mirror of
https://github.com/gaomingqi/Track-Anything.git
synced 2025-12-14 15:37:50 +01:00
beta -version -li
This commit is contained in:
212
app.py
212
app.py
@@ -17,7 +17,7 @@ import torchvision
|
||||
import torch
|
||||
import concurrent.futures
|
||||
import queue
|
||||
|
||||
from tools.painter import mask_painter, point_painter
|
||||
# download checkpoints
|
||||
def download_checkpoint(url, folder, filename):
|
||||
os.makedirs(folder, exist_ok=True)
|
||||
@@ -84,12 +84,18 @@ def get_frames_from_video(video_input, video_state):
|
||||
"masks": [None]*len(frames),
|
||||
"logits": [None]*len(frames),
|
||||
"select_frame_number": 0,
|
||||
"fps": 30
|
||||
"fps": fps
|
||||
}
|
||||
return video_state, gr.update(visible=True, maximum=len(frames), value=1)
|
||||
video_info = "Video Name: {}, FPS: {}, Total Frames: {}".format(video_state["video_name"], video_state["fps"], len(frames))
|
||||
return video_state, video_info, gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=True, maximum=len(frames), value=1), \
|
||||
gr.update(visible=True), gr.update(visible=True), \
|
||||
gr.update(visible=True), gr.update(visible=True), \
|
||||
gr.update(visible=True), gr.update(visible=True), \
|
||||
gr.update(visible=True), gr.update(visible=True), \
|
||||
gr.update(visible=True)
|
||||
|
||||
# get the select frame from gradio slider
|
||||
def select_template(image_selection_slider, video_state):
|
||||
def select_template(image_selection_slider, video_state, interactive_state):
|
||||
|
||||
# images = video_state[1]
|
||||
image_selection_slider -= 1
|
||||
@@ -100,8 +106,14 @@ def select_template(image_selection_slider, video_state):
|
||||
model.samcontroler.sam_controler.reset_image()
|
||||
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])
|
||||
|
||||
# # clear multi mask
|
||||
# interactive_state["multi_mask"] = {"masks":[], "mask_names":[]}
|
||||
|
||||
return video_state["painted_images"][image_selection_slider], video_state
|
||||
return video_state["painted_images"][image_selection_slider], video_state, interactive_state
|
||||
|
||||
def get_end_number(track_pause_number_slider, interactive_state):
|
||||
interactive_state["track_end_number"] = track_pause_number_slider
|
||||
return interactive_state
|
||||
|
||||
# use sam to get the mask
|
||||
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData):
|
||||
@@ -133,17 +145,59 @@ def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr
|
||||
|
||||
return painted_image, video_state, interactive_state
|
||||
|
||||
def add_multi_mask(video_state, interactive_state, mask_dropdown):
|
||||
mask = video_state["masks"][video_state["select_frame_number"]]
|
||||
interactive_state["multi_mask"]["masks"].append(mask)
|
||||
interactive_state["multi_mask"]["mask_names"].append("mask_{}".format(len(interactive_state["multi_mask"]["masks"])))
|
||||
|
||||
return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"])
|
||||
|
||||
|
||||
def remove_multi_mask(interactive_state):
|
||||
interactive_state["multi_mask"]["mask_names"]= []
|
||||
interactive_state["multi_mask"]["masks"] = []
|
||||
return interactive_state
|
||||
|
||||
def show_mask(video_state, interactive_state, mask_dropdown):
|
||||
mask_dropdown.sort()
|
||||
select_frame = video_state["origin_images"][video_state["select_frame_number"]]
|
||||
|
||||
for i in range(len(mask_dropdown)):
|
||||
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
|
||||
mask = interactive_state["multi_mask"]["masks"][mask_number]
|
||||
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2)
|
||||
|
||||
return select_frame
|
||||
|
||||
# tracking vos
|
||||
def vos_tracking_video(video_state, interactive_state):
|
||||
def vos_tracking_video(video_state, interactive_state, mask_dropdown):
|
||||
model.xmem.clear_memory()
|
||||
following_frames = video_state["origin_images"][video_state["select_frame_number"]:]
|
||||
template_mask = video_state["masks"][video_state["select_frame_number"]]
|
||||
if interactive_state["track_end_number"]:
|
||||
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
|
||||
else:
|
||||
following_frames = video_state["origin_images"][video_state["select_frame_number"]:]
|
||||
|
||||
if interactive_state["multi_mask"]["masks"]:
|
||||
# if mask_dropdown:
|
||||
mask_dropdown.sort()
|
||||
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1]
|
||||
for i in range(1,len(mask_dropdown)):
|
||||
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
|
||||
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
|
||||
video_state["masks"][video_state["select_frame_number"]]= template_mask
|
||||
else:
|
||||
template_mask = video_state["masks"][video_state["select_frame_number"]]
|
||||
fps = video_state["fps"]
|
||||
masks, logits, painted_images = model.generator(images=following_frames, template_mask=template_mask)
|
||||
|
||||
video_state["masks"][video_state["select_frame_number"]:] = masks
|
||||
video_state["logits"][video_state["select_frame_number"]:] = logits
|
||||
video_state["painted_images"][video_state["select_frame_number"]:] = painted_images
|
||||
if interactive_state["track_end_number"]:
|
||||
video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks
|
||||
video_state["logits"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = logits
|
||||
video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images
|
||||
else:
|
||||
video_state["masks"][video_state["select_frame_number"]:] = masks
|
||||
video_state["logits"][video_state["select_frame_number"]:] = logits
|
||||
video_state["painted_images"][video_state["select_frame_number"]:] = painted_images
|
||||
|
||||
video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
|
||||
interactive_state["inference_times"] += 1
|
||||
@@ -152,7 +206,7 @@ def vos_tracking_video(video_state, interactive_state):
|
||||
interactive_state["positive_click_times"]+interactive_state["negative_click_times"],
|
||||
interactive_state["positive_click_times"],
|
||||
interactive_state["negative_click_times"]))
|
||||
|
||||
|
||||
#### shanggao code for mask save
|
||||
if interactive_state["mask_save"]:
|
||||
if not os.path.exists('./result/mask/{}'.format(video_state["video_name"].split('.')[0])):
|
||||
@@ -176,6 +230,14 @@ def generate_video_from_frames(frames, output_path, fps=30):
|
||||
output_path (str): The path to save the generated video.
|
||||
fps (int, optional): The frame rate of the output video. Defaults to 30.
|
||||
"""
|
||||
# height, width, layers = frames[0].shape
|
||||
# fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
||||
# video = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
||||
# print(output_path)
|
||||
# for frame in frames:
|
||||
# video.write(frame)
|
||||
|
||||
# video.release()
|
||||
frames = torch.from_numpy(np.asarray(frames))
|
||||
if not os.path.exists(os.path.dirname(output_path)):
|
||||
os.makedirs(os.path.dirname(output_path))
|
||||
@@ -194,7 +256,7 @@ xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoi
|
||||
# args, defined in track_anything.py
|
||||
args = parse_augment()
|
||||
args.port = 12212
|
||||
args.device = "cuda:4"
|
||||
args.device = "cuda:1"
|
||||
args.mask_save = True
|
||||
|
||||
model = TrackingAnything(SAM_checkpoint, xmem_checkpoint, args)
|
||||
@@ -208,8 +270,15 @@ with gr.Blocks() as iface:
|
||||
"inference_times": 0,
|
||||
"negative_click_times" : 0,
|
||||
"positive_click_times": 0,
|
||||
"mask_save": args.mask_save
|
||||
})
|
||||
"mask_save": args.mask_save,
|
||||
"multi_mask": {
|
||||
"mask_names": [],
|
||||
"masks": []
|
||||
},
|
||||
"track_end_num": None
|
||||
}
|
||||
)
|
||||
|
||||
video_state = gr.State(
|
||||
{
|
||||
"video_name": "",
|
||||
@@ -225,43 +294,47 @@ with gr.Blocks() as iface:
|
||||
with gr.Row():
|
||||
|
||||
# for user video input
|
||||
with gr.Column(scale=1.0):
|
||||
video_input = gr.Video().style(height=360)
|
||||
with gr.Column():
|
||||
with gr.Row(scale=0.4):
|
||||
video_input = gr.Video(autosize=True)
|
||||
video_info = gr.Textbox()
|
||||
|
||||
|
||||
|
||||
with gr.Row(scale=1):
|
||||
# put the template frame under the radio button
|
||||
with gr.Column(scale=0.5):
|
||||
with gr.Column(scale=0.4):
|
||||
# extract frames
|
||||
with gr.Column():
|
||||
extract_frames_button = gr.Button(value="Get video info", interactive=True, variant="primary")
|
||||
|
||||
# click points settins, negative or positive, mode continuous or single
|
||||
with gr.Row():
|
||||
with gr.Row(scale=0.5):
|
||||
with gr.Row(scale=0.4):
|
||||
point_prompt = gr.Radio(
|
||||
choices=["Positive", "Negative"],
|
||||
value="Positive",
|
||||
label="Point Prompt",
|
||||
interactive=True)
|
||||
interactive=True,
|
||||
visible=False)
|
||||
click_mode = gr.Radio(
|
||||
choices=["Continuous", "Single"],
|
||||
value="Continuous",
|
||||
label="Clicking Mode",
|
||||
interactive=True)
|
||||
interactive=True,
|
||||
visible=False)
|
||||
with gr.Row(scale=0.5):
|
||||
clear_button_clike = gr.Button(value="Clear Clicks", interactive=True).style(height=160)
|
||||
clear_button_image = gr.Button(value="Clear Image", interactive=True)
|
||||
template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame").style(height=360)
|
||||
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Image Selection", invisible=False)
|
||||
|
||||
|
||||
|
||||
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False).style(height=160)
|
||||
Add_mask_button = gr.Button(value="Add mask", interactive=True, visible=False)
|
||||
template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame", visible=False).style(height=360)
|
||||
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Image Selection", visible=False)
|
||||
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frames", visible=False)
|
||||
|
||||
with gr.Column(scale=0.5):
|
||||
video_output = gr.Video().style(height=360)
|
||||
tracking_video_predict_button = gr.Button(value="Tracking")
|
||||
with gr.Column(scale=0.4):
|
||||
mask_dropdown = gr.Dropdown(multiselect=True, label="Mask_select", info=".", visible=False)
|
||||
remove_mask_button = gr.Button(value="Remove mask", interactive=True, visible=False)
|
||||
video_output = gr.Video(autosize=True, visible=False).style(height=360)
|
||||
tracking_video_predict_button = gr.Button(value="Tracking", visible=False)
|
||||
|
||||
# first step: get the video information
|
||||
extract_frames_button.click(
|
||||
@@ -269,27 +342,51 @@ with gr.Blocks() as iface:
|
||||
inputs=[
|
||||
video_input, video_state
|
||||
],
|
||||
outputs=[video_state, image_selection_slider],
|
||||
outputs=[video_state, video_info, image_selection_slider, track_pause_number_slider,point_prompt, click_mode, clear_button_click, Add_mask_button, template_frame,
|
||||
tracking_video_predict_button, video_output, mask_dropdown, remove_mask_button]
|
||||
)
|
||||
|
||||
# second step: select images from slider
|
||||
image_selection_slider.release(fn=select_template,
|
||||
inputs=[image_selection_slider, video_state],
|
||||
outputs=[template_frame, video_state], api_name="select_image")
|
||||
inputs=[image_selection_slider, video_state, interactive_state],
|
||||
outputs=[template_frame, video_state, interactive_state], api_name="select_image")
|
||||
track_pause_number_slider.release(fn=get_end_number,
|
||||
inputs=[track_pause_number_slider, interactive_state],
|
||||
outputs=[interactive_state], api_name="end_image")
|
||||
|
||||
|
||||
# click select image to get mask using sam
|
||||
template_frame.select(
|
||||
fn=sam_refine,
|
||||
inputs=[video_state, point_prompt, click_state, interactive_state],
|
||||
outputs=[template_frame, video_state, interactive_state]
|
||||
)
|
||||
|
||||
# add different mask
|
||||
Add_mask_button.click(
|
||||
fn=add_multi_mask,
|
||||
inputs=[video_state, interactive_state, mask_dropdown],
|
||||
outputs=[interactive_state, mask_dropdown]
|
||||
)
|
||||
|
||||
remove_mask_button.click(
|
||||
fn=remove_multi_mask,
|
||||
inputs=[interactive_state],
|
||||
outputs=[interactive_state]
|
||||
)
|
||||
|
||||
# tracking video from select image and mask
|
||||
tracking_video_predict_button.click(
|
||||
fn=vos_tracking_video,
|
||||
inputs=[video_state, interactive_state],
|
||||
inputs=[video_state, interactive_state, mask_dropdown],
|
||||
outputs=[video_output, video_state, interactive_state]
|
||||
)
|
||||
|
||||
# click to get mask
|
||||
mask_dropdown.change(
|
||||
fn=show_mask,
|
||||
inputs=[video_state, interactive_state, mask_dropdown],
|
||||
outputs=[template_frame]
|
||||
)
|
||||
|
||||
# clear input
|
||||
video_input.clear(
|
||||
@@ -306,10 +403,15 @@ with gr.Blocks() as iface:
|
||||
"inference_times": 0,
|
||||
"negative_click_times" : 0,
|
||||
"positive_click_times": 0,
|
||||
"mask_save": args.mask_save
|
||||
"mask_save": args.mask_save,
|
||||
"multi_mask": {
|
||||
"mask_names": [],
|
||||
"masks": []
|
||||
},
|
||||
"track_end_num": 0
|
||||
},
|
||||
[[],[]]
|
||||
),
|
||||
),
|
||||
[],
|
||||
[
|
||||
video_state,
|
||||
@@ -317,38 +419,10 @@ with gr.Blocks() as iface:
|
||||
click_state,
|
||||
],
|
||||
queue=False,
|
||||
show_progress=False
|
||||
)
|
||||
clear_button_image.click(
|
||||
lambda: (
|
||||
{
|
||||
"origin_images": None,
|
||||
"painted_images": None,
|
||||
"masks": None,
|
||||
"logits": None,
|
||||
"select_frame_number": 0,
|
||||
"fps": 30
|
||||
},
|
||||
{
|
||||
"inference_times": 0,
|
||||
"negative_click_times" : 0,
|
||||
"positive_click_times": 0,
|
||||
"mask_save": args.mask_save
|
||||
},
|
||||
[[],[]]
|
||||
),
|
||||
[],
|
||||
[
|
||||
video_state,
|
||||
interactive_state,
|
||||
click_state,
|
||||
],
|
||||
show_progress=False)
|
||||
|
||||
queue=False,
|
||||
show_progress=False
|
||||
|
||||
)
|
||||
clear_button_clike.click(
|
||||
# points clear
|
||||
clear_button_click.click(
|
||||
lambda: ([[],[]]),
|
||||
[],
|
||||
[click_state],
|
||||
|
||||
61
app_test.py
61
app_test.py
@@ -1,23 +1,46 @@
|
||||
# import gradio as gr
|
||||
|
||||
# def update_iframe(slider_value):
|
||||
# return f'''
|
||||
# <script>
|
||||
# window.addEventListener('message', function(event) {{
|
||||
# if (event.data.sliderValue !== undefined) {{
|
||||
# var iframe = document.getElementById("text_iframe");
|
||||
# iframe.src = "http://localhost:5001/get_text?slider_value=" + event.data.sliderValue;
|
||||
# }}
|
||||
# }}, false);
|
||||
# </script>
|
||||
# <iframe id="text_iframe" src="http://localhost:5001/get_text?slider_value={slider_value}" style="width: 100%; height: 100%; border: none;"></iframe>
|
||||
# '''
|
||||
|
||||
# iface = gr.Interface(
|
||||
# fn=update_iframe,
|
||||
# inputs=gr.inputs.Slider(minimum=0, maximum=100, step=1, default=50),
|
||||
# outputs=gr.outputs.HTML(),
|
||||
# allow_flagging=False,
|
||||
# )
|
||||
|
||||
# iface.launch(server_name='0.0.0.0', server_port=12212)
|
||||
|
||||
import gradio as gr
|
||||
|
||||
def update_iframe(slider_value):
|
||||
return f'''
|
||||
<script>
|
||||
window.addEventListener('message', function(event) {{
|
||||
if (event.data.sliderValue !== undefined) {{
|
||||
var iframe = document.getElementById("text_iframe");
|
||||
iframe.src = "http://localhost:5001/get_text?slider_value=" + event.data.sliderValue;
|
||||
}}
|
||||
}}, false);
|
||||
</script>
|
||||
<iframe id="text_iframe" src="http://localhost:5001/get_text?slider_value={slider_value}" style="width: 100%; height: 100%; border: none;"></iframe>
|
||||
'''
|
||||
|
||||
iface = gr.Interface(
|
||||
fn=update_iframe,
|
||||
inputs=gr.inputs.Slider(minimum=0, maximum=100, step=1, default=50),
|
||||
outputs=gr.outputs.HTML(),
|
||||
allow_flagging=False,
|
||||
)
|
||||
def change_mask(drop):
|
||||
return gr.update(choices=["hello", "kitty"])
|
||||
|
||||
iface.launch(server_name='0.0.0.0', server_port=12212)
|
||||
with gr.Blocks() as iface:
|
||||
drop = gr.Dropdown(
|
||||
choices=["cat", "dog", "bird"], label="Animal", info="Will add more animals later!"
|
||||
)
|
||||
radio = gr.Radio(["park", "zoo", "road"], label="Location", info="Where did they go?")
|
||||
multi_drop = gr.Dropdown(
|
||||
["ran", "swam", "ate", "slept"], value=["swam", "slept"], multiselect=True, label="Activity", info="Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed auctor, nisl eget ultricies aliquam, nunc nisl aliquet nunc, eget aliquam nisl nunc vel nisl."
|
||||
)
|
||||
|
||||
multi_drop.change(
|
||||
fn=change_mask,
|
||||
inputs = multi_drop,
|
||||
outputs=multi_drop
|
||||
)
|
||||
|
||||
iface.launch(server_name='0.0.0.0', server_port=1223)
|
||||
@@ -37,16 +37,16 @@ class SamControler():
|
||||
self.sam_controler = BaseSegmenter(SAM_checkpoint, model_type, device)
|
||||
|
||||
|
||||
def seg_again(self, image: np.ndarray):
|
||||
'''
|
||||
it is used when interact in video
|
||||
'''
|
||||
self.sam_controler.reset_image()
|
||||
self.sam_controler.set_image(image)
|
||||
return
|
||||
# def seg_again(self, image: np.ndarray):
|
||||
# '''
|
||||
# it is used when interact in video
|
||||
# '''
|
||||
# self.sam_controler.reset_image()
|
||||
# self.sam_controler.set_image(image)
|
||||
# return
|
||||
|
||||
|
||||
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True):
|
||||
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True,mask_color=3):
|
||||
'''
|
||||
it is used in first frame in video
|
||||
return: mask, logit, painted image(mask+point)
|
||||
@@ -88,47 +88,47 @@ class SamControler():
|
||||
|
||||
return mask, logit, painted_image
|
||||
|
||||
def interact_loop(self, image:np.ndarray, same: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
|
||||
origal_image = self.sam_controler.orignal_image
|
||||
if same:
|
||||
'''
|
||||
true; loop in the same image
|
||||
'''
|
||||
prompts = {
|
||||
'point_coords': points,
|
||||
'point_labels': labels,
|
||||
'mask_input': logits[None, :, :]
|
||||
}
|
||||
masks, scores, logits = self.sam_controler.predict(prompts, 'both', multimask)
|
||||
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
|
||||
# def interact_loop(self, image:np.ndarray, same: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
|
||||
# origal_image = self.sam_controler.orignal_image
|
||||
# if same:
|
||||
# '''
|
||||
# true; loop in the same image
|
||||
# '''
|
||||
# prompts = {
|
||||
# 'point_coords': points,
|
||||
# 'point_labels': labels,
|
||||
# 'mask_input': logits[None, :, :]
|
||||
# }
|
||||
# masks, scores, logits = self.sam_controler.predict(prompts, 'both', multimask)
|
||||
# mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
|
||||
|
||||
painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
|
||||
painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
|
||||
painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
|
||||
painted_image = Image.fromarray(painted_image)
|
||||
# painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
|
||||
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
|
||||
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
|
||||
# painted_image = Image.fromarray(painted_image)
|
||||
|
||||
return mask, logit, painted_image
|
||||
else:
|
||||
'''
|
||||
loop in the different image, interact in the video
|
||||
'''
|
||||
if image is None:
|
||||
raise('Image error')
|
||||
else:
|
||||
self.seg_again(image)
|
||||
prompts = {
|
||||
'point_coords': points,
|
||||
'point_labels': labels,
|
||||
}
|
||||
masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask)
|
||||
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
|
||||
# return mask, logit, painted_image
|
||||
# else:
|
||||
# '''
|
||||
# loop in the different image, interact in the video
|
||||
# '''
|
||||
# if image is None:
|
||||
# raise('Image error')
|
||||
# else:
|
||||
# self.seg_again(image)
|
||||
# prompts = {
|
||||
# 'point_coords': points,
|
||||
# 'point_labels': labels,
|
||||
# }
|
||||
# masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask)
|
||||
# mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
|
||||
|
||||
painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
|
||||
painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
|
||||
painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
|
||||
painted_image = Image.fromarray(painted_image)
|
||||
# painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
|
||||
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
|
||||
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
|
||||
# painted_image = Image.fromarray(painted_image)
|
||||
|
||||
return mask, logit, painted_image
|
||||
# return mask, logit, painted_image
|
||||
|
||||
|
||||
|
||||
@@ -226,31 +226,31 @@ class SamControler():
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
points = np.array([[500, 375], [1125, 625]])
|
||||
labels = np.array([1, 1])
|
||||
image = cv2.imread('/hhd3/gaoshang/truck.jpg')
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
# if __name__ == "__main__":
|
||||
# points = np.array([[500, 375], [1125, 625]])
|
||||
# labels = np.array([1, 1])
|
||||
# image = cv2.imread('/hhd3/gaoshang/truck.jpg')
|
||||
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
sam_controler = initialize()
|
||||
mask, logit, painted_image_full = first_frame_click(sam_controler,image, points, labels, multimask=True)
|
||||
painted_image = mask_painter2(image, mask.astype('uint8'), background_alpha=0.8)
|
||||
painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3)
|
||||
cv2.imwrite('/hhd3/gaoshang/truck_point.jpg', painted_image)
|
||||
cv2.imwrite('/hhd3/gaoshang/truck_change.jpg', image)
|
||||
painted_image_full.save('/hhd3/gaoshang/truck_point_full.jpg')
|
||||
# sam_controler = initialize()
|
||||
# mask, logit, painted_image_full = first_frame_click(sam_controler,image, points, labels, multimask=True)
|
||||
# painted_image = mask_painter2(image, mask.astype('uint8'), background_alpha=0.8)
|
||||
# painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3)
|
||||
# cv2.imwrite('/hhd3/gaoshang/truck_point.jpg', painted_image)
|
||||
# cv2.imwrite('/hhd3/gaoshang/truck_change.jpg', image)
|
||||
# painted_image_full.save('/hhd3/gaoshang/truck_point_full.jpg')
|
||||
|
||||
mask, logit, painted_image_full = interact_loop(sam_controler,image,True, points, np.array([1, 0]), logit, multimask=True)
|
||||
painted_image = mask_painter2(image, mask.astype('uint8'), background_alpha=0.8)
|
||||
painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3)
|
||||
cv2.imwrite('/hhd3/gaoshang/truck_same.jpg', painted_image)
|
||||
painted_image_full.save('/hhd3/gaoshang/truck_same_full.jpg')
|
||||
# mask, logit, painted_image_full = interact_loop(sam_controler,image,True, points, np.array([1, 0]), logit, multimask=True)
|
||||
# painted_image = mask_painter2(image, mask.astype('uint8'), background_alpha=0.8)
|
||||
# painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3)
|
||||
# cv2.imwrite('/hhd3/gaoshang/truck_same.jpg', painted_image)
|
||||
# painted_image_full.save('/hhd3/gaoshang/truck_same_full.jpg')
|
||||
|
||||
mask, logit, painted_image_full = interact_loop(sam_controler,image, False, points, labels, multimask=True)
|
||||
painted_image = mask_painter2(image, mask.astype('uint8'), background_alpha=0.8)
|
||||
painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3)
|
||||
cv2.imwrite('/hhd3/gaoshang/truck_diff.jpg', painted_image)
|
||||
painted_image_full.save('/hhd3/gaoshang/truck_diff_full.jpg')
|
||||
# mask, logit, painted_image_full = interact_loop(sam_controler,image, False, points, labels, multimask=True)
|
||||
# painted_image = mask_painter2(image, mask.astype('uint8'), background_alpha=0.8)
|
||||
# painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3)
|
||||
# cv2.imwrite('/hhd3/gaoshang/truck_diff.jpg', painted_image)
|
||||
# painted_image_full.save('/hhd3/gaoshang/truck_diff_full.jpg')
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -15,26 +15,26 @@ class TrackingAnything():
|
||||
self.xmem = BaseTracker(xmem_checkpoint, device=args.device)
|
||||
|
||||
|
||||
def inference_step(self, first_flag: bool, interact_flag: bool, image: np.ndarray,
|
||||
same_image_flag: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
|
||||
if first_flag:
|
||||
mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
|
||||
return mask, logit, painted_image
|
||||
# def inference_step(self, first_flag: bool, interact_flag: bool, image: np.ndarray,
|
||||
# same_image_flag: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
|
||||
# if first_flag:
|
||||
# mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
|
||||
# return mask, logit, painted_image
|
||||
|
||||
if interact_flag:
|
||||
mask, logit, painted_image = self.samcontroler.interact_loop(image, same_image_flag, points, labels, logits, multimask)
|
||||
return mask, logit, painted_image
|
||||
# if interact_flag:
|
||||
# mask, logit, painted_image = self.samcontroler.interact_loop(image, same_image_flag, points, labels, logits, multimask)
|
||||
# return mask, logit, painted_image
|
||||
|
||||
mask, logit, painted_image = self.xmem.track(image, logit)
|
||||
return mask, logit, painted_image
|
||||
# mask, logit, painted_image = self.xmem.track(image, logit)
|
||||
# return mask, logit, painted_image
|
||||
|
||||
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True):
|
||||
mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
|
||||
return mask, logit, painted_image
|
||||
|
||||
def interact(self, image: np.ndarray, same_image_flag: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
|
||||
mask, logit, painted_image = self.samcontroler.interact_loop(image, same_image_flag, points, labels, logits, multimask)
|
||||
return mask, logit, painted_image
|
||||
# def interact(self, image: np.ndarray, same_image_flag: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
|
||||
# mask, logit, painted_image = self.samcontroler.interact_loop(image, same_image_flag, points, labels, logits, multimask)
|
||||
# return mask, logit, painted_image
|
||||
|
||||
def generator(self, images: list, template_mask:np.ndarray):
|
||||
|
||||
@@ -53,6 +53,7 @@ class TrackingAnything():
|
||||
masks.append(mask)
|
||||
logits.append(logit)
|
||||
painted_images.append(painted_image)
|
||||
print("tracking image {}".format(i))
|
||||
return masks, logits, painted_images
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user