Files
modelscope/tests/pipelines/test_text_classification.py

93 lines
3.3 KiB
Python
Raw Normal View History

# Copyright (c) Alibaba, Inc. and its affiliates.
import shutil
import unittest
from modelscope.models import Model
from modelscope.msdatasets import MsDataset
from modelscope.pipelines import SequenceClassificationPipeline, pipeline
from modelscope.preprocessors import SequenceClassificationPreprocessor
from modelscope.utils.constant import Hubs, Tasks
from modelscope.utils.test_utils import test_level
class SequenceClassificationTest(unittest.TestCase):
def setUp(self) -> None:
self.model_id = 'damo/bert-base-sst2'
def predict(self, pipeline_ins: SequenceClassificationPipeline):
from easynlp.appzoo import load_dataset
set = load_dataset('glue', 'sst2')
data = set['test']['sentence'][:3]
results = pipeline_ins(data[0])
print(results)
results = pipeline_ins(data[1])
print(results)
print(data)
def printDataset(self, dataset: MsDataset):
for i, r in enumerate(dataset):
if i > 10:
break
print(r)
# @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
@unittest.skip('nlp model does not support tensor input, skipped')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
preprocessor = SequenceClassificationPreprocessor(
model.model_dir, first_sequence='sentence', second_sequence=None)
pipeline_ins = pipeline(
task=Tasks.text_classification,
model=model,
preprocessor=preprocessor)
self.predict(pipeline_ins)
# @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
@unittest.skip('nlp model does not support tensor input, skipped')
def test_run_with_model_name(self):
text_classification = pipeline(
task=Tasks.text_classification, model=self.model_id)
result = text_classification(
MsDataset.load(
'xcopa',
subset_name='translation-et',
namespace='damotest',
split='test',
target='premise'))
self.printDataset(result)
# @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
@unittest.skip('nlp model does not support tensor input, skipped')
def test_run_with_default_model(self):
text_classification = pipeline(task=Tasks.text_classification)
result = text_classification(
MsDataset.load(
'xcopa',
subset_name='translation-et',
namespace='damotest',
split='test',
target='premise'))
self.printDataset(result)
# @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
@unittest.skip('nlp model does not support tensor input, skipped')
def test_run_with_modelscope_dataset(self):
text_classification = pipeline(task=Tasks.text_classification)
# loaded from modelscope dataset
dataset = MsDataset.load(
'xcopa',
subset_name='translation-et',
namespace='damotest',
split='test',
target='premise')
result = text_classification(dataset)
self.printDataset(result)
if __name__ == '__main__':
unittest.main()