Files
ECCV2022-RIFE/inference_img.py

46 lines
1.3 KiB
Python
Raw Normal View History

2020-11-13 17:41:02 +08:00
import os
2020-11-12 21:32:21 +08:00
import cv2
import torch
2020-11-12 23:40:10 +08:00
import argparse
2020-11-12 23:57:31 +08:00
from torch.nn import functional as F
2020-11-12 21:32:21 +08:00
from model.RIFE import Model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
2020-11-12 23:40:10 +08:00
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
2020-11-12 23:57:31 +08:00
parser.add_argument('--img', dest='img', nargs=2, required=True)
2020-11-13 18:16:03 +08:00
parser.add_argument('--times', default=4, type=int)
2020-11-12 23:40:10 +08:00
args = parser.parse_args()
2020-11-12 21:32:21 +08:00
model = Model()
model.load_model('./train_log')
model.eval()
model.device()
2020-11-13 17:41:02 +08:00
2020-11-12 23:40:10 +08:00
img0 = cv2.imread(args.img[0])
img1 = cv2.imread(args.img[1])
2020-11-13 17:41:02 +08:00
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
n, c, h, w = img0.shape
2020-11-12 23:57:31 +08:00
ph = h // 32 * 32
pw = w // 32 * 32
padding = (0, pw - w, 0, ph - h)
2020-11-13 17:41:02 +08:00
img0 = F.pad(img0, padding)
img1 = F.pad(img1, padding)
img_list = [img0, img1]
for i in range(args.times):
tmp = []
for j in range(len(img_list) - 1):
mid = model.inference(img_list[j], img_list[j + 1])
tmp.append(img_list[j])
tmp.append(mid)
tmp.append(img1)
img_list = tmp
if not os.path.exists('output'):
os.mkdir('output')
for i in range(len(img_list)):
cv2.imwrite('output/img{}.png'.format(i), img_list[i][0].numpy().transpose(1, 2, 0)[:h, :w] * 255)