Files
modelscope/tests/pipelines/test_text_classification.py

52 lines
1.8 KiB
Python
Raw Normal View History

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import os.path as osp
import tempfile
import unittest
import zipfile
from maas_lib.fileio import File
from maas_lib.models.nlp import SequenceClassificationModel
from maas_lib.pipelines import SequenceClassificationPipeline, pipeline
from maas_lib.preprocessors import SequenceClassificationPreprocessor
class SequenceClassificationTest(unittest.TestCase):
def predict(self, pipeline: SequenceClassificationPipeline):
from easynlp.appzoo import load_dataset
set = load_dataset('glue', 'sst2')
data = set['test']['sentence'][:3]
results = pipeline(data[0])
print(results)
results = pipeline(data[1])
print(results)
print(data)
def test_run(self):
model_url = 'https://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com' \
'/release/easynlp_modelzoo/alibaba-pai/bert-base-sst2.zip'
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_file = osp.join(tmp_dir, 'bert-base-sst2.zip')
with open(tmp_file, 'wb') as ofile:
ofile.write(File.read(model_url))
with zipfile.ZipFile(tmp_file, 'r') as zipf:
zipf.extractall(tmp_dir)
path = osp.join(tmp_dir, 'bert-base-sst2')
print(path)
model = SequenceClassificationModel(path)
preprocessor = SequenceClassificationPreprocessor(
path, first_sequence='sentence', second_sequence=None)
pipeline1 = SequenceClassificationPipeline(model, preprocessor)
self.predict(pipeline1)
pipeline2 = pipeline(
'text-classification', model=model, preprocessor=preprocessor)
print(pipeline2('Hello world!'))
if __name__ == '__main__':
unittest.main()