start app develop

This commit is contained in:
memoryunreal
2023-04-13 13:40:10 +00:00
parent 3a0dc4a835
commit 0618c12d63
5 changed files with 216 additions and 1 deletions

91
app.py Normal file
View File

@@ -0,0 +1,91 @@
import gradio as gr
from demo import automask_image_app, automask_video_app, sahi_autoseg_app
import argparse
import cv2
import time
def pause_video():
print(time.time())
def play_video():
print("play video")
print(time.time)
with gr.Blocks() as iface:
with gr.Row():
with gr.Column(scale=1.0):
seg_automask_video_file = gr.Video().style(height=720)
gr.Video.g
seg_automask_video_file.play(fn=play_video)
seg_automask_video_file.pause(fn=pause_video)
with gr.Row():
with gr.Column():
seg_automask_video_model_type = gr.Dropdown(
choices=[
"vit_h",
"vit_l",
"vit_b",
],
value="vit_l",
label="Model Type",
)
seg_automask_video_min_area = gr.Number(
value=1000,
label="Min Area",
)
with gr.Row():
with gr.Column():
seg_automask_video_points_per_side = gr.Slider(
minimum=0,
maximum=32,
step=2,
value=16,
label="Points per Side",
)
seg_automask_video_points_per_batch = gr.Slider(
minimum=0,
maximum=64,
step=2,
value=64,
label="Points per Batch",
)
seg_automask_video_predict = gr.Button(value="Generator")
# Display the first frame
# with gr.Column():
# first_frame = gr.Image(type="pil", interactive=True, elem_id="first_frame")
# seg_automask_firstframe = gr.Button(value="Find target")
# video_input = gr.inputs.Video(type="mp4")
# output = gr.outputs.Image(type="pil")
# gr.Interface(fn=capture_frame, inputs=seg_automask_video_file, outputs=first_frame)
# seg_automask_video_predict.click(
# fn=automask_video_app,
# inputs=[
# seg_automask_video_file,
# seg_automask_video_model_type,
# seg_automask_video_points_per_side,
# seg_automask_video_points_per_batch,
# seg_automask_video_min_area,
# ],
# outputs=[output_video],
# )
iface.queue(concurrency_count=1)
iface.launch(debug=True, enable_queue=True, server_port=12212, server_name="0.0.0.0")

37
app_test.py Normal file
View File

@@ -0,0 +1,37 @@
import gradio as gr
import time
def capture_frame(video):
frame = video.get_frame_at_sec(video.current_time)
return frame
def capture_time(video):
while True:
if video.paused:
time_paused = video.current_time
return time_paused
iface = gr.Interface(fn=capture_frame,
inputs=[gr.inputs.Video(type="mp4", label="Input video",
source="upload")],
outputs=["image"],
server_port=12212,
server_name="0.0.0.0",
capture_session=True)
video_player = iface.video[0]
video_player.pause = False
time_interface = gr.Interface(fn=capture_time,
inputs=[gr.inputs.Video(type="mp4", label="Input video",
source="upload", max_duration=10)],
outputs=["text"],
server_port=12212,
server_name="0.0.0.0",
capture_session=True)
time_interface.video[0].play = False
time_interface.video[0].pause = False
iface.launch()
time_interface.launch()

87
demo.py Normal file
View File

@@ -0,0 +1,87 @@
from metaseg import SegAutoMaskPredictor, SegManualMaskPredictor, SahiAutoSegmentation, sahi_sliced_predict
# For image
def automask_image_app(image_path, model_type, points_per_side, points_per_batch, min_area):
SegAutoMaskPredictor().image_predict(
source=image_path,
model_type=model_type, # vit_l, vit_h, vit_b
points_per_side=points_per_side,
points_per_batch=points_per_batch,
min_area=min_area,
output_path="output.png",
show=False,
save=True,
)
return "output.png"
# For video
def automask_video_app(video_path, model_type, points_per_side, points_per_batch, min_area):
SegAutoMaskPredictor().video_predict(
source=video_path,
model_type=model_type, # vit_l, vit_h, vit_b
points_per_side=points_per_side,
points_per_batch=points_per_batch,
min_area=min_area,
output_path="output.mp4",
)
return "output.mp4"
# For manuel box and point selection
def manual_app(image_path, model_type, input_point, input_label, input_box, multimask_output, random_color):
SegManualMaskPredictor().image_predict(
source=image_path,
model_type=model_type, # vit_l, vit_h, vit_b
input_point=input_point,
input_label=input_label,
input_box=input_box,
multimask_output=multimask_output,
random_color=random_color,
output_path="output.png",
show=False,
save=True,
)
return "output.png"
# For sahi sliced prediction
def sahi_autoseg_app(
image_path,
sam_model_type,
detection_model_type,
detection_model_path,
conf_th,
image_size,
slice_height,
slice_width,
overlap_height_ratio,
overlap_width_ratio,
):
boxes = sahi_sliced_predict(
image_path=image_path,
detection_model_type=detection_model_type, # yolov8, detectron2, mmdetection, torchvision
detection_model_path=detection_model_path,
conf_th=conf_th,
image_size=image_size,
slice_height=slice_height,
slice_width=slice_width,
overlap_height_ratio=overlap_height_ratio,
overlap_width_ratio=overlap_width_ratio,
)
SahiAutoSegmentation().predict(
source=image_path,
model_type=sam_model_type,
input_box=boxes,
multimask_output=False,
random_color=False,
show=False,
save=True,
)
return "output.png"

View File

@@ -12,4 +12,4 @@ pycocotools
matplotlib
onnxruntime
onnx
metaseg

Binary file not shown.