8LAFA5QisA25WWlkqSbr31ViUnJ1d6DBs2TJJ08803a+fOnUpJSZEkzZ8/X6NHj1arVq1cP+8vf/mLHnzwQY0YMUJvv/22PvvsMyUnJ6tXr16u96pKVQvul5SUuD1fu3atrr76agUHB+ull17S0qVLlZycrFtuuUXGmJr+KjxS1coD5d//+PHjWrVqVbXXZz3XhgMOh0MLFy7U+vXrNXPmTNeX5/r376+8vDxJUlRUlFJSUvTRRx/p6quv1sqVKzV+/Hjdfvvt1fxkAFARX8QCYLvIyEiFhoaqpKREY8aMOWvfSZMm6Z577nFNEdi5c6dmzZrl1mfhwoUaNWqUXnvtNbfzWVlZbuG2Ms2bN6/w1+uSKoxyvv/++woODtZnn30mp9PpOj937twK11Z356my9VpTU1PVqVMn1/nCwkLt3r37nL+byqxYsUIFBQUVvphV2XuXlpbqp59+Uo8ePVznMzMzlZWVVWEt2SFDhmjIkCH685//rHfffVdTp05VUlKS7rrrLknW6PDEiRM1ceJElZaW6r777tPLL7+sP/7xjxVGcwGgOhhpBWA7f39/XX/99Xr//fe1bdu2Cq8fOnTI1Y6IiNC4ceM0f/58JSUlKSgoSJMmTarw884c7VywYIH2799/zlo6d+6sH3/80e09v/vuO61bt67CezgcDrcR2D179lS6iUDTpk0rLFlVmTFjxigoKEjPP/+8W/2vvfaasrOza7TG6tKlSzVgwABFR0eftV/ZSOz//d//uZ2fPXu2JLne+9ixYxV+t/369ZMk1xSBI0eOuL3u5+enPn36uPUBAE8x0grAKzz99NNauXKlBg8erLvvvls9e/bU0aNH9e233+qLL77Q0aNHXX0nT56sW2+9VS+99JLGjRvn+nJQmauuukp/+tOfdOedd+riiy/W1q1b9c4777iNXlZl+vTpmj17tsaNG6cZM2bo4MGD+te//qVevXopJyfH1W/ChAmaPXu2rrjiCt1yyy06ePCgXnzxRXXp0kXff/+928/s37+/vvjiC82ePVuxsbHq2LGjBg8eXOG9IyMjNWvWLD311FO64oordPXVVys1NVUvvfSSBg4c6Palq+paunSpa17w2fTt21e33367XnnlFWVlZWnkyJHauHGj3nzzTU2aNEmjRo2SJL355pt66aWXdO2116pz587Kzc3Vq6++qrCwMFfwveuuu3T06FFddtllatu2rfbu3at//vOf6tevn9soLgB4xMaVCwDATWZmpklISDBxcXEmMDDQtG7d2owePdq88sorbv1ycnJMSEiIkWTefvvtCj/n5MmT5qGHHjIxMTEmJCTEDBs2zKxfv77CclaVLXlljDFvv/226dSpkwkKCjL9+vUzn332WaVLXr322muma9euxul0mu7du5u5c+dWWErKGGN+/PFHM2LECFfNZctfnbnkVZkXXnjBdO/e3QQGBpro6Gjz61//2hw7dsytz8iRI02vXr0qfPbydW7bts1IMhs3bqzQr7I6i4qKzFNPPWU6duxoAgMDTVxcnJk1a5Y5efKkq8+3335rpkyZYtq1a2ecTqeJiooyV111ldm0aZOrz8KFC83YsWNNVFSUCQoKMu3atTP33HOPSU9Pr1AHAFSXw5h6+sYAAKBePfPMM5o9e7bS09OrPa8WALwVc1oBoJHq0KGD/vGPfxBYATQKjLQCAADA6zHSCgAAAK9HaAUAAIDXI7QCAADA6zWIdVpLS0t14MABhYaG8oUCAAAAL2SMUW5urmJjY+XnV/vjog0itB44cEBxcXF2lwEAAIBz2Ldvn9q2bVvrP7dBhNbQ0FBJ1i8hLCzM5moAAABwppycHMXFxblyW21rEKG1bEpAWFgYoRUAAMCL1dVUTr6IBQAAAK9HaAUAAIDXI7QCAADA6xFaAQAA4PUIrQAAAPB6hFYAAAB4PUIrAAAAvB6hFQAAAF6P0AoAAACvR2gFAACA1yO0AgAAwOsRWgEAAOD1CK0AAADweoTWMxkjZaZJW1baXQkAAABOCbC7AK9zNEN6errk5y/1GCQFN7W7IgAAAJ/HSOuZWsZIkW2l0hJp57d2VwMAAAARWivXY5D1uH2DvXUAAABAkoehNTExUQMHDlRoaKiioqI0adIkpaamVvv6pKQkORwOTZo0ydM661fPwdbj9o3WHFcAAADYyqPQunr1aiUkJOjrr79WcnKyioqKNHbsWOXn55/z2j179ujhhx/W8OHDa1xsvel8oRQULOUelX752e5qAAAAfJ5HX8RatmyZ2/M33nhDUVFR2rx5s0aMGFHldSUlJZo6daqeeuoprV27VllZWTUqtt4EBEnd+ktb10k7NkhxXe2uCAAAwKed15zW7OxsSVKLFi3O2u9Pf/qToqKiNGPGjPN5u/pVNq91x0Z76wAAAEDNl7wqLS3VAw88oGHDhql3795V9vvyyy/12muvKSUlpdo/u6CgQAUFBa7nOTk5NS2z5spC694dUl621Cy8/msAAACApPMYaU1ISNC2bduUlJRUZZ/c3FzddtttevXVV9WqVatq/+zExESFh4e7jri4uJqWWXMRkVJsZ+uLWKmb6v/9AQAA4OIwxvOvx8+cOVMffvih1qxZo44dO1bZLyUlRfHx8fL393edKy0tlST5+fkpNTVVnTt3rnBdZSOtcXFxys7OVlhYmKfl1twnr0lfvCddNEq67Q/1974AAAANTE5OjsLDw+ssr3k0PcAYo9/85jdatGiRVq1addbAKkndu3fX1q1b3c79v//3/5Sbm6vnnnuuyhFUp9Mpp9PpSWl1o8cgK7T+uMnabMDP/9zXAAAAoNZ5FFoTEhL07rvv6sMPP1RoaKgyMjIkSeHh4QoJCZEkTZs2TW3atFFiYqKCg4MrzHeNiIiQpLPOg/Ua7XtKTUKl47nS3h+ljr3srggAAMAneTSndc6cOcrOztall16qmJgY1zFv3jxXn7S0NKWnp9d6obbw95e6DbDa7I4FAABgG4+nB5zLqlWrzvr6G2+84clb2q/nYGnLSmu91gnT7a4GAADAJ53XOq0+ofsAyeGQ9v9XyjpsdzUAAAA+idB6Ls0ipHbdrPaPbDQAAABgB0JrdfQcYj1uJ7QCAADYgdBaHWW7Y+3cLBUX2lsLAACADyK0VkebLlJoC6nghLRrm93VAAAA+BxCa3X4+Uk9BlrtHUwRAAAAqG+E1urqMdh6ZL1WAACAekdora5uF1nbuB7cJx0+YHc1AAAAPoXQWl0hzaROp7aeZbQVAACgXhFaPVG2igDzWgEAAOoVodUTZeu1/pwiFZ60tRQAAABfQmj1RHQ7qXm0VFwk/ZRidzUAAAA+g9DqCYdD6nlqFYEdzGsFAACoL4RWT5XNa92+QTLG3loAAAB8BKHVU137SYFB0rGDUsZeu6sBAADwCYRWTwUFS136WW2mCAAAANQLQmtNlJ8iAAAAgDpHaK2JstC6e5t0Is/eWgAAAHwAobUmWsVKUe2k0lIpdbPd1QAAADR6hNaa6snuWAAAAPWF0FpTrvVaN1ojrgAAAKgzhNaa6thbcjaRco9Jv/xkdzUAAACNGqG1pgICpW4XWW2mCAAAANQpQuv56HFqigBLXwEAANQpQuv56DHQetyXak0TAAAAQJ0gtJ6P8FZSmy6SMdKPm+yuBgAAoNEitJ4v19JXTBEAAACoK4TW81U2r/XHTVJJib21AAAANFKE1vPVvrvUJNTaznXPdrurAQAAaJQIrefLz1/qfuoLWUwRAAAAqBOE1tpQfncsAAAA1DpCa23oPkByOKQDu6RjB+2uBgAAoNEhtNaGpuFS+x5Wm9FWAACAWkdorS2uKQLMawUAAKhthNba0uPUeq07t0jFhfbWAgAA0MgQWmtLmy5SWEup8KT03612VwMAANCoEFpri8NxerR1O1MEAAAAahOhtTaxpSsAAECdILTWpgsukvwDpEP7pUO/2F0NAABAo0ForU3BTaVOF1rt7Sx9BQAAUFsIrbWNpa8AAABqHaG1tpV9Gevn76WCE/bWAgAA0EgQWmtbVJzUorVUUiT9tMXuagAAABoFQmttczhOTxFgXisAAECtILTWhfLzWo2xtxYAAIBGgNBaFzr3lQKdUtYhKX233dUAAAA0eITWuhDklLr2s9rsjgUAAHDeCK11pWwVgR3MawUAADhfHoXWxMREDRw4UKGhoYqKitKkSZOUmpp61mteffVVDR8+XM2bN1fz5s01ZswYbdzoA0GubF7rnh+k47n21gIAANDAeRRaV69erYSEBH399ddKTk5WUVGRxo4dq/z8/CqvWbVqlaZMmaKVK1dq/fr1iouL09ixY7V///7zLt6rtWgtRbeXSkul1E12VwMAANCgOYyp+dfbDx06pKioKK1evVojRoyo1jUlJSVq3ry5XnjhBU2bNq1a1+Tk5Cg8PFzZ2dkKCwurabn176OXpZULpAGXS1MftbsaAACAOlPXee285rRmZ2dLklq0aFHta44fP66ioiKPrmmwyqYI/PiNNeIKAACAGgmo6YWlpaV64IEHNGzYMPXu3bva1z366KOKjY3VmDFjquxTUFCggoIC1/OcnJyalmmvjr2l4CZSXpa0b6fUvrvdFQEAADRINR5pTUhI0LZt25SUlFTta55++mklJSVp0aJFCg4OrrJfYmKiwsPDXUdcXFxNy7SXf4DUbYDV3sHSVwAAADVVo9A6c+ZMLVmyRCtXrlTbtm2rdc2zzz6rp59+Wp9//rn69Olz1r6zZs1Sdna269i3b19NyvQOZUtfsV4rAABAjXk0PcAYo9/85jdatGiRVq1apY4dO1brumeeeUZ//vOf9dlnn2nAgAHn7O90OuV0Oj0pzXuVhdZ9O6XcY1Joc3vrAQAAaIA8GmlNSEjQ22+/rXfffVehoaHKyMhQRkaGTpw44eozbdo0zZo1y/X8r3/9q/74xz/q9ddfV4cOHVzX5OXl1d6n8GZhLaS2F1htNhoAAACoEY9C65w5c5Sdna1LL71UMTExrmPevHmuPmlpaUpPT3e7prCwUDfccIPbNc8++2ztfQpv15MpAgAAAOfD4+kB57Jq1Sq353v27PHkLRqnnoOlz9+WUjdLJcXWF7QAAABQbee1TiuqKe4CqWm4dDJf2v2D3dUAAAA0OITW+uDnL3UfaLWZ1woAAOAxQmt9Kdsdi3mtAAAAHiO01pdu/SWHn5SxRzqaaXc1AAAADQqhtb40DZM69LDaTBEAAADwCKG1PjFFAAAAoEYIrfWpx6nQ+tMWqajQ3loAAAAaEEJrfYrtJIW3kooKpJ9T7K4GAACgwSC01ieHQ+pxancs5rUCAABUG6G1vpWf11qNHcYAAABAaK1/F1xkbeN6JF069Ivd1QAAADQIhNb65gyROvex2j+st7cWAACABoLQaoc+l1iPaxZJxawiAAAAcC6EVjsMukIKbyllHZLWL7W7GgAAAK9HaLVDYJB0+VSrnfyuVHjS3noAAAC8HKHVLoPHS82jpdyj0rqP7a4GAADAqxFa7RIQKI27zWovT5JOHre3HgAAAC9GaLXTgMulyDZSfra0dpHd1QAAAHgtQqud/P2lcdOs9soF0ok8e+sBAADwUoRWu8VfKrXuYAXWVQttLgYAAMA7EVrt5ucvjb/daq9+X8rLtrceAAAAL0Ro9QYXXiK16SIVnJBWzLO7GgAAAK9DaPUGDod05Z1W+8sPpewj9tYDAADgZQit3qLHIKl9D6moQFr+nt3VAAAAeBVCq7coP9r61SfSsYP21gMAAOBFCK3epGu81KWvVFIkJb9jdzUAAABeg9DqTRwOafwdVnvDMunwAVvLAQAA8BaEVm/T6UKp+0CptET67D92VwMAAOAVCK3eqGzd1s3Lpcw0e2sBAADwAoRWb9Suu9T7YsmUSp+9ZXc1AAAAtiO0equyua1bVkkHdtlZCQAAgO0Ird4qtpMUf6nV/vQNGwsBAACwH6HVm42bJjn8pG1fSWk/2l0NAACAbQit3iy6ndR/tNX+9E17awEAALARodXbjbtN8vOXfvxG2rXV7moAAABsQWj1dq1ipcFXWO2lcyVj7K0HAADABoTWhuDyqZJ/oPTf76WftthdDQAAQL0jtDYEzaOki6+y2oy2AgAAH0RobSjGTJECndLeHdKOjXZXAwAAUK8IrQ1FWAvpkmusNqOtAADAxxBaG5LLJkvOEGn/z9LWL+2uBgAAoN4QWhuSZuHSyOut9qdvSqUl9tYDAABQTwitDc2lN0ghzaSMPVLKarurAQAAqBeE1oYmpJk06karvexNqYTRVgAA0PgRWhui4ddKTcOlQ/ulTcl2VwMAAFDnCK0NUXATafTNVvuz/0jFRfbWAwAAUMcIrQ3VsIlSWEvpWKa04VO7qwEAAKhThNaGKihYuvwWq538jlRYYG89AAAAdcij0JqYmKiBAwcqNDRUUVFRmjRpklJTU8953YIFC9S9e3cFBwfrwgsv1NKlS2tcMMoZMl6KiJSyj0jrl9hdDQAAQJ3xKLSuXr1aCQkJ+vrrr5WcnKyioiKNHTtW+fn5VV7z1VdfacqUKZoxY4a2bNmiSZMmadKkSdq2bdt5F+/zAoKkcbdZ7S/ekwpO2FsPAABAHXEYU/P9QA8dOqSoqCitXr1aI0aMqLTP5MmTlZ+fryVLTo8EDhkyRP369dO//vWvar1PTk6OwsPDlZ2drbCwsJqW2ziVFEtPT5cOH5AmzJDGTLG7IgAA4IPqOq+d15zW7OxsSVKLFi2q7LN+/XqNGTPG7dy4ceO0fv3683lrlPEPkMZNs9or50sn8uytBwAAoA7UOLSWlpbqgQce0LBhw9S7d+8q+2VkZCg6OtrtXHR0tDIyMqq8pqCgQDk5OW4HzuKiUVJ0O+l4rrT6A7urAQAAqHU1Dq0JCQnatm2bkpKSarMeSdYXvsLDw11HXFxcrb9Ho+LnL11xu9VevVDKz7a3HgAAgFpWo9A6c+ZMLVmyRCtXrlTbtm3P2rd169bKzMx0O5eZmanWrVtXec2sWbOUnZ3tOvbt21eTMn1Ln+FSbGfp5HFp5QK7qwEAAKhVHoVWY4xmzpypRYsWacWKFerYseM5rxk6dKiWL1/udi45OVlDhw6t8hqn06mwsDC3A+fg5yeNv8Nqr10s5R6zsxoAAIBa5VFoTUhI0Ntvv613331XoaGhysjIUEZGhk6cOL3U0rRp0zRr1izX8/vvv1/Lli3T3//+d/3444968skntWnTJs2cObP2PgUsvYZI7bpLhSel5bU/bQMAAMAuHoXWOXPmKDs7W5deeqliYmJcx7x581x90tLSlJ6e7np+8cUX691339Urr7yivn37auHChVq8ePFZv7yFGnI4pCvvtNrrPpKyDttbDwAAQC05r3Va6wvrtHrAGOmFB6VdW6VhE6Ub7re7IgAA4AO8ep1WeKHyo61ff2ptOgAAANDAEVobo859pO4DrN2yls61uxoAAIDzRmhtrK662xp13bJSSku1uxoAAIDzQmhtrNp0lvqPttofv2rNdQUAAGigCK2N2fg7pYBA6ecU6cdv7K4GAACgxgitjVmLaGn4JKv98atSaYmt5QAAANQUobWxGz1FCmkmpe+WNi0/d38AAAAvRGht7JqGSWOmWO1P50qFBfbWAwAAUAOEVl8w/FopIlLKOiStXWx3NQAAAB4jtPqCwKDTGw4sf0/Kz7G3HgAAAA8RWn1F/9FSbCfpRJ70xXt2VwMAAOARQquv8POXrrrLaq9dLB3NsLUcAAAATxBafUn3gVLXeKmkSFr6ht3VAAAAVBuh1Zc4HNLEu632t8ul/T/bWw8AAEA1EVp9TdwF0kWjrG1dP37V7moAAACqhdDqi66cLvkHSKmbrQMAAMDLEVp9UcsYadjVVvvjV6XSUnvrAQAAOAdCq6+6fKoU3MSa17plpd3VAAAAnBWh1Vc1C5dG32y1P3ldKi60tx4AAICzILT6shHXSeGtpGOZ0pcf2V0NAABAlQitviwoWLridqud/I61WxYAAIAXIrT6uoFjpej20vFctncFAABei9Dq6/zLb++6SDp20N56AAAAKkFohdRriNS5j1RUKC170+5qAAAAKiC0wn17128+lw7ssrceAACAMxBaYWnfQ+o7wtredcm/7a4GAADADaEVp02YLvn5Szs2Sj+l2F0NAACAC6EVp0W2lS6+ymp//ArbuwIAAK9BaIW7sbdKzhBp307pu9V2VwMAACCJ0IozhTaXRt1ktT95XSousrceAAAAEVpRmUtvsMLrkXTpqyV2VwMAAEBoRSWcIdK4aVb787elk/n21gMAAHweoRWVGzJeioqT8rOlFfPsrgYAAPg4Qisq5x8gTZhhtVe9L2UftrceAADg0witqNqFw6QOvaSiAmnZW3ZXAwAAfBihFVUrv73rhmVSxl576wEAAD6L0Iqz69Rb6n2xZEqlT9jeFQAA2IPQinO76i7Jz0/atl7atdXuagAAgA8itOLcottJg8db7Y9ekYyxtx4AAOBzCK2onnHTpKBgae8O6fu1dlcDAAB8DKEV1RPeUhp5vdX+5DWppNjeegAAgE8htKL6LrtJahouHdovfb3U7moAAIAPIbSi+oKbSuNus9rL3pJOHre3HgAA4DMIrfDM0AlSq1gpL0tatcDuagAAgI8gtMIzAYHSldOt9soFUs5Re+sBAAA+gdAKz/UbKbXrJhWelL54z+5qAACADyC0wnMOhzT+Tqu94VMpP9veegAAQKNHaEXNdOsvxXa2RlvXfWx3NQAAoJHzOLSuWbNGEydOVGxsrBwOhxYvXnzOa9555x317dtXTZo0UUxMjKZPn64jR47UpF54C4dDGnWj1V67WCoqtLUcAADQuHkcWvPz89W3b1+9+OKL1eq/bt06TZs2TTNmzNAPP/ygBQsWaOPGjbr77rs9LhZeJv5SKSLSWklgU7LNxQAAgMYswNMLxo8fr/Hjx1e7//r169WhQwf99re/lSR17NhR99xzj/761796+tbwNv4B1i5ZH/5LWrVQGjxe8mPGCQAAqH11njCGDh2qffv2aenSpTLGKDMzUwsXLtSVV15Z12+N+jDkSmvTgYP7pB/W210NAABopOo8tA4bNkzvvPOOJk+erKCgILVu3Vrh4eFnnV5QUFCgnJwctwNeKriJdPFVVnvlfHtrAQAAjVadh9bt27fr/vvv1+OPP67Nmzdr2bJl2rNnj+69994qr0lMTFR4eLjriIuLq+sycT5GXGtNFdj9g7Rnu93VAACARshhjDE1vtjh0KJFizRp0qQq+9x22206efKkFiw4veXnl19+qeHDh+vAgQOKiYmpcE1BQYEKCgpcz3NychQXF6fs7GyFhYXVtFzUpff+Jm38TLrwEmn6k3ZXAwAA6llOTo7Cw8PrLK/V+Ujr8ePH5XfGl3P8/f0lSVXlZafTqbCwMLcDXm7UTdbjtnXSwV/srQUAADQ6HofWvLw8paSkKCUlRZK0e/dupaSkKC0tTZI0a9YsTZs2zdV/4sSJ+uCDDzRnzhzt2rVL69at029/+1sNGjRIsbGxtfMpYL/W7aWegyVjpNUL7a4GAAA0Mh6H1k2bNik+Pl7x8fGSpAcffFDx8fF6/PHHJUnp6emuACtJd9xxh2bPnq0XXnhBvXv31o033qhu3brpgw8+qKWPAK9RNtr6zedS7jF7awEAAI3Kec1prS91PUcCtcQY6R8J0r6d0tjbpPG3210RAACoJw1+Tit8iMNxerR13YdS4Ul76wEAAI0GoRW1q89wqUVrKT/HWk0AAACgFhBaUbv8/aVLb7DaqxZKpSX21gMAABoFQitq36BxUpNQ6Ui69P2XdlcDAAAaAUIrap8zRLrkGqu9cr71BS0AAIDzQGhF3bjkGikwSEpLlf77vd3VAACABo7QiroR2lwaMNZqr1xw9r4AAADnQGhF3bn0BmsZrO1fSxl77a4GAAA0YIRW1J2otlLvi632KkZbAQBAzRFaUbfKNhvYtFzKPmJvLQAAoMEitKJudewldegllRRJaxfZXQ0AAGigCK2oe5eVbe36sXTyuL21AACABonQirrXa6gU2VY6mS99vdTuagAAQANEaEXd8/M7vbXr6velkmJ76wEAAA0OoRX1Y+BYqVmElHVISlltdzUAAKCBIbSifgQGScMnWW22dgUAAB4itKL+DJsoBQVL+/8r7fzW7moAAEADQmhF/WkaLg2+wmqvnG9vLQAAoEEhtKJ+jbxecvhJqZutEVcAAIBqILSifrWMkfoOt9or2doVAABUD6EV9a9sa9ctK6VjB+2tBQAANAiEVtS/dt2kLn2l0hJpzQd2VwMAABoAQivsUTbauv4T6USevbUAAACvR2iFPXoMklp3kApOSF99Ync1AADAyxFaYQ+HQxp1o9Ve+4FUXGRvPQAAwKsRWmGfiy6TwltK2Uekb1fYXQ0AAPBihFbYJyBQGn6d1V65gK1dAQBAlQitsNfFEyRnEyljj7Rjo93VAAAAL0Vohb1CmklDr7TabO0KAACqQGiF/UZcJ/n5Sz9/J6Wl2l0NAADwQoRW2K95lBQ/ymoz2goAACpBaIV3KFv+6ru10uED9tYCAAC8DqEV3qFNZ6lbf8mUsrUrAACogNAK71G2teuGZVJ+tr21AAAAr0Johfe44CJrxLXwpLTuY7urAQAAXoTQCu/hcJwebV27WCoqtLUcAADgPQit8C79RlqrCeRlSd98bnc1AADASxBa4V38A6SR11vtVQul0lJ76wEAAF6B0ArvM3i8FNxUOvSL9MN6u6sBAABegNAK7xPcRBo20WqvmC8ZY289AADAdoRWeKfh10r+gdKeH6RNyXZXAwAAbEZohXcKbymNu9Vqv/+CdDTD3noAAICtCK3wXqNvljr2kgqOS28/LZWW2F0RAACwCaEV3svPX5r6mORsIu3eJq2YZ3dFAADAJoRWeLeWMdJ1M632p29K+3baWw8AALAFoRXeb+DlUp/h1vSAt5+2tnkFAAA+hdAK7+dwSDc9IIW1lA6mSR+/andFAACgnhFa0TA0DZemPGK1v/xQ2r7B3noAAEC98ji0rlmzRhMnTlRsbKwcDocWL158zmsKCgr0hz/8Qe3bt5fT6VSHDh30+uuv16Re+LLuA6QR11ntpGelvCxbywEAAPXH49Can5+vvn376sUXX6z2NTfddJOWL1+u1157TampqXrvvffUrVs3T98akCbMkFp3kHKPSfNms1sWAAA+IsDTC8aPH6/x48dXu/+yZcu0evVq7dq1Sy1atJAkdejQwdO3BSxBTunWWdI/EqRtX0kblklDqv/PIwAAaJjqfE7rRx99pAEDBuiZZ55RmzZtdMEFF+jhhx/WiRMn6vqt0Vi16SxdeafVXvSidGi/vfUAAIA65/FIq6d27dqlL7/8UsHBwVq0aJEOHz6s++67T0eOHNHcuXMrvaagoEAFBQWu5zk5OXVdJhqaS2+QdmyUfv5OeidR+s1zkr+/3VUBAIA6UucjraWlpXI4HHrnnXc0aNAgXXnllZo9e7befPPNKkdbExMTFR4e7jri4uLqukw0NH7+0i2/k4KbSnt/lJLfsbsiAABQh+o8tMbExKhNmzYKDw93nevRo4eMMfrll18qvWbWrFnKzs52Hfv27avrMtEQNY+Wbrzfaie/Le3dYW89AACgztR5aB02bJgOHDigvLw817mdO3fKz89Pbdu2rfQap9OpsLAwtwOo1EWXSReNkkpLrd2yCpgrDQBAY+RxaM3Ly1NKSopSUlIkSbt371ZKSorS0tIkWaOk06ZNc/W/5ZZb1LJlS915553avn271qxZo0ceeUTTp09XSEhI7XwK+LbrfytFREqH90uL59hdDQAAqAMeh9ZNmzYpPj5e8fHxkqQHH3xQ8fHxevzxxyVJ6enprgArSc2aNVNycrKysrI0YMAATZ06VRMnTtTzzz9fSx8BPq9JqHTLo9Z2r18vlbaus7siAABQyxzGeP/q7Dk5OQoPD1d2djZTBVC1j16RVs63tnz93atSWAu7KwIAwGfUdV6r8zmtQL258g4ptrOUn21t8+r9fx4DAADVRGhF4xEQZO2WFRBoreH61cd2VwQAAGoJoRWNS0wH6aq7rfaHL0uZaWftDgAAGgZCKxqf4ZOkC/pLRQXS24lScZHdFQEAgPNEaEXj4+cn3fKItarALz9Jn/3H7ooAAMB5IrSicQpvJd34P1Z7eZK0a6u99QAAgPNCaEXj1W+ENHCsZEqld/4qncy3uyIAAFBDhFY0btclSC1aS0czpA9etLsaAABQQ4RWNG7BTaWpj0oOP+mbz6WUNXZXBAAAaoDQisav04XSmJut9oJ/SFmH7a0HAAB4jNAK3zBumhR3gXQ8V3rvb1Jpqd0VAQAADxBa4Rv8A6zdsgKd0s7N0trFdlcEAAA8QGiF74iKk665x2oveVVK321vPQAAoNoIrfAtF0+Uegyydsl6O1EqLrS7IgAAUA2EVvgWh0Oa8ojULEI6sEta+obdFQEAgGogtML3hDaXJj9otVctkL7/0t56AADAORFa4Zt6XywNnSAZI819Ulr4vFRwwu6qAABAFQit8F3XJUgjrrPa6z6S/n6vtHeHvTUBAIBKEVrhuwKCpGvvk+79qxTeSjq0X3r+fmnZm1JJsd3VAQCAcgitQLf+0u9elS4aZW068Nl/rPB6cJ/dlQEAgFMIrYAkNQmVbvuDdYQ0k9JSpWfvlb780Jr3CgAAbEVoBcq7aJQ16nrBRVJRgfT+P6VXZknZh+2uDAAAn0ZoBc4UESnd87R0bYIUGCT9uEl65m4pZbXdlQEA4LMIrUBl/PykEddKD82R2naVjudKb/6v9PbT0ok8u6sDAMDnEFqBs4luL93/vHT5VMnhJ23+whp1/SnF7soAAPAphFbgXAICpSvvlH77f1KrWCnrkPTSw9KH/5KKCu2uDgAAn0BoBaqrQ0/p4ZetnbQkadVCafZ90v6f7a0LAAAfQGgFPOEMkW76H+mu/09qFiFl7JH+MVNaniSVlthdHQAAjRahFaiJXkOkR/8tXTjM2j1ryb+lFx6SjqTbXRkAAI0SoRWoqWYR0p1PSlMekZxNpN3bpL/9StrwKRsSAABQywitwPlwOKRB46RHXpY6XSgVnJCS/i69/oSUe8zu6gAAaDQIrUBtaBkjJTwrXXW35B8gbfvKWhpr23q7KwMAoFEgtAK1xc9fGj1Z+p8XpZgOUl6W9NofpaRnrTYAAKgxQitQ29p0lv7nJWnUjdb0gQ3LpD9Pk1bMk4pZ1xUAgJogtAJ1ITBIuvoeaeZsqe0F0snj0sevSonTpZTVfFELAAAPOYzx/v975uTkKDw8XNnZ2QoLC7O7HMAzpaXW9q+fvCZlH7HOdewlXfNrqX13e2sDAKCW1HVeI7QC9aXghLRygbRyvlR40jrXf7Q0YYbUPMre2gAAOE+EVhFa0chkHZY+nSt987k1TSAwSLr0Rmn0zdaOWwAANECEVhFa0Ujt+0n6cI703++t56EtpAl3SgPHWisRAADQgBBaRWhFI2aMtHWd9PEr0uED1rnYztKke6Wu8fbWBgCABwitIrTCBxQXSV9+KH32H+lkvnWu91Bp4j1SVFt7awMAoBoIrSK0wofkZUuf/0da95G16oCfv3TJNdLYW6Wm/LMPAPBehFYRWuGDMtOkj16Rtn9tPW8SagXXYVdLAYH21gYAQCUIrSK0woelbpY+elk6sMt6HtlGmvgrqffF1m5bAAB4CUKrCK3wcaUl0sbPpKVzpdxj1rku/aRr7pHadrW1NAAAyhBaRWgFJFlbwS5PklYtsL645XBYy2NdeacU3sru6gAAPo7QKkIr4OZoprUl7LcrrOdBwdKYKdYGBYFB9tYGAPBZhFYRWoFK7dkuffgv61GSWrSWJv2a+a4AAFvUdV7z8/SCNWvWaOLEiYqNjZXD4dDixYurfe26desUEBCgfv36efq2AM7Uoaf02+ekW2dZ0wOOZkivPyH96zEpc6/d1QEAUKs8Dq35+fnq27evXnzxRY+uy8rK0rRp0zR69GhP3xJAVRwOqf9oadZcacwtkn+gtHOz9MyvpMVzpBN5dlcIAECtOK/pAQ6HQ4sWLdKkSZPO2ffmm29W165d5e/vr8WLFyslJaXa78P0AKCaDh+wpgxs+8p63ixCumqGNHCc5Ofxn1EBAKg2r5seUBNz587Vrl279MQTT9TH2wG+q1WsNONP0j2JUlSclJclJf1d+r+Zp+e+AgDQAAXU9Rv89NNPeuyxx7R27VoFBFTv7QoKClRQUOB6npOTU1flAY1T94HSI69IX34oLXtL2rdTeu630oDLpavuksJb2l0hAAAeqdOR1pKSEt1yyy166qmndMEFF1T7usTERIWHh7uOuLi4OqwSaKQCAqVLb5D+8KY0+Arr3KZkKfEOafk8qbjQ1vIAAPBEnc5pzcrKUvPmzeXv7+86V1paKmOM/P399fnnn+uyyy6rcF1lI61xcXHMaQXOx94fpUUvWI+StSXspPuknoPtrQsA0CjU9ZzWOp0eEBYWpq1bt7qde+mll7RixQotXLhQHTt2rPQ6p9Mpp9NZl6UBvqd9d+m3z0ubvpCWvCod2i+9+gcrtE76tRTZ1u4KAQCoksehNS8vTz///LPr+e7du5WSkqIWLVqoXbt2mjVrlvbv36+33npLfn5+6t27t9v1UVFRCg4OrnAeQD3w85MGjZX6DJM+f0da84G0fYOUulkaeb10+VQpuIndVQIAUIHHc1o3bdqk+Ph4xcfHS5IefPBBxcfH6/HHH5ckpaenKy0trXarBFC7gptKV/9K+t2r1pe2SoqlFfOkv9whfZMslZbaXSEAAG7YxhXwdcZYo62LX7LWeZWs3bauTZDadbO3NgBAg1HXeY3QCsBSXCitel9KfkcqPGnttjXoCmnCdCm0ud3VAQC8HKFVhFagXmUflj7+t7T5C+t5cFNrvmvnPlLbLlJIM3vrAwB4JUKrCK2ALXZtkxa9KP3yk/v5yLZS3AXW1IG4C6Q2XSRniD01AgC8BqFVhFbANqUl0qbl0g/rrV21jmVW7OPwk6LbWQG2LMzGdpYCg+q/XgCAbQitIrQCXiMvywqv5Y/swxX7+flLMR1OBdlTI7IxHa1dugAAjRKhVYRWwKtlH5b2/XQqxKZaj3lZFfv5B0ptOp0ekY3rJkW3l8rtmAcAaLga9I5YAHxAeCvr6D3Uem6MlHXw9Ehs2k7pl53S8VwpLdU6ygQ6pTadrQDbd4TUqbe1agEAAGdgpBVA3TNGOpJeblpBqjU6W3DcvV/rDtLFV0kDxrBKAQA0MEwPEKEVaJRKS6XD+60Qu/NbKWW1tT6sJAUFSxeNki6eaE0lAAB4PUKrCK2ATziRJ236Qlr3sZS59/T5dt2s0df4UVaYBQB4JUKrCK2ATzHGWiP2q4+l79ZKJUXW+eCm0sCxVoBt3d7eGgEAFRBaRWgFfFZelrThM2n9EmtObJnOfaypA32GSQGsBwsA3oDQKkIr4PNKS6Wdm6Wvlkjb1kum1DrfLEIafIU0dILUMsbWEgHA1xFaRWgFUE7WIenrpdaRfcQ653BI3QdaUwd6DrY2NwAA1CtCqwitACpRUmJtL/vVx1Lq5tPnIyKtkdfBV1jrxwIA6gWhVYRWAOdwaL+0/hNp4zIpP8c65+cn9R5mjb52jbeeAwDqDKFVhFYA1VRUKH2/1lo2a/e20+cj20gDLpfa97DWfW0Sal+NANBIEVpFaAVQA+m7rS9ufZNcceetVrFWeC072na1ltQCANQYoVWEVgDnoeCEtGWVtevWvp3WLlxncjikyLgzgmwXNjMAAA8QWkVoBVCLjuda4dV1pErHDlbs5/CzNjFwBdluUptOrAsLAFUgtIrQCqCO5R6TfvnpdIhN2ynlHKnYzz9AiunoPiIb09E6X1PGWHNxiwulooJT7aLT7aKC08+dIdZ7Nouo+fsBQB0htIrQCsAG2YdPj8ampVqP+dkV+wUESm06S226WOG1qLBiCD3b8+Iiz2tr0dr6Ulm7btZjmy5SkPP8PzMAnAdCqwitALyAMdY0gn2p7kH2ZH7tvYfDTwoMkgKd1mNA0Knnp87lHpMO7qt4nZ+/FNtJat9datfdeoyMY5kvAPWK0CpCKwAvZYx0+IAVXtN3Sw6dCprO02HTk+fVmWZwIs8KzGk/Snt/lPbukPKyKvYLbmLNwy0Lsu26S+Eta/s3AAAuhFYRWgGgSmUjwGUhNu1Ha35u4cmKfSMiT4/EtutuzY91htR/zQAaJUKrCK0A4JGSEiljjzUKm5Yqpe2QMvZaAbe8shUSXNMKekjR7c7vi2UAfBahVYRWADhvJ49Lv+yU9p4KsWmpUtahiv38A6SoOGtVhLIjtqMUEWWtZwsAVajrvMYfpwHAFwQ3kbr0s44y2Yet8OoakU21dg9L320dbtc3lWI6lAuznawwG9KsHj8EAF/GSCsAwGKMdCxTOrD7dHBN322tWFBaUvk1EZHuo7IxHaXoODZhAHwQ0wNEaAUAWxUXWcE1fbd0YJf1mLGn8p3EJGuprcg4ayS2fJhtHs0yXEAjRmgVoRUAvNKJPCl9j/uobPpu63xlnCHWfNkWra0A2zxKahF96nkUUw2ABo45rQAA7xTSTOrU2zrKGGPNlU3f7T7NIDNNKjhxepexygQ3tUJs8+jTj82jpRZRVrBtGs6XwQAfRmgFANQeh8Oa5xoRKfUYdPp8SbF0aL906BdrWsGxTOnoqeNYprVF7sl8a/rBgV2V/+xA5+kQWyHYRkthLazdwQA0SoRWAEDd8w+w1oRt3b7y1wtOSFkH3YPssUzp6EHpWIaUc1QqKpAOpllHVe9RFpgjoqTm5dpl55uEMloLNFCEVgCA/ZwhUnR766hMcZG1ruyxTOloxqkwm3l6xDbrkDWaeyTdOqoSFFwu2FYRboOb1M1n9AYlxda2v0WF1nSMkKZsJoEGg39SAQDeLyBQahVrHZUpLZGyj1ghNuuQdOyQNXKbdej0kZdlbW97cJ91VCW46akgG1V5uA1tYYVfb1kJobjI+my5x8odR6XcM87lHZPycypeH+i0gnpZiHU2sR6Dyx/lz5Xve+oxKJgRbNQ5QisAoOHz87dWIGgeVXWfwgIp+1AVofagde5kvnWk51srI5xNULB1OEPKPYaUe36218q1yz8PdFrhr7iwXODMqiSQnjqfd0w6nuvh78rPWke38KT1vKjAOnKPefZzynP4VQy+TUKtI6SZ1DTsdLvsfPnXmYuMaiC0AgB8Q5BTimxrHVU5efx0iK1qxLYs7BWetI68rNqr0eGwAmVRgWfX+flLoRFSs+ZS6DmOJmFWcC0psXZAO5kvnci3PntZaD+R5/785PFTfc7sly+ZUus4kWcdNcm+wU0rBtkmYVKTspBbrh1S1qep9bvyD2CU10cQWgEAKBPc5OxfGDPmdFgtPGl9gezMx4ITUuEJqeDkqcey9slyr51xXVkQNuZ0YPUPkJpFnD2AloXUJqGeT1fw9z8dEmuq7PdRWbg9nmuF2OO50vEc6fip9oncU+fyrNAsnb7+aIbnNTj8pMCgU4fTegwo1670vFMKDDzdDggs17/cozPEfYpEQGDNf1c4b4RWAACqy+E4/Vf5tam01AqrZSG27K/RvX0EsfzvI7yV59eXFJcLtrmng25+TrnQW1ngzbWulaxR3vLBvy4FBp2e8+ssN9fXNQ+4ScW5wOXPhTS1fldMh6gRQisAAHbz86ubMOztykaTm0V4dp0x1hfQigutucrFhdaKCGXzc4vKPXd77czzZ5wr/1rhqT9EnMwvN//3VN/znRLiDLHCbFCIFBAg+QedegyQ/ANPtSt59A+wRntdj4Gnrys77x/o3qdZhNSm8/nV6yUIrQAAoGFxOE7/1X99bP/rmv97xnzeguMV5wO72mc+5ltBWzo9jaQ+9Bgk/eov9fNedYzQCgAAcDa1Mf9XskZwTx4/Pfe38IQ1zaGk2Aq0rsciqfjUeVe76Iw+Z7uu7Fyx1DKmdn4HXoDQCgAAUB8CgqRmQZ5Ph4AkyUtWRgYAAACqRmgFAACA1yO0AgAAwOsRWgEAAOD1PA6ta9as0cSJExUbGyuHw6HFixeftf8HH3ygyy+/XJGRkQoLC9PQoUP12Wef1bReAAAA+CCPQ2t+fr769u2rF198sVr916xZo8svv1xLly7V5s2bNWrUKE2cOFFbtmzxuFgAAAD4JocxxtT4YodDixYt0qRJkzy6rlevXpo8ebIef/zxavXPyclReHi4srOzFRYWVoNKAQAAUJfqOq/V+5zW0tJS5ebmqkWLFvX91gAAAGig6n1zgWeffVZ5eXm66aabquxTUFCggoIC1/OcnJz6KA0AAABeql5HWt9991099dRTmj9/vqKioqrsl5iYqPDwcNcRFxdXj1UCAADA29RbaE1KStJdd92l+fPna8yYMWftO2vWLGVnZ7uOffv21VOVAAAA8Eb1Mj3gvffe0/Tp05WUlKQJEyacs7/T6ZTT6ayHygAAANAQeBxa8/Ly9PPPP7ue7969WykpKWrRooXatWunWbNmaf/+/XrrrbckWVMCbr/9dj333HMaPHiwMjIyJEkhISEKDw+vpY8BAACAxszj6QGbNm1SfHy84uPjJUkPPvig4uPjXctXpaenKy0tzdX/lVdeUXFxsRISEhQTE+M67r///lr6CAAAAGjszmud1vqSnZ2tiIgI7du3j3VaAQAAvFBOTo7i4uKUlZVVJ3+bXu9LXtVEbm6uJLGKAAAAgJfLzc2tk9DaIEZaS0tLdeDAAYWGhsrhcLiSPCOvjRv32Xdwr30D99l3cK99w5n32Rij3NxcxcbGys+v9heoahAjrX5+fmrbtm2F82FhYfzL4AO4z76De+0buM++g3vtG8rf57r8kn29b+MKAAAAeIrQCgAAAK/XIEOr0+nUE088wQYEjRz32Xdwr30D99l3cK99Q33f5wbxRSwAAAD4tgY50goAAADfQmgFAACA1yO0AgAAwOsRWgEAAOD1GlxoffHFF9WhQwcFBwdr8ODB2rhxo90l4SzWrFmjiRMnKjY2Vg6HQ4sXL3Z73Rijxx9/XDExMQoJCdGYMWP0008/ufU5evSopk6dqrCwMEVERGjGjBnKy8tz6/P9999r+PDhCg4OVlxcnJ555pm6/mgoJzExUQMHDlRoaKiioqI0adIkpaamuvU5efKkEhIS1LJlSzVr1kzXX3+9MjMz3fqkpaVpwoQJatKkiaKiovTII4+ouLjYrc+qVat00UUXyel0qkuXLnrjjTfq+uOhnDlz5qhPnz6uxcSHDh2qTz/91PU697lxevrpp+VwOPTAAw+4znGvG4cnn3xSDofD7ejevbvrda+6z6YBSUpKMkFBQeb11183P/zwg7n77rtNRESEyczMtLs0VGHp0qXmD3/4g/nggw+MJLNo0SK3159++mkTHh5uFi9ebL777jtz9dVXm44dO5oTJ064+lxxxRWmb9++5uuvvzZr1641Xbp0MVOmTHG9np2dbaKjo83UqVPNtm3bzHvvvWdCQkLMyy+/XF8f0+eNGzfOzJ0712zbts2kpKSYK6+80rRr187k5eW5+tx7770mLi7OLF++3GzatMkMGTLEXHzxxa7Xi4uLTe/evc2YMWPMli1bzNKlS02rVq3MrFmzXH127dplmjRpYh588EGzfft2889//tP4+/ubZcuW1evn9WUfffSR+eSTT8zOnTtNamqq+f3vf28CAwPNtm3bjDHc58Zo48aNpkOHDqZPnz7m/vvvd53nXjcOTzzxhOnVq5dJT093HYcOHXK97k33uUGF1kGDBpmEhATX85KSEhMbG2sSExNtrArVdWZoLS0tNa1btzZ/+9vfXOeysrKM0+k07733njHGmO3btxtJ5ptvvnH1+fTTT43D4TD79+83xhjz0ksvmebNm5uCggJXn0cffdR069atjj8RqnLw4EEjyaxevdoYY93XwMBAs2DBAlefHTt2GElm/fr1xhjrDzh+fn4mIyPD1WfOnDkmLCzMdW9/97vfmV69erm91+TJk824cePq+iPhLJo3b27+/e9/c58bodzcXNO1a1eTnJxsRo4c6Qqt3OvG44knnjB9+/at9DVvu88NZnpAYWGhNm/erDFjxrjO+fn5acyYMVq/fr2NlaGmdu/erYyMDLd7Gh4ersGDB7vu6fr16xUREaEBAwa4+owZM0Z+fn7asGGDq8+IESMUFBTk6jNu3Dilpqbq2LFj9fRpUF52drYkqUWLFpKkzZs3q6ioyO1ed+/eXe3atXO71xdeeKGio6NdfcaNG6ecnBz98MMPrj7lf0ZZH/4bYI+SkhIlJSUpPz9fQ4cO5T43QgkJCZowYUKF+8G9blx++uknxcbGqlOnTpo6darS0tIked99bjCh9fDhwyopKXH7pUhSdHS0MjIybKoK56Psvp3tnmZkZCgqKsrt9YCAALVo0cKtT2U/o/x7oP6UlpbqgQce0LBhw9S7d29J1n0ICgpSRESEW98z7/W57mNVfXJycnTixIm6+DioxNatW9WsWTM5nU7de++9WrRokXr27Ml9bmSSkpL07bffKjExscJr3OvGY/DgwXrjjTe0bNkyzZkzR7t379bw4cOVm5vrdfc5wNMPBwBnk5CQoG3btunLL7+0uxTUkW7duiklJUXZ2dlauHChbr/9dq1evdruslCL9u3bp/vvv1/JyckKDg62uxzUofHjx7vaffr00eDBg9W+fXvNnz9fISEhNlZWUYMZaW3VqpX8/f0rfGMtMzNTrVu3tqkqnI+y+3a2e9q6dWsdPHjQ7fXi4mIdPXrUrU9lP6P8e6B+zJw5U0uWLNHKlSvVtm1b1/nWrVursLBQWVlZbv3PvNfnuo9V9QkLC/O6/7g2ZkFBQerSpYv69++vxMRE9e3bV8899xz3uRHZvHmzDh48qIsuukgBAQEKCAjQ6tWr9fzzzysgIEDR0dHc60YqIiJCF1xwgX7++Wev+3e6wYTWoKAg9e/fX8uXL3edKy0t1fLlyzV06FAbK0NNdezYUa1bt3a7pzk5OdqwYYPrng4dOlRZWVnavHmzq8+KFStUWlqqwYMHu/qsWbNGRUVFrj7Jycnq1q2bmjdvXk+fxrcZYzRz5kwtWrRIK1asUMeOHd1e79+/vwIDA93udWpqqtLS0tzu9datW93+kJKcnKywsDD17NnT1af8zyjrw38D7FVaWqqCggLucyMyevRobd26VSkpKa5jwIABmjp1qqvNvW6c8vLy9N///lcxMTHe9++0R1/bsllSUpJxOp3mjTfeMNu3bze/+tWvTEREhNs31uBdcnNzzZYtW8yWLVuMJDN79myzZcsWs3fvXmOMteRVRESE+fDDD833339vrrnmmkqXvIqPjzcbNmwwX375penatavbkldZWVkmOjra3HbbbWbbtm0mKSnJNGnShCWv6tGvf/1rEx4eblatWuW2bMrx48ddfe69917Trl07s2LFCrNp0yYzdOhQM3ToUNfrZcumjB071qSkpJhly5aZyMjISpdNeeSRR8yOHTvMiy++yPI49eyxxx4zq1evNrt37zbff/+9eeyxx4zD4TCff/65MYb73JiVXz3AGO51Y/HQQw+ZVatWmd27d5t169aZMWPGmFatWpmDBw8aY7zrPjeo0GqMMf/85z9Nu3btTFBQkBk0aJD5+uuv7S4JZ7Fy5UojqcJx++23G2OsZa/++Mc/mujoaON0Os3o0aNNamqq2884cuSImTJlimnWrJkJCwszd955p8nNzXXr891335lLLrnEOJ1O06ZNG/P000/X10eEMZXeY0lm7ty5rj4nTpww9913n2nevLlp0qSJufbaa016errbz9mzZ48ZP368CQkJMa1atTIPPfSQKSoqcuuzcuVK069fPxMUFGQ6derk9h6oe9OnTzft27c3QUFBJjIy0owePdoVWI3hPjdmZ4ZW7nXjMHnyZBMTE2OCgoJMmzZtzOTJk83PP//set2b7rPDGGM8G5sFAAAA6leDmdMKAAAA30VoBQAAgNcjtAIAAMDrEVoBAADg9QitAAAA8HqEVgAAAHg9QisAAAC8HqEVAAAAXo/QCgAAAK9HaAUAAIDXI7QCAADA6xFaAQAA4PX+f0iKF8S5F/KMAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 800x500 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"tb_dir = os.path.join(WORK_DIR, 'tensorboard_output')\n",
|
||
"fname = os.listdir(tb_dir)[0]\n",
|
||
"tb_path = os.path.join(tb_dir, fname)\n",
|
||
"#\n",
|
||
"data = read_tensorboard_file(tb_path)\n",
|
||
"print(data.keys())\n",
|
||
"_ = plot_image(data, 'loss', 0.9)\n",
|
||
"_ = plot_image(data, 'lr', 0)\n",
|
||
"_ = plot_image(data, 'evaluation/acc', 0)\n",
|
||
"_ = plot_image(data, 'evaluation/loss', 0)"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 推理\n",
|
||
"推理部分见baichuan_infer.ipynb"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.10.11"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|