2020-11-12 21:32:21 +08:00
|
|
|
import cv2
|
|
|
|
|
import torch
|
2020-11-12 23:40:10 +08:00
|
|
|
import argparse
|
2020-11-12 23:57:31 +08:00
|
|
|
from torch.nn import functional as F
|
2020-11-12 21:32:21 +08:00
|
|
|
from model.RIFE import Model
|
|
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
2020-11-12 23:40:10 +08:00
|
|
|
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
|
2020-11-12 23:57:31 +08:00
|
|
|
parser.add_argument('--img', dest='img', nargs=2, required=True)
|
2020-11-12 23:40:10 +08:00
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
2020-11-12 21:32:21 +08:00
|
|
|
model = Model()
|
|
|
|
|
model.load_model('./train_log')
|
|
|
|
|
model.eval()
|
|
|
|
|
model.device()
|
2020-11-12 23:40:10 +08:00
|
|
|
img0 = cv2.imread(args.img[0])
|
|
|
|
|
img1 = cv2.imread(args.img[1])
|
2020-11-12 21:32:21 +08:00
|
|
|
h, w, _ = img0.shape
|
2020-11-12 23:57:31 +08:00
|
|
|
ph = h // 32 * 32
|
|
|
|
|
pw = w // 32 * 32
|
|
|
|
|
padding = (0, pw - w, 0, ph - h)
|
2020-11-12 21:32:21 +08:00
|
|
|
img0 = torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.
|
|
|
|
|
img1 = torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.
|
2020-11-12 23:57:31 +08:00
|
|
|
imgs = F.pad(torch.cat((img0, img1), 0).float(), padding)
|
2020-11-12 21:32:21 +08:00
|
|
|
with torch.no_grad():
|
|
|
|
|
res = model.inference(imgs.unsqueeze(0)) * 255
|
2020-11-12 23:57:31 +08:00
|
|
|
cv2.imwrite('output.png', res[0].numpy().transpose(1, 2, 0)[:h, :w])
|