add args.mask_save = True, add interactive_state to record, remove memory print --li

This commit is contained in:
memoryunreal
2023-04-18 04:01:14 +00:00
parent e63459fdb6
commit 579a105166
3 changed files with 104 additions and 95 deletions

192
app.py
View File

@@ -18,6 +18,7 @@ import torch
import concurrent.futures
import queue
# download checkpoints
def download_checkpoint(url, folder, filename):
os.makedirs(folder, exist_ok=True)
filepath = os.path.join(folder, filename)
@@ -51,7 +52,8 @@ def get_prompt(click_state, click_input):
"multimask_output":"True",
}
return prompt
# extract frames from upload video
def get_frames_from_video(video_input, video_state):
"""
Args:
@@ -86,6 +88,7 @@ def get_frames_from_video(video_input, video_state):
}
return video_state, gr.update(visible=True, maximum=len(frames), value=1)
# get the select frame from gradio slider
def select_template(image_selection_slider, video_state):
# images = video_state[1]
@@ -100,6 +103,70 @@ def select_template(image_selection_slider, video_state):
return video_state["painted_images"][image_selection_slider], video_state
# use sam to get the mask
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
interactive_state["positive_click_times"] += 1
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
interactive_state["negative_click_times"] += 1
# prompt for sam model
prompt = get_prompt(click_state=click_state, click_input=coordinate)
mask, logit, painted_image = model.first_frame_click(
image=video_state["origin_images"][video_state["select_frame_number"]],
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
video_state["masks"][video_state["select_frame_number"]] = mask
video_state["logits"][video_state["select_frame_number"]] = logit
video_state["painted_images"][video_state["select_frame_number"]] = painted_image
return painted_image, video_state, interactive_state
# tracking vos
def vos_tracking_video(video_state, interactive_state):
model.xmem.clear_memory()
following_frames = video_state["origin_images"][video_state["select_frame_number"]:]
template_mask = video_state["masks"][video_state["select_frame_number"]]
fps = video_state["fps"]
masks, logits, painted_images = model.generator(images=following_frames, template_mask=template_mask)
video_state["masks"][video_state["select_frame_number"]:] = masks
video_state["logits"][video_state["select_frame_number"]:] = logits
video_state["painted_images"][video_state["select_frame_number"]:] = painted_images
video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
interactive_state["inference_times"] += 1
print("For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(interactive_state["inference_times"],
interactive_state["positive_click_times"]+interactive_state["negative_click_times"],
interactive_state["positive_click_times"],
interactive_state["negative_click_times"]))
#### shanggao code for mask save
if interactive_state["mask_save"]:
if not os.path.exists('./result/mask/{}'.format(video_state["video_name"].split('.')[0])):
os.makedirs('./result/mask/{}'.format(video_state["video_name"].split('.')[0]))
i = 0
print("save mask")
for mask in video_state["masks"]:
np.save(os.path.join('./result/mask/{}'.format(video_state["video_name"].split('.')[0]), '{:05d}.npy'.format(i)), mask)
i+=1
# save_mask(video_state["masks"], video_state["video_name"])
#### shanggao code for mask save
return video_output, video_state, interactive_state
# generate video after vos inference
def generate_video_from_frames(frames, output_path, fps=30):
"""
Generates a video from a list of frames.
@@ -115,75 +182,6 @@ def generate_video_from_frames(frames, output_path, fps=30):
torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
return output_path
def sam_refine(video_state, point_prompt, click_state, evt:gr.SelectData):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
# prompt for sam model
prompt = get_prompt(click_state=click_state, click_input=coordinate)
mask, logit, painted_image = model.first_frame_click(
image=video_state["origin_images"][video_state["select_frame_number"]],
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
video_state["masks"][video_state["select_frame_number"]] = mask
video_state["logits"][video_state["select_frame_number"]] = logit
video_state["painted_images"][video_state["select_frame_number"]] = painted_image
return painted_image, video_state
def interactive_correction(video_state, point_prompt, click_state, select_correction_frame, evt: gr.SelectData):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
refine_image = video_state[1][select_correction_frame]
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
# prompt for sam model
prompt = get_prompt(click_state=click_state, click_input=coordinate)
# model.samcontroler.seg_again(refine_image)
corrected_mask, corrected_logit, corrected_painted_image = model.first_frame_click(
image=refine_image,
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
return corrected_painted_image, [corrected_mask, corrected_logit, corrected_painted_image]
def vos_tracking_video(video_state):
model.xmem.clear_memory()
following_frames = video_state["origin_images"][video_state["select_frame_number"]:]
template_mask = video_state["masks"][video_state["select_frame_number"]]
fps = video_state["fps"]
masks, logits, painted_images = model.generator(images=following_frames, template_mask=template_mask)
video_state["masks"][video_state["select_frame_number"]:] = masks
video_state["logits"][video_state["select_frame_number"]:] = logits
video_state["painted_images"][video_state["select_frame_number"]:] = painted_images
video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
return video_output, video_state
# check and download checkpoints if needed
SAM_checkpoint = "sam_vit_h_4b8939.pth"
sam_checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
@@ -196,7 +194,8 @@ xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoi
# args, defined in track_anything.py
args = parse_augment()
args.port = 12212
args.device = "cuda:2"
args.device = "cuda:4"
args.mask_save = True
model = TrackingAnything(SAM_checkpoint, xmem_checkpoint, args)
@@ -205,6 +204,12 @@ with gr.Blocks() as iface:
state for
"""
click_state = gr.State([[],[]])
interactive_state = gr.State({
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save
})
video_state = gr.State(
{
"video_name": "",
@@ -217,20 +222,21 @@ with gr.Blocks() as iface:
}
)
with gr.Row():
# for user video input
with gr.Column(scale=1.0):
video_input = gr.Video().style(height=720)
video_input = gr.Video().style(height=360)
with gr.Row(scale=1):
# put the template frame under the radio button
with gr.Column(scale=0.5):
# extract frames
with gr.Column():
extract_frames_button = gr.Button(value="Get video info", interactive=True, variant="primary")
# click points settins, negative or positive, mode continuous or single
with gr.Row():
with gr.Row(scale=0.5):
@@ -250,20 +256,13 @@ with gr.Blocks() as iface:
template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame").style(height=360)
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Image Selection", invisible=False)
# extract frames
with gr.Column():
extract_frames_button = gr.Button(value="Get video info", interactive=True, variant="primary")
with gr.Column(scale=0.5):
video_output = gr.Video().style(height=360)
tracking_video_predict_button = gr.Button(value="Tracking")
# first step: get the video information
extract_frames_button.click(
fn=get_frames_from_video,
@@ -273,10 +272,6 @@ with gr.Blocks() as iface:
outputs=[video_state, image_selection_slider],
)
# second step: select images from slider
image_selection_slider.release(fn=select_template,
inputs=[image_selection_slider, video_state],
@@ -285,17 +280,16 @@ with gr.Blocks() as iface:
template_frame.select(
fn=sam_refine,
inputs=[video_state, point_prompt, click_state],
outputs=[template_frame, video_state]
inputs=[video_state, point_prompt, click_state, interactive_state],
outputs=[template_frame, video_state, interactive_state]
)
tracking_video_predict_button.click(
fn=vos_tracking_video,
inputs=[video_state],
outputs=[video_output, video_state]
inputs=[video_state, interactive_state],
outputs=[video_output, video_state, interactive_state]
)
# clear input
video_input.clear(
@@ -308,11 +302,18 @@ with gr.Blocks() as iface:
"select_frame_number": 0,
"fps": 30
},
{
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save
},
[[],[]]
),
[],
[
video_state,
interactive_state,
click_state,
],
queue=False,
@@ -328,11 +329,18 @@ with gr.Blocks() as iface:
"select_frame_number": 0,
"fps": 30
},
{
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save
},
[[],[]]
),
[],
[
video_state,
interactive_state,
click_state,
],

View File

@@ -62,6 +62,7 @@ def parse_augment():
parser.add_argument('--sam_model_type', type=str, default="vit_h")
parser.add_argument('--port', type=int, default=6080, help="only useful when running gradio applications")
parser.add_argument('--debug', action="store_true")
parser.add_argument('--mask_save', default=True)
args = parser.parse_args()
if args.debug:

View File

@@ -182,7 +182,7 @@ class MemoryManager:
if self.enable_long_term:
# Do memory compressed if needed
if self.work_mem.size >= self.max_work_elements:
print('remove memory')
# print('remove memory')
# Remove obsolete features if needed
if self.long_mem.size >= (self.max_long_elements-self.num_prototypes):
self.long_mem.remove_obsolete_features(self.max_long_elements-self.num_prototypes)
@@ -239,8 +239,8 @@ class MemoryManager:
# add to long-term memory
self.long_mem.add(prototype_key, prototype_value, prototype_shrinkage, selection=None, objects=None)
print(f'long memory size: {self.long_mem.size}')
print(f'work memory size: {self.work_mem.size}')
# print(f'long memory size: {self.long_mem.size}')
# print(f'work memory size: {self.work_mem.size}')
def consolidation(self, candidate_key, candidate_shrinkage, candidate_selection, usage, candidate_value):
# keys: 1*C*N