2023-04-13 13:40:10 +00:00
import gradio as gr
import argparse
2023-04-25 13:38:16 +00:00
import gdown
2023-04-13 13:40:10 +00:00
import cv2
2023-04-13 18:00:48 +00:00
import numpy as np
2023-04-14 02:27:39 +00:00
import os
import sys
sys . path . append ( sys . path [ 0 ] + " /tracker " )
sys . path . append ( sys . path [ 0 ] + " /tracker/model " )
from track_anything import TrackingAnything
from track_anything import parse_augment
import requests
2023-04-14 08:24:57 +00:00
import json
2023-04-14 13:26:26 +00:00
import torchvision
import torch
2023-04-25 13:38:16 +00:00
from tools . painter import mask_painter
2023-04-26 20:44:48 +00:00
import psutil
2023-04-27 07:56:26 +00:00
import time
2023-04-26 02:11:25 +00:00
try :
from mmcv . cnn import ConvModule
except :
os . system ( " mim install mmcv " )
2023-04-25 13:38:16 +00:00
2023-04-18 04:01:14 +00:00
# download checkpoints
2023-04-14 02:27:39 +00:00
def download_checkpoint ( url , folder , filename ) :
os . makedirs ( folder , exist_ok = True )
filepath = os . path . join ( folder , filename )
2023-04-13 19:04:57 +00:00
2023-04-14 02:27:39 +00:00
if not os . path . exists ( filepath ) :
print ( " download checkpoints ...... " )
response = requests . get ( url , stream = True )
with open ( filepath , " wb " ) as f :
for chunk in response . iter_content ( chunk_size = 8192 ) :
if chunk :
f . write ( chunk )
2023-04-14 04:02:02 +08:00
2023-04-14 02:27:39 +00:00
print ( " download successfully! " )
return filepath
2023-04-25 13:38:16 +00:00
def download_checkpoint_from_google_drive ( file_id , folder , filename ) :
os . makedirs ( folder , exist_ok = True )
filepath = os . path . join ( folder , filename )
if not os . path . exists ( filepath ) :
print ( " Downloading checkpoints from Google Drive... tips: If you cannot see the progress bar, please try to download it manuall \
and put it in the checkpointes directory . E2FGVI - HQ - CVPR22 . pth : https : / / github . com / MCG - NKU / E2FGVI ( E2FGVI - HQ model ) " )
url = f " https://drive.google.com/uc?id= { file_id } "
gdown . download ( url , filepath , quiet = False )
print ( " Downloaded successfully! " )
return filepath
2023-04-14 02:27:39 +00:00
# convert points input to prompt state
2023-04-14 08:24:57 +00:00
def get_prompt ( click_state , click_input ) :
inputs = json . loads ( click_input )
points = click_state [ 0 ]
labels = click_state [ 1 ]
2023-04-14 02:27:39 +00:00
for input in inputs :
points . append ( input [ : 2 ] )
labels . append ( input [ 2 ] )
click_state [ 0 ] = points
2023-04-14 08:24:57 +00:00
click_state [ 1 ] = labels
2023-04-14 02:27:39 +00:00
prompt = {
" prompt_type " : [ " click " ] ,
" input_point " : click_state [ 0 ] ,
" input_label " : click_state [ 1 ] ,
" multimask_output " : " True " ,
}
return prompt
2023-04-18 04:01:14 +00:00
2023-04-26 20:44:48 +00:00
2023-04-18 04:01:14 +00:00
# extract frames from upload video
2023-04-17 21:13:45 +00:00
def get_frames_from_video ( video_input , video_state ) :
2023-04-13 22:27:42 +08:00
"""
2023-04-13 18:00:48 +00:00
Args :
2023-04-13 22:27:42 +08:00
video_path : str
timestamp : float64
2023-04-13 18:00:48 +00:00
Return
2023-04-14 04:46:20 +08:00
[ [ 0 : nearest_frame ] , [ nearest_frame : ] , nearest_frame ]
2023-04-13 22:27:42 +08:00
"""
2023-04-13 18:00:48 +00:00
video_path = video_input
2023-04-13 22:27:42 +08:00
frames = [ ]
2023-04-27 07:56:26 +00:00
user_name = time . time ( )
2023-04-26 20:44:48 +00:00
operation_log = [ ( " " , " " ) , ( " Upload video already. Try click the image for adding targets to track and inpaint. " , " Normal " ) ]
2023-04-13 22:27:42 +08:00
try :
cap = cv2 . VideoCapture ( video_path )
fps = cap . get ( cv2 . CAP_PROP_FPS )
while cap . isOpened ( ) :
ret , frame = cap . read ( )
if ret == True :
2023-04-26 20:44:48 +00:00
current_memory_usage = psutil . virtual_memory ( ) . percent
2023-04-17 09:09:56 +00:00
frames . append ( cv2 . cvtColor ( frame , cv2 . COLOR_BGR2RGB ) )
2023-04-26 20:44:48 +00:00
if current_memory_usage > 90 :
operation_log = [ ( " Memory usage is too high (>90 % ). Stop the video extraction. Please reduce the video resolution or frame rate. " , " Error " ) ]
print ( " Memory usage is too high (>90 % ). Please reduce the video resolution or frame rate. " )
break
2023-04-13 22:27:42 +08:00
else :
break
except ( OSError , TypeError , ValueError , KeyError , SyntaxError ) as e :
print ( " read_frame_source: {} error. {} \n " . format ( video_path , str ( e ) ) )
2023-04-25 13:38:16 +00:00
image_size = ( frames [ 0 ] . shape [ 0 ] , frames [ 0 ] . shape [ 1 ] )
2023-04-17 21:13:45 +00:00
# initialize video_state
video_state = {
2023-04-27 07:56:26 +00:00
" user_name " : user_name ,
2023-04-17 21:13:45 +00:00
" video_name " : os . path . split ( video_path ) [ - 1 ] ,
" origin_images " : frames ,
" painted_images " : frames . copy ( ) ,
2023-04-25 13:38:16 +00:00
" masks " : [ np . zeros ( ( frames [ 0 ] . shape [ 0 ] , frames [ 0 ] . shape [ 1 ] ) , np . uint8 ) ] * len ( frames ) ,
2023-04-17 21:13:45 +00:00
" logits " : [ None ] * len ( frames ) ,
" select_frame_number " : 0 ,
2023-04-19 11:34:14 +00:00
" fps " : fps
2023-04-17 21:13:45 +00:00
}
2023-04-25 13:38:16 +00:00
video_info = " Video Name: {} , FPS: {} , Total Frames: {} , Image Size: {} " . format ( video_state [ " video_name " ] , video_state [ " fps " ] , len ( frames ) , image_size )
2023-04-19 17:06:19 +00:00
model . samcontroler . sam_controler . reset_image ( )
model . samcontroler . sam_controler . set_image ( video_state [ " origin_images " ] [ 0 ] )
2023-04-20 11:53:19 +00:00
return video_state , video_info , video_state [ " origin_images " ] [ 0 ] , gr . update ( visible = True , maximum = len ( frames ) , value = 1 ) , gr . update ( visible = True , maximum = len ( frames ) , value = len ( frames ) ) , \
2023-04-26 20:44:48 +00:00
gr . update ( visible = True ) , \
2023-04-19 11:34:14 +00:00
gr . update ( visible = True ) , gr . update ( visible = True ) , \
gr . update ( visible = True ) , gr . update ( visible = True ) , \
gr . update ( visible = True ) , gr . update ( visible = True ) , \
2023-04-26 09:06:16 +00:00
gr . update ( visible = True ) , gr . update ( visible = True ) , \
gr . update ( visible = True , value = operation_log )
2023-04-17 21:13:45 +00:00
2023-04-24 17:07:46 +00:00
def run_example ( example ) :
return video_input
2023-04-18 04:01:14 +00:00
# get the select frame from gradio slider
2023-05-26 11:14:40 +00:00
def select_template ( image_selection_slider , video_state , interactive_state , mask_dropdown ) :
2023-04-17 21:13:45 +00:00
# images = video_state[1]
image_selection_slider - = 1
video_state [ " select_frame_number " ] = image_selection_slider
2023-04-14 08:50:49 +00:00
2023-04-17 21:13:45 +00:00
# once select a new template frame, set the image in sam
model . samcontroler . sam_controler . reset_image ( )
model . samcontroler . sam_controler . set_image ( video_state [ " origin_images " ] [ image_selection_slider ] )
2023-04-24 17:07:46 +00:00
# update the masks when select a new template frame
# if video_state["masks"][image_selection_slider] is not None:
# video_state["painted_images"][image_selection_slider] = mask_painter(video_state["origin_images"][image_selection_slider], video_state["masks"][image_selection_slider])
2023-05-26 11:14:40 +00:00
if mask_dropdown :
print ( " ok " )
2023-04-26 20:44:48 +00:00
operation_log = [ ( " " , " " ) , ( " Select frame {} . Try click image and add mask for tracking. " . format ( image_selection_slider ) , " Normal " ) ]
2023-04-24 17:07:46 +00:00
2023-05-26 11:14:40 +00:00
2023-04-26 09:06:16 +00:00
return video_state [ " painted_images " ] [ image_selection_slider ] , video_state , interactive_state , operation_log
2023-04-19 11:34:14 +00:00
2023-04-24 17:07:46 +00:00
# set the tracking end frame
2023-04-25 13:38:16 +00:00
def get_end_number ( track_pause_number_slider , video_state , interactive_state ) :
2023-04-19 11:34:14 +00:00
interactive_state [ " track_end_number " ] = track_pause_number_slider
2023-04-26 20:44:48 +00:00
operation_log = [ ( " " , " " ) , ( " Set the tracking finish at frame {} " . format ( track_pause_number_slider ) , " Normal " ) ]
2023-04-25 13:38:16 +00:00
2023-04-26 09:06:16 +00:00
return video_state [ " painted_images " ] [ track_pause_number_slider ] , interactive_state , operation_log
2023-04-25 13:38:16 +00:00
def get_resize_ratio ( resize_ratio_slider , interactive_state ) :
interactive_state [ " resize_ratio " ] = resize_ratio_slider
2023-04-19 11:34:14 +00:00
return interactive_state
2023-04-14 13:26:26 +00:00
2023-04-18 04:01:14 +00:00
# use sam to get the mask
def sam_refine ( video_state , point_prompt , click_state , interactive_state , evt : gr . SelectData ) :
2023-04-14 08:24:57 +00:00
"""
Args :
template_frame : PIL . Image
point_prompt : flag for positive or negative button click
click_state : [ [ points ] , [ labels ] ]
"""
if point_prompt == " Positive " :
coordinate = " [[ {} , {} ,1]] " . format ( evt . index [ 0 ] , evt . index [ 1 ] )
2023-04-18 04:01:14 +00:00
interactive_state [ " positive_click_times " ] + = 1
2023-04-14 08:24:57 +00:00
else :
coordinate = " [[ {} , {} ,0]] " . format ( evt . index [ 0 ] , evt . index [ 1 ] )
2023-04-18 04:01:14 +00:00
interactive_state [ " negative_click_times " ] + = 1
2023-04-14 08:24:57 +00:00
# prompt for sam model
2023-04-26 09:06:16 +00:00
model . samcontroler . sam_controler . reset_image ( )
model . samcontroler . sam_controler . set_image ( video_state [ " origin_images " ] [ video_state [ " select_frame_number " ] ] )
2023-04-14 08:24:57 +00:00
prompt = get_prompt ( click_state = click_state , click_input = coordinate )
2023-04-14 02:27:39 +00:00
2023-04-14 08:50:49 +00:00
mask , logit , painted_image = model . first_frame_click (
2023-04-17 21:13:45 +00:00
image = video_state [ " origin_images " ] [ video_state [ " select_frame_number " ] ] ,
2023-04-14 11:27:13 +00:00
points = np . array ( prompt [ " input_point " ] ) ,
2023-04-14 08:24:57 +00:00
labels = np . array ( prompt [ " input_label " ] ) ,
2023-04-14 11:27:13 +00:00
multimask = prompt [ " multimask_output " ] ,
2023-04-14 08:24:57 +00:00
)
2023-04-17 21:13:45 +00:00
video_state [ " masks " ] [ video_state [ " select_frame_number " ] ] = mask
video_state [ " logits " ] [ video_state [ " select_frame_number " ] ] = logit
video_state [ " painted_images " ] [ video_state [ " select_frame_number " ] ] = painted_image
2023-04-14 13:26:26 +00:00
2023-04-26 20:44:48 +00:00
operation_log = [ ( " " , " " ) , ( " Use SAM for segment. You can try add positive and negative points by clicking. Or press Clear clicks button to refresh the image. Press Add mask button when you are satisfied with the segment " , " Normal " ) ]
2023-04-26 09:06:16 +00:00
return painted_image , video_state , interactive_state , operation_log
2023-04-16 08:53:28 +00:00
2023-04-19 11:34:14 +00:00
def add_multi_mask ( video_state , interactive_state , mask_dropdown ) :
2023-04-26 20:44:48 +00:00
try :
mask = video_state [ " masks " ] [ video_state [ " select_frame_number " ] ]
interactive_state [ " multi_mask " ] [ " masks " ] . append ( mask )
interactive_state [ " multi_mask " ] [ " mask_names " ] . append ( " mask_ {:03d} " . format ( len ( interactive_state [ " multi_mask " ] [ " masks " ] ) ) )
mask_dropdown . append ( " mask_ {:03d} " . format ( len ( interactive_state [ " multi_mask " ] [ " masks " ] ) ) )
select_frame , run_status = show_mask ( video_state , interactive_state , mask_dropdown )
2023-04-26 09:06:16 +00:00
2023-04-26 20:44:48 +00:00
operation_log = [ ( " " , " " ) , ( " Added a mask, use the mask select for target tracking or inpainting. " , " Normal " ) ]
except :
operation_log = [ ( " Please click the left image to generate mask. " , " Error " ) , ( " " , " " ) ]
2023-04-26 09:06:16 +00:00
return interactive_state , gr . update ( choices = interactive_state [ " multi_mask " ] [ " mask_names " ] , value = mask_dropdown ) , select_frame , [ [ ] , [ ] ] , operation_log
2023-04-19 11:34:14 +00:00
2023-04-20 11:53:19 +00:00
def clear_click ( video_state , click_state ) :
click_state = [ [ ] , [ ] ]
template_frame = video_state [ " origin_images " ] [ video_state [ " select_frame_number " ] ]
2023-04-26 20:44:48 +00:00
operation_log = [ ( " " , " " ) , ( " Clear points history and refresh the image. " , " Normal " ) ]
2023-04-26 09:06:16 +00:00
return template_frame , click_state , operation_log
2023-04-19 11:34:14 +00:00
2023-04-26 09:06:16 +00:00
def remove_multi_mask ( interactive_state , mask_dropdown ) :
2023-04-19 11:34:14 +00:00
interactive_state [ " multi_mask " ] [ " mask_names " ] = [ ]
interactive_state [ " multi_mask " ] [ " masks " ] = [ ]
2023-04-26 09:06:16 +00:00
2023-04-26 20:44:48 +00:00
operation_log = [ ( " " , " " ) , ( " Remove all mask, please add new masks " , " Normal " ) ]
2023-04-26 09:06:16 +00:00
return interactive_state , gr . update ( choices = [ ] , value = [ ] ) , operation_log
2023-04-19 11:34:14 +00:00
def show_mask ( video_state , interactive_state , mask_dropdown ) :
mask_dropdown . sort ( )
select_frame = video_state [ " origin_images " ] [ video_state [ " select_frame_number " ] ]
for i in range ( len ( mask_dropdown ) ) :
mask_number = int ( mask_dropdown [ i ] . split ( " _ " ) [ 1 ] ) - 1
mask = interactive_state [ " multi_mask " ] [ " masks " ] [ mask_number ]
select_frame = mask_painter ( select_frame , mask . astype ( ' uint8 ' ) , mask_color = mask_number + 2 )
2023-04-26 09:06:16 +00:00
2023-04-26 20:44:48 +00:00
operation_log = [ ( " " , " " ) , ( " Select {} for tracking or inpainting " . format ( mask_dropdown ) , " Normal " ) ]
2023-04-26 09:06:16 +00:00
return select_frame , operation_log
2023-04-19 11:34:14 +00:00
2023-04-18 04:01:14 +00:00
# tracking vos
2023-04-19 11:34:14 +00:00
def vos_tracking_video ( video_state , interactive_state , mask_dropdown ) :
2023-04-26 20:44:48 +00:00
operation_log = [ ( " " , " " ) , ( " Track the selected masks, and then you can select the masks for inpainting. " , " Normal " ) ]
2023-04-16 08:53:28 +00:00
model . xmem . clear_memory ( )
2023-04-19 11:34:14 +00:00
if interactive_state [ " track_end_number " ] :
following_frames = video_state [ " origin_images " ] [ video_state [ " select_frame_number " ] : interactive_state [ " track_end_number " ] ]
else :
following_frames = video_state [ " origin_images " ] [ video_state [ " select_frame_number " ] : ]
if interactive_state [ " multi_mask " ] [ " masks " ] :
2023-04-19 17:06:19 +00:00
if len ( mask_dropdown ) == 0 :
mask_dropdown = [ " mask_001 " ]
2023-04-19 11:34:14 +00:00
mask_dropdown . sort ( )
2023-04-19 17:06:19 +00:00
template_mask = interactive_state [ " multi_mask " ] [ " masks " ] [ int ( mask_dropdown [ 0 ] . split ( " _ " ) [ 1 ] ) - 1 ] * ( int ( mask_dropdown [ 0 ] . split ( " _ " ) [ 1 ] ) )
2023-04-19 11:34:14 +00:00
for i in range ( 1 , len ( mask_dropdown ) ) :
mask_number = int ( mask_dropdown [ i ] . split ( " _ " ) [ 1 ] ) - 1
template_mask = np . clip ( template_mask + interactive_state [ " multi_mask " ] [ " masks " ] [ mask_number ] * ( mask_number + 1 ) , 0 , mask_number + 1 )
video_state [ " masks " ] [ video_state [ " select_frame_number " ] ] = template_mask
else :
template_mask = video_state [ " masks " ] [ video_state [ " select_frame_number " ] ]
2023-04-17 21:13:45 +00:00
fps = video_state [ " fps " ]
2023-04-26 09:06:16 +00:00
# operation error
if len ( np . unique ( template_mask ) ) == 1 :
template_mask [ 0 ] [ 0 ] = 1
2023-04-26 20:44:48 +00:00
operation_log = [ ( " Error! Please add at least one mask to track by clicking the left image. " , " Error " ) , ( " " , " " ) ]
2023-04-26 09:06:16 +00:00
# return video_output, video_state, interactive_state, operation_error
2023-04-17 21:13:45 +00:00
masks , logits , painted_images = model . generator ( images = following_frames , template_mask = template_mask )
2023-04-26 05:04:57 +00:00
# clear GPU memory
model . xmem . clear_memory ( )
2023-04-17 21:13:45 +00:00
2023-04-19 11:34:14 +00:00
if interactive_state [ " track_end_number " ] :
video_state [ " masks " ] [ video_state [ " select_frame_number " ] : interactive_state [ " track_end_number " ] ] = masks
video_state [ " logits " ] [ video_state [ " select_frame_number " ] : interactive_state [ " track_end_number " ] ] = logits
video_state [ " painted_images " ] [ video_state [ " select_frame_number " ] : interactive_state [ " track_end_number " ] ] = painted_images
else :
video_state [ " masks " ] [ video_state [ " select_frame_number " ] : ] = masks
video_state [ " logits " ] [ video_state [ " select_frame_number " ] : ] = logits
video_state [ " painted_images " ] [ video_state [ " select_frame_number " ] : ] = painted_images
2023-04-17 21:13:45 +00:00
2023-04-25 13:38:16 +00:00
video_output = generate_video_from_frames ( video_state [ " painted_images " ] , output_path = " ./result/track/ {} " . format ( video_state [ " video_name " ] ) , fps = fps ) # import video_input to name the output video
2023-04-18 04:01:14 +00:00
interactive_state [ " inference_times " ] + = 1
2023-04-17 21:13:45 +00:00
2023-04-18 04:01:14 +00:00
print ( " For generating this tracking result, inference times: {} , click times: {} , positive: {} , negative: {} " . format ( interactive_state [ " inference_times " ] ,
interactive_state [ " positive_click_times " ] + interactive_state [ " negative_click_times " ] ,
interactive_state [ " positive_click_times " ] ,
interactive_state [ " negative_click_times " ] ) )
2023-04-19 11:34:14 +00:00
2023-04-18 04:01:14 +00:00
#### shanggao code for mask save
if interactive_state [ " mask_save " ] :
if not os . path . exists ( ' ./result/mask/ {} ' . format ( video_state [ " video_name " ] . split ( ' . ' ) [ 0 ] ) ) :
os . makedirs ( ' ./result/mask/ {} ' . format ( video_state [ " video_name " ] . split ( ' . ' ) [ 0 ] ) )
i = 0
print ( " save mask " )
for mask in video_state [ " masks " ] :
np . save ( os . path . join ( ' ./result/mask/ {} ' . format ( video_state [ " video_name " ] . split ( ' . ' ) [ 0 ] ) , ' {:05d} .npy ' . format ( i ) ) , mask )
i + = 1
# save_mask(video_state["masks"], video_state["video_name"])
#### shanggao code for mask save
2023-04-26 09:06:16 +00:00
return video_output , video_state , interactive_state , operation_log
2023-04-18 04:01:14 +00:00
2023-04-25 13:38:16 +00:00
# extracting masks from mask_dropdown
# def extract_sole_mask(video_state, mask_dropdown):
# combined_masks =
# unique_masks = np.unique(combined_masks)
# return 0
# inpaint
def inpaint_video ( video_state , interactive_state , mask_dropdown ) :
2023-04-26 20:44:48 +00:00
operation_log = [ ( " " , " " ) , ( " Removed the selected masks. " , " Normal " ) ]
2023-04-26 05:04:57 +00:00
2023-04-25 13:38:16 +00:00
frames = np . asarray ( video_state [ " origin_images " ] )
fps = video_state [ " fps " ]
inpaint_masks = np . asarray ( video_state [ " masks " ] )
if len ( mask_dropdown ) == 0 :
mask_dropdown = [ " mask_001 " ]
mask_dropdown . sort ( )
# convert mask_dropdown to mask numbers
inpaint_mask_numbers = [ int ( mask_dropdown [ i ] . split ( " _ " ) [ 1 ] ) for i in range ( len ( mask_dropdown ) ) ]
# interate through all masks and remove the masks that are not in mask_dropdown
unique_masks = np . unique ( inpaint_masks )
num_masks = len ( unique_masks ) - 1
for i in range ( 1 , num_masks + 1 ) :
if i in inpaint_mask_numbers :
continue
inpaint_masks [ inpaint_masks == i ] = 0
# inpaint for videos
2023-04-26 09:06:16 +00:00
try :
inpainted_frames = model . baseinpainter . inpaint ( frames , inpaint_masks , ratio = interactive_state [ " resize_ratio " ] ) # numpy array, T, H, W, 3
except :
2023-04-26 20:44:48 +00:00
operation_log = [ ( " Error! You are trying to inpaint without masks input. Please track the selected mask first, and then press inpaint. If VRAM exceeded, please use the resize ratio to scaling down the image size. " , " Error " ) , ( " " , " " ) ]
2023-04-26 09:06:16 +00:00
inpainted_frames = video_state [ " origin_images " ]
2023-04-25 13:38:16 +00:00
video_output = generate_video_from_frames ( inpainted_frames , output_path = " ./result/inpaint/ {} " . format ( video_state [ " video_name " ] ) , fps = fps ) # import video_input to name the output video
2023-04-26 09:06:16 +00:00
return video_output , operation_log
2023-04-25 13:38:16 +00:00
2023-04-18 04:01:14 +00:00
# generate video after vos inference
def generate_video_from_frames ( frames , output_path , fps = 30 ) :
"""
Generates a video from a list of frames .
Args :
frames ( list of numpy arrays ) : The frames to include in the video .
output_path ( str ) : The path to save the generated video .
fps ( int , optional ) : The frame rate of the output video . Defaults to 30.
"""
2023-04-19 11:34:14 +00:00
# height, width, layers = frames[0].shape
# fourcc = cv2.VideoWriter_fourcc(*"mp4v")
# video = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# print(output_path)
# for frame in frames:
# video.write(frame)
# video.release()
2023-04-18 04:01:14 +00:00
frames = torch . from_numpy ( np . asarray ( frames ) )
if not os . path . exists ( os . path . dirname ( output_path ) ) :
os . makedirs ( os . path . dirname ( output_path ) )
torchvision . io . write_video ( output_path , frames , fps = fps , video_codec = " libx264 " )
return output_path
2023-04-15 19:59:58 +00:00
2023-04-26 02:57:38 +00:00
# args, defined in track_anything.py
args = parse_augment ( )
2023-04-15 19:59:58 +00:00
# check and download checkpoints if needed
2023-04-26 02:57:38 +00:00
SAM_checkpoint_dict = {
' vit_h ' : " sam_vit_h_4b8939.pth " ,
' vit_l ' : " sam_vit_l_0b3195.pth " ,
" vit_b " : " sam_vit_b_01ec64.pth "
}
SAM_checkpoint_url_dict = {
' vit_h ' : " https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth " ,
' vit_l ' : " https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth " ,
' vit_b ' : " https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth "
}
sam_checkpoint = SAM_checkpoint_dict [ args . sam_model_type ]
sam_checkpoint_url = SAM_checkpoint_url_dict [ args . sam_model_type ]
2023-04-15 19:59:58 +00:00
xmem_checkpoint = " XMem-s012.pth "
xmem_checkpoint_url = " https://github.com/hkchengrex/XMem/releases/download/v1.0/XMem-s012.pth "
2023-04-25 13:38:16 +00:00
e2fgvi_checkpoint = " E2FGVI-HQ-CVPR22.pth "
e2fgvi_checkpoint_id = " 10wGdKSUOie0XmCr8SQ2A2FeDe-mfn5w3 "
2023-04-26 02:57:38 +00:00
2023-04-15 19:59:58 +00:00
folder = " ./checkpoints "
2023-04-26 02:57:38 +00:00
SAM_checkpoint = download_checkpoint ( sam_checkpoint_url , folder , sam_checkpoint )
2023-04-15 19:59:58 +00:00
xmem_checkpoint = download_checkpoint ( xmem_checkpoint_url , folder , xmem_checkpoint )
2023-04-25 13:38:16 +00:00
e2fgvi_checkpoint = download_checkpoint_from_google_drive ( e2fgvi_checkpoint_id , folder , e2fgvi_checkpoint )
2023-05-26 11:14:40 +00:00
args . port = 12212
args . device = " cuda:3 "
2023-04-19 17:06:19 +00:00
# args.mask_save = True
2023-04-16 08:53:28 +00:00
2023-04-25 13:38:16 +00:00
# initialize sam, xmem, e2fgvi models
model = TrackingAnything ( SAM_checkpoint , xmem_checkpoint , e2fgvi_checkpoint , args )
2023-04-13 13:40:10 +00:00
2023-04-26 05:04:57 +00:00
title = """ <p><h1 align= " center " >Track-Anything</h1></p>
"""
description = """ <p>Gradio demo for Track Anything, a flexible and interactive tool for video object tracking, segmentation, and inpainting. I To use it, simply upload your video, or click one of the examples to load them. Code: <a href= " https://github.com/gaomingqi/Track-Anything " >https://github.com/gaomingqi/Track-Anything</a> <a href= " https://huggingface.co/spaces/watchtowerss/Track-Anything?duplicate=true " ><img style= " display: inline; margin-top: 0em; margin-bottom: 0em " src= " https://bit.ly/3gLdBN6 " alt= " Duplicate Space " /></a></p> """
2023-04-13 13:40:10 +00:00
with gr . Blocks ( ) as iface :
2023-04-14 04:10:42 +00:00
"""
state for
"""
click_state = gr . State ( [ [ ] , [ ] ] )
2023-04-18 04:01:14 +00:00
interactive_state = gr . State ( {
" inference_times " : 0 ,
" negative_click_times " : 0 ,
" positive_click_times " : 0 ,
2023-04-19 11:34:14 +00:00
" mask_save " : args . mask_save ,
" multi_mask " : {
" mask_names " : [ ] ,
" masks " : [ ]
} ,
2023-04-25 13:38:16 +00:00
" track_end_number " : None ,
" resize_ratio " : 1
2023-04-19 11:34:14 +00:00
}
)
2023-04-17 21:13:45 +00:00
video_state = gr . State (
{
2023-04-27 07:56:26 +00:00
" user_name " : " " ,
2023-04-17 21:13:45 +00:00
" video_name " : " " ,
" origin_images " : None ,
" painted_images " : None ,
" masks " : None ,
2023-04-25 13:38:16 +00:00
" inpaint_masks " : None ,
2023-04-17 21:13:45 +00:00
" logits " : None ,
" select_frame_number " : 0 ,
" fps " : 30
}
)
2023-04-26 05:04:57 +00:00
gr . Markdown ( title )
gr . Markdown ( description )
2023-04-13 13:40:10 +00:00
with gr . Row ( ) :
2023-04-14 04:10:42 +00:00
# for user video input
2023-04-19 11:34:14 +00:00
with gr . Column ( ) :
with gr . Row ( scale = 0.4 ) :
video_input = gr . Video ( autosize = True )
2023-04-25 13:38:16 +00:00
with gr . Column ( ) :
2023-04-26 09:16:11 +00:00
video_info = gr . Textbox ( label = " Video Info " )
2023-04-26 09:06:16 +00:00
resize_info = gr . Textbox ( value = " If you want to use the inpaint function, it is best to git clone the repo and use a machine with more VRAM locally. \
Alternatively , you can use the resize ratio slider to scale down the original image to around 360 P resolution for faster processing . " , label= " Tips for running this demo . " )
2023-04-25 13:38:16 +00:00
resize_ratio_slider = gr . Slider ( minimum = 0.02 , maximum = 1 , step = 0.02 , value = 1 , label = " Resize ratio " , visible = True )
2023-04-13 18:00:48 +00:00
2023-04-13 13:40:10 +00:00
2023-04-20 11:53:19 +00:00
with gr . Row ( ) :
2023-04-14 04:10:42 +00:00
# put the template frame under the radio button
2023-04-20 11:53:19 +00:00
with gr . Column ( ) :
2023-04-18 04:01:14 +00:00
# extract frames
with gr . Column ( ) :
extract_frames_button = gr . Button ( value = " Get video info " , interactive = True , variant = " primary " )
2023-04-14 04:10:42 +00:00
# click points settins, negative or positive, mode continuous or single
with gr . Row ( ) :
2023-04-20 11:53:19 +00:00
with gr . Row ( ) :
2023-04-14 04:10:42 +00:00
point_prompt = gr . Radio (
choices = [ " Positive " , " Negative " ] ,
value = " Positive " ,
2023-05-06 01:00:08 +08:00
label = " Point prompt " ,
2023-04-19 11:34:14 +00:00
interactive = True ,
visible = False )
2023-04-26 20:44:48 +00:00
remove_mask_button = gr . Button ( value = " Remove mask " , interactive = True , visible = False )
2023-05-06 01:00:08 +08:00
clear_button_click = gr . Button ( value = " Clear clicks " , interactive = True , visible = False ) . style ( height = 160 )
2023-04-19 11:34:14 +00:00
Add_mask_button = gr . Button ( value = " Add mask " , interactive = True , visible = False )
template_frame = gr . Image ( type = " pil " , interactive = True , elem_id = " template_frame " , visible = False ) . style ( height = 360 )
2023-05-06 01:00:08 +08:00
image_selection_slider = gr . Slider ( minimum = 1 , maximum = 100 , step = 1 , value = 1 , label = " Track start frame " , visible = False )
track_pause_number_slider = gr . Slider ( minimum = 1 , maximum = 100 , step = 1 , value = 1 , label = " Track end frame " , visible = False )
2023-04-14 04:10:42 +00:00
2023-04-20 11:53:19 +00:00
with gr . Column ( ) :
2023-04-26 20:44:48 +00:00
run_status = gr . HighlightedText ( value = [ ( " Text " , " Error " ) , ( " to be " , " Label 2 " ) , ( " highlighted " , " Label 3 " ) ] , visible = False )
2023-04-26 09:16:11 +00:00
mask_dropdown = gr . Dropdown ( multiselect = True , value = [ ] , label = " Mask selection " , info = " . " , visible = False )
2023-04-19 11:34:14 +00:00
video_output = gr . Video ( autosize = True , visible = False ) . style ( height = 360 )
2023-04-25 13:38:16 +00:00
with gr . Row ( ) :
tracking_video_predict_button = gr . Button ( value = " Tracking " , visible = False )
2023-05-06 01:00:08 +08:00
inpaint_video_predict_button = gr . Button ( value = " Inpainting " , visible = False )
2023-04-13 18:00:48 +00:00
2023-04-17 21:13:45 +00:00
# first step: get the video information
extract_frames_button . click (
2023-04-13 18:00:48 +00:00
fn = get_frames_from_video ,
inputs = [
2023-04-17 21:13:45 +00:00
video_input , video_state
2023-04-13 18:00:48 +00:00
] ,
2023-04-19 17:06:19 +00:00
outputs = [ video_state , video_info , template_frame ,
2023-04-26 20:44:48 +00:00
image_selection_slider , track_pause_number_slider , point_prompt , clear_button_click , Add_mask_button , template_frame ,
2023-04-26 09:06:16 +00:00
tracking_video_predict_button , video_output , mask_dropdown , remove_mask_button , inpaint_video_predict_button , run_status ]
2023-04-15 19:59:58 +00:00
)
2023-04-13 13:40:10 +00:00
2023-04-17 21:13:45 +00:00
# second step: select images from slider
image_selection_slider . release ( fn = select_template ,
2023-04-19 11:34:14 +00:00
inputs = [ image_selection_slider , video_state , interactive_state ] ,
2023-04-26 09:06:16 +00:00
outputs = [ template_frame , video_state , interactive_state , run_status ] , api_name = " select_image " )
2023-04-19 11:34:14 +00:00
track_pause_number_slider . release ( fn = get_end_number ,
2023-04-25 13:38:16 +00:00
inputs = [ track_pause_number_slider , video_state , interactive_state ] ,
2023-04-26 09:06:16 +00:00
outputs = [ template_frame , interactive_state , run_status ] , api_name = " end_image " )
2023-04-25 13:38:16 +00:00
resize_ratio_slider . release ( fn = get_resize_ratio ,
inputs = [ resize_ratio_slider , interactive_state ] ,
outputs = [ interactive_state ] , api_name = " resize_ratio " )
2023-04-17 21:13:45 +00:00
2023-04-19 11:34:14 +00:00
# click select image to get mask using sam
2023-04-17 21:13:45 +00:00
template_frame . select (
fn = sam_refine ,
2023-04-18 04:01:14 +00:00
inputs = [ video_state , point_prompt , click_state , interactive_state ] ,
2023-04-26 09:06:16 +00:00
outputs = [ template_frame , video_state , interactive_state , run_status ]
2023-04-17 21:13:45 +00:00
)
2023-04-19 11:34:14 +00:00
# add different mask
Add_mask_button . click (
fn = add_multi_mask ,
inputs = [ video_state , interactive_state , mask_dropdown ] ,
2023-04-26 09:06:16 +00:00
outputs = [ interactive_state , mask_dropdown , template_frame , click_state , run_status ]
2023-04-19 11:34:14 +00:00
)
remove_mask_button . click (
fn = remove_multi_mask ,
2023-04-26 09:06:16 +00:00
inputs = [ interactive_state , mask_dropdown ] ,
outputs = [ interactive_state , mask_dropdown , run_status ]
2023-04-19 11:34:14 +00:00
)
# tracking video from select image and mask
2023-04-14 13:26:26 +00:00
tracking_video_predict_button . click (
2023-04-15 19:59:58 +00:00
fn = vos_tracking_video ,
2023-04-19 11:34:14 +00:00
inputs = [ video_state , interactive_state , mask_dropdown ] ,
2023-04-26 09:06:16 +00:00
outputs = [ video_output , video_state , interactive_state , run_status ]
2023-04-16 08:53:28 +00:00
)
2023-04-17 21:13:45 +00:00
2023-04-25 13:38:16 +00:00
# inpaint video from select image and mask
inpaint_video_predict_button . click (
fn = inpaint_video ,
inputs = [ video_state , interactive_state , mask_dropdown ] ,
2023-04-26 09:06:16 +00:00
outputs = [ video_output , run_status ]
2023-04-25 13:38:16 +00:00
)
2023-04-19 11:34:14 +00:00
# click to get mask
mask_dropdown . change (
fn = show_mask ,
inputs = [ video_state , interactive_state , mask_dropdown ] ,
2023-04-26 09:06:16 +00:00
outputs = [ template_frame , run_status ]
2023-04-19 11:34:14 +00:00
)
2023-04-16 08:53:28 +00:00
# clear input
2023-04-13 18:16:04 +00:00
video_input . clear (
2023-04-17 21:13:45 +00:00
lambda : (
{
2023-04-27 07:56:26 +00:00
" user_name " : " " ,
" video_name " : " " ,
2023-04-17 21:13:45 +00:00
" origin_images " : None ,
" painted_images " : None ,
" masks " : None ,
2023-04-25 13:38:16 +00:00
" inpaint_masks " : None ,
2023-04-17 21:13:45 +00:00
" logits " : None ,
" select_frame_number " : 0 ,
" fps " : 30
} ,
2023-04-18 04:01:14 +00:00
{
" inference_times " : 0 ,
" negative_click_times " : 0 ,
" positive_click_times " : 0 ,
2023-04-19 11:34:14 +00:00
" mask_save " : args . mask_save ,
" multi_mask " : {
" mask_names " : [ ] ,
" masks " : [ ]
2023-04-17 21:13:45 +00:00
} ,
2023-04-25 13:38:16 +00:00
" track_end_number " : 0 ,
" resize_ratio " : 1
2023-04-18 04:01:14 +00:00
} ,
2023-04-19 17:06:19 +00:00
[ [ ] , [ ] ] ,
None ,
2023-04-20 11:53:19 +00:00
None ,
2023-04-26 20:44:48 +00:00
gr . update ( visible = False ) , gr . update ( visible = False ) , gr . update ( visible = False ) , \
2023-04-19 17:06:19 +00:00
gr . update ( visible = False ) , gr . update ( visible = False ) , gr . update ( visible = False ) , gr . update ( visible = False ) , \
2023-04-26 09:06:16 +00:00
gr . update ( visible = False ) , gr . update ( visible = False ) , gr . update ( visible = False , value = [ ] ) , gr . update ( visible = False ) , \
gr . update ( visible = False ) , gr . update ( visible = False )
2023-04-19 17:06:19 +00:00
2023-04-19 11:34:14 +00:00
) ,
2023-04-17 21:13:45 +00:00
[ ] ,
[
video_state ,
2023-04-18 04:01:14 +00:00
interactive_state ,
2023-04-17 21:13:45 +00:00
click_state ,
2023-04-20 11:53:19 +00:00
video_output ,
2023-04-19 17:06:19 +00:00
template_frame ,
2023-04-26 20:44:48 +00:00
tracking_video_predict_button , image_selection_slider , track_pause_number_slider , point_prompt , clear_button_click ,
2023-04-26 09:06:16 +00:00
Add_mask_button , template_frame , tracking_video_predict_button , video_output , mask_dropdown , remove_mask_button , inpaint_video_predict_button , run_status
2023-04-17 21:13:45 +00:00
] ,
queue = False ,
2023-04-19 11:34:14 +00:00
show_progress = False )
2023-04-17 21:13:45 +00:00
2023-04-19 11:34:14 +00:00
# points clear
clear_button_click . click (
2023-04-20 11:53:19 +00:00
fn = clear_click ,
inputs = [ video_state , click_state , ] ,
2023-04-26 09:06:16 +00:00
outputs = [ template_frame , click_state , run_status ] ,
2023-04-24 17:07:46 +00:00
)
# set example
gr . Markdown ( " ## Examples " )
gr . Examples (
examples = [ os . path . join ( os . path . dirname ( __file__ ) , " ./test_sample/ " , test_sample ) for test_sample in [ " test-sample8.mp4 " , " test-sample4.mp4 " , \
" test-sample2.mp4 " , " test-sample13.mp4 " ] ] ,
fn = run_example ,
inputs = [
video_input
] ,
outputs = [ video_input ] ,
# cache_examples=True,
2023-04-16 08:53:28 +00:00
)
2023-04-13 13:40:10 +00:00
iface . queue ( concurrency_count = 1 )
2023-04-27 07:56:26 +00:00
iface . launch ( debug = True , enable_queue = True , server_port = args . port , server_name = " 0.0.0.0 " )
# iface.launch(debug=True, enable_queue=True)