Files
ECCV2022-RIFE/inference_img.py

62 lines
2.2 KiB
Python
Raw Normal View History

2020-11-13 17:41:02 +08:00
import os
2020-11-12 21:32:21 +08:00
import cv2
import torch
2020-11-12 23:40:10 +08:00
import argparse
2020-11-12 23:57:31 +08:00
from torch.nn import functional as F
2020-12-03 15:06:35 +08:00
from model.RIFE_HD import Model
2020-11-20 12:23:56 +08:00
import warnings
warnings.filterwarnings("ignore")
2020-11-12 21:32:21 +08:00
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
2021-01-11 02:08:49 +00:00
torch.set_grad_enabled(False)
2020-12-14 14:23:40 +08:00
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
2020-11-12 21:32:21 +08:00
2020-11-12 23:40:10 +08:00
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
2020-11-12 23:57:31 +08:00
parser.add_argument('--img', dest='img', nargs=2, required=True)
2020-11-19 11:07:37 +08:00
parser.add_argument('--exp', default=4, type=int)
2020-11-12 23:40:10 +08:00
args = parser.parse_args()
2020-11-12 21:32:21 +08:00
model = Model()
2021-01-17 15:24:57 +01:00
model.load_model(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'train_log'), -1)
2020-11-12 21:32:21 +08:00
model.eval()
model.device()
2020-11-13 17:41:02 +08:00
2021-01-11 02:01:35 +00:00
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
else:
img0 = cv2.imread(args.img[0])
img1 = cv2.imread(args.img[1])
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
2020-11-13 17:41:02 +08:00
n, c, h, w = img0.shape
2020-11-14 12:34:19 +08:00
ph = ((h - 1) // 32 + 1) * 32
pw = ((w - 1) // 32 + 1) * 32
2020-11-12 23:57:31 +08:00
padding = (0, pw - w, 0, ph - h)
2020-11-13 17:41:02 +08:00
img0 = F.pad(img0, padding)
img1 = F.pad(img1, padding)
img_list = [img0, img1]
2020-11-19 11:07:37 +08:00
for i in range(args.exp):
2020-11-13 17:41:02 +08:00
tmp = []
for j in range(len(img_list) - 1):
mid = model.inference(img_list[j], img_list[j + 1])
tmp.append(img_list[j])
tmp.append(mid)
tmp.append(img1)
img_list = tmp
if not os.path.exists('output'):
os.mkdir('output')
for i in range(len(img_list)):
2021-01-11 02:01:35 +00:00
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
else:
cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])