Files
modelscope/tests/pipelines/test_text_classification.py
wenmeng.zwm 4814b198f0 [to #43112534] taskdataset refine and auto placement for data and model
* refine taskdataset interface
 * add device placement for trainer
 * add device placement for pipeline
 * add config checker and fix model placement bug
 * fix cycling import
 * refactor model init for translation_pipeline
 * cv pipelines support kwargs


Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9463076
2022-07-23 11:08:43 +08:00

93 lines
3.3 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import shutil
import unittest
from modelscope.models import Model
from modelscope.msdatasets import MsDataset
from modelscope.pipelines import SequenceClassificationPipeline, pipeline
from modelscope.preprocessors import SequenceClassificationPreprocessor
from modelscope.utils.constant import Hubs, Tasks
from modelscope.utils.test_utils import test_level
class SequenceClassificationTest(unittest.TestCase):
def setUp(self) -> None:
self.model_id = 'damo/bert-base-sst2'
def predict(self, pipeline_ins: SequenceClassificationPipeline):
from easynlp.appzoo import load_dataset
set = load_dataset('glue', 'sst2')
data = set['test']['sentence'][:3]
results = pipeline_ins(data[0])
print(results)
results = pipeline_ins(data[1])
print(results)
print(data)
def printDataset(self, dataset: MsDataset):
for i, r in enumerate(dataset):
if i > 10:
break
print(r)
# @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
@unittest.skip('nlp model does not support tensor input, skipped')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
preprocessor = SequenceClassificationPreprocessor(
model.model_dir, first_sequence='sentence', second_sequence=None)
pipeline_ins = pipeline(
task=Tasks.text_classification,
model=model,
preprocessor=preprocessor)
self.predict(pipeline_ins)
# @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
@unittest.skip('nlp model does not support tensor input, skipped')
def test_run_with_model_name(self):
text_classification = pipeline(
task=Tasks.text_classification, model=self.model_id)
result = text_classification(
MsDataset.load(
'xcopa',
subset_name='translation-et',
namespace='damotest',
split='test',
target='premise'))
self.printDataset(result)
# @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
@unittest.skip('nlp model does not support tensor input, skipped')
def test_run_with_default_model(self):
text_classification = pipeline(task=Tasks.text_classification)
result = text_classification(
MsDataset.load(
'xcopa',
subset_name='translation-et',
namespace='damotest',
split='test',
target='premise'))
self.printDataset(result)
# @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
@unittest.skip('nlp model does not support tensor input, skipped')
def test_run_with_modelscope_dataset(self):
text_classification = pipeline(task=Tasks.text_classification)
# loaded from modelscope dataset
dataset = MsDataset.load(
'xcopa',
subset_name='translation-et',
namespace='damotest',
split='test',
target='premise')
result = text_classification(dataset)
self.printDataset(result)
if __name__ == '__main__':
unittest.main()