Compare commits

..

3 Commits

Author SHA1 Message Date
veguAI
ddfbd6891b 0.25.5 (#121)
* oepnai compat client to /completions instead of chat/completions
openai compat client pass frequency penalty

* 0.25.5

* fix version

* remove debug message

* fix openai compat client not saving coercion settings

* openai compatible client: API handles prompt template switches over to chat/completions api

* wording

* mistral std template

* fix error when setting llm prompt template if model name contained /

* lock sentence transformers to 2.2.2 since >=2.3.0 breaks instructor model loading

* support png tEXt

* openai compat client: fix repetition_penality KeyError issue

* presence_penalty is not equal to repetition_penalty and needs its own dedicated definition

* round presence penalty randomization to one decimal place

* fix filename

* same fixes for presence_penalty ported to koboldcpp client

* kcpp client: remove a1111 setup spam
kcpp client: fixes to presence_penalty jiggle

* mistral.ai: default model 8x22b
mistral.ai: 7b and 8x7b taken out of JSON_OBJECT_RESPONSE_MODELS
2024-05-24 18:17:55 +03:00
veguAI
143dd47e02 0.25.4 (#118)
* dont run npm install during container build

* fix const var issue when ALLOWED_HOSTS is anything but `all`

* ensure docker env sets NODE_ENV to development for now

* 0.25.4

* dont mount frontend volume by default
2024-05-18 16:22:57 +03:00
veguAI
cc7cb773d1 Update README.md 2024-05-18 12:31:32 +03:00
19 changed files with 828 additions and 550 deletions

View File

@@ -1,13 +1,19 @@
# Use an official node runtime as a parent image
FROM node:20
# Make sure we are in a development environment (this isn't a production ready Dockerfile)
ENV NODE_ENV=development
# Echo that this isn't a production ready Dockerfile
RUN echo "This Dockerfile is not production ready. It is intended for development purposes only."
# Set the working directory in the container
WORKDIR /app
# Copy the frontend directory contents into the container at /app
COPY ./talemate_frontend /app
# Install any needed packages specified in package.json
# Install all dependencies
RUN npm install
# Make port 8080 available to the world outside this container

View File

@@ -95,6 +95,8 @@ There is also a [troubleshooting guide](docs/troubleshoot.md) that might help.
### Docker
:warning: Some users currently experience issues with missing dependencies inside the docker container, issue tracked at [#114](https://github.com/vegu-ai/talemate/issues/114)
1. `git clone https://github.com/vegu-ai/talemate.git`
1. `cd talemate`
1. `cp config.example.yaml config.yaml`
@@ -171,14 +173,7 @@ In the case for `bartowski_Nous-Hermes-2-Mistral-7B-DPO-exl2_8_0` that is `ChatM
### Recommended Models
As of 2024.05.06 my personal regular drivers (the ones i test with) are:
- meta-llama_Meta-Llama-3-8B-Instruct
- brucethemoose_Yi-34B-200K-RPMerge
- rAIfle_Verdict-8x7B
- meta-llama_Meta-Llama-3-70B-Instruct
That said, any of the top models in any of the size classes here should work well (i wouldn't recommend going lower than 7B):
Any of the top models in any of the size classes here should work well (i wouldn't recommend going lower than 7B):
[https://oobabooga.github.io/benchmark.html](https://oobabooga.github.io/benchmark.html)
@@ -266,4 +261,4 @@ Then open the file and edit the `ALLOWED_HOSTS` and `VUE_APP_TALEMATE_BACKEND_W
ALLOWED_HOSTS=example.com
# wss if behind ssl, ws if not
VUE_APP_TALEMATE_BACKEND_WEBSOCKET_URL=wss://example.com:5050
```
```

View File

@@ -23,5 +23,5 @@ services:
dockerfile: Dockerfile.frontend
ports:
- "8080:8080"
volumes:
- ./talemate_frontend:/app
#volumes:
# - ./talemate_frontend:/app

1098
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -4,7 +4,7 @@ build-backend = "poetry.masonry.api"
[tool.poetry]
name = "talemate"
version = "0.25.3"
version = "0.25.5"
description = "AI-backed roleplay and narrative tools"
authors = ["FinalWombat"]
license = "GNU Affero General Public License v3.0"
@@ -51,7 +51,8 @@ chromadb = ">=0.4.17,<1"
InstructorEmbedding = "^1.0.1"
torch = ">=2.1.0"
torchaudio = ">=2.3.0"
sentence-transformers="^2.2.2"
# locked for instructor embeddings
sentence-transformers="==2.2.2"
[tool.poetry.dev-dependencies]
pytest = "^6.2"

View File

@@ -2,4 +2,4 @@ from .agents import Agent
from .client import TextGeneratorWebuiClient
from .tale_mate import *
VERSION = "0.25.3"
VERSION = "0.25.5"

View File

@@ -5,7 +5,7 @@ from talemate.client.anthropic import AnthropicClient
from talemate.client.cohere import CohereClient
from talemate.client.google import GoogleClient
from talemate.client.groq import GroqClient
from talemate.client.koboldccp import KoboldCppClient
from talemate.client.koboldcpp import KoboldCppClient
from talemate.client.lmstudio import LMStudioClient
from talemate.client.mistral import MistralAIClient
from talemate.client.openai import OpenAIClient

View File

@@ -755,3 +755,29 @@ class ClientBase:
new_lines.append(line)
return "\n".join(new_lines)
def process_response_for_indirect_coercion(self, prompt:str, response:str) -> str:
"""
A lot of remote APIs don't let us control the prompt template and we cannot directly
append the beginning of the desired response to the prompt.
With indirect coercion we tell the LLM what the beginning of the response should be
and then hopefully it will adhere to it and we can strip it off the actual response.
"""
_, right = prompt.split("\nStart your response with: ")
expected_response = right.strip()
if (
expected_response
and expected_response.startswith("{")
):
if response.startswith("```json") and response.endswith("```"):
response = response[7:-3].strip()
if right and response.startswith(right):
response = response[len(right) :].strip()
return response

View File

@@ -128,12 +128,6 @@ class KoboldCppClient(ClientBase):
"stop_sequence",
]
else:
# adjustments for openai api
if "repetition_penalty" in parameters:
parameters["presence_penalty"] = parameters.pop(
"repetition_penalty"
)
allowed_params = ["max_tokens", "presence_penalty", "top_p", "temperature"]
# drop unsupported params
@@ -243,19 +237,27 @@ class KoboldCppClient(ClientBase):
if "rep_pen" in prompt_config:
rep_pen_key = "rep_pen"
elif "frequency_penalty" in prompt_config:
rep_pen_key = "frequency_penalty"
elif "presence_penalty" in prompt_config:
rep_pen_key = "presence_penalty"
else:
rep_pen_key = "repetition_penalty"
rep_pen = prompt_config[rep_pen_key]
min_offset = offset * 0.3
prompt_config["temperature"] = random.uniform(temp + min_offset, temp + offset)
prompt_config[rep_pen_key] = random.uniform(
rep_pen + min_offset * 0.3, rep_pen + offset * 0.3
)
try:
if rep_pen_key == "presence_penalty":
presence_penalty = prompt_config["presence_penalty"]
prompt_config["presence_penalty"] = round(random.uniform(
presence_penalty + 0.1, presence_penalty + offset
),1)
else:
rep_pen = prompt_config[rep_pen_key]
prompt_config[rep_pen_key] = random.uniform(
rep_pen + min_offset * 0.3, rep_pen + offset * 0.3
)
except KeyError:
pass
def reconfigure(self, **kwargs):
if "api_key" in kwargs:
@@ -293,10 +295,11 @@ class KoboldCppClient(ClientBase):
sd_model = response_data[0].get("model_name") if response_data else None
log.info("automatic1111_setup", sd_model=sd_model)
if not sd_model:
return False
log.info("automatic1111_setup", sd_model=sd_model)
visual_agent.actions["automatic1111"].config["api_url"].value = self.url
visual_agent.is_enabled = True
return True

View File

@@ -25,12 +25,16 @@ SUPPORTED_MODELS = [
"mistral-large-latest",
]
JSON_OBJECT_RESPONSE_MODELS = SUPPORTED_MODELS
JSON_OBJECT_RESPONSE_MODELS = [
"open-mixtral-8x22b",
"mistral-small-latest",
"mistral-medium-latest",
"mistral-large-latest",
]
class Defaults(pydantic.BaseModel):
max_token_length: int = 16384
model: str = "open-mixtral-8x7b"
model: str = "open-mixtral-8x22b"
@register()
@@ -53,7 +57,7 @@ class MistralAIClient(ClientBase):
requires_prompt_template: bool = False
defaults: Defaults = Defaults()
def __init__(self, model="open-mixtral-8x7b", **kwargs):
def __init__(self, model="open-mixtral-8x22b", **kwargs):
self.model_name = model
self.api_key_status = None
self.config = load_config()
@@ -115,7 +119,7 @@ class MistralAIClient(ClientBase):
return
if not self.model_name:
self.model_name = "open-mixtral-8x7b"
self.model_name = "open-mixtral-8x22b"
if max_token_length and not isinstance(max_token_length, int):
max_token_length = int(max_token_length)

View File

@@ -136,13 +136,15 @@ class ModelPrompt:
"""
matches = []
cleaned_model_name = model_name.replace("/", "__")
# Iterate over all templates in the loader's directory
for template_name in self.env.list_templates():
# strip extension
template_name_match = os.path.splitext(template_name)[0]
# Check if the model name is in the template filename
if template_name_match.lower() in model_name.lower():
if template_name_match.lower() in cleaned_model_name.lower():
matches.append(template_name)
# If there are no matches, return None
@@ -163,16 +165,17 @@ class ModelPrompt:
"""
template_name = template_name.split(".jinja2")[0]
cleaned_model_name = model_name.replace("/", "__")
shutil.copyfile(
os.path.join(STD_TEMPLATE_PATH, template_name + ".jinja2"),
os.path.join(USER_TEMPLATE_PATH, model_name + ".jinja2"),
os.path.join(USER_TEMPLATE_PATH, cleaned_model_name + ".jinja2"),
)
return os.path.join(USER_TEMPLATE_PATH, model_name + ".jinja2")
return os.path.join(USER_TEMPLATE_PATH, cleaned_model_name + ".jinja2")
def query_hf_for_prompt_template_suggestion(self, model_name: str):
print("query_hf_for_prompt_template_suggestion", model_name)
api = huggingface_hub.HfApi()
try:

View File

@@ -1,5 +1,5 @@
import urllib
import random
import pydantic
import structlog
from openai import AsyncOpenAI, NotFoundError, PermissionDeniedError
@@ -20,6 +20,7 @@ class Defaults(pydantic.BaseModel):
max_token_length: int = 8192
model: str = ""
api_handles_prompt_template: bool = False
double_coercion: str = None
class ClientConfig(BaseClientConfig):
@@ -43,9 +44,9 @@ class OpenAICompatibleClient(ClientBase):
"api_handles_prompt_template": ExtraField(
name="api_handles_prompt_template",
type="bool",
label="API Handles Prompt Template",
label="API handles prompt template (chat/completions)",
required=False,
description="The API handles the prompt template, meaning your choice in the UI for the prompt template below will be ignored.",
description="The API handles the prompt template, meaning your choice in the UI for the prompt template below will be ignored. This is not recommended and should only be used if the API does not support the `completions` andpoint or you don't know which prompt template to use.",
)
}
@@ -83,13 +84,12 @@ class OpenAICompatibleClient(ClientBase):
def tune_prompt_parameters(self, parameters: dict, kind: str):
super().tune_prompt_parameters(parameters, kind)
keys = list(parameters.keys())
allowed_params = ["max_tokens", "presence_penalty", "top_p", "temperature"]
valid_keys = ["temperature", "top_p", "max_tokens"]
for key in keys:
if key not in valid_keys:
del parameters[key]
# drop unsupported params
for param in list(parameters.keys()):
if param not in allowed_params:
del parameters[param]
def prompt_template(self, system_message: str, prompt: str):
@@ -117,16 +117,27 @@ class OpenAICompatibleClient(ClientBase):
"""
Generates text from the given prompt and parameters.
"""
human_message = {"role": "user", "content": prompt.strip()}
self.log.debug("generate", prompt=prompt[:128] + " ...", parameters=parameters)
try:
response = await self.client.chat.completions.create(
model=self.model_name, messages=[human_message], **parameters
)
return response.choices[0].message.content
if self.api_handles_prompt_template:
# OpenAI API handles prompt template
# Use the chat completions endpoint
self.log.debug("generate (chat/completions)", prompt=prompt[:128] + " ...", parameters=parameters)
human_message = {"role": "user", "content": prompt.strip()}
response = await self.client.chat.completions.create(
model=self.model_name, messages=[human_message], **parameters
)
response = response.choices[0].message.content
return self.process_response_for_indirect_coercion(prompt, response)
else:
# Talemate handles prompt template
# Use the completions endpoint
self.log.debug("generate (completions)", prompt=prompt[:128] + " ...", parameters=parameters)
parameters["prompt"] = prompt
response = await self.client.completions.create(
model=self.model_name, **parameters
)
return response.choices[0].text
except PermissionDeniedError as e:
self.log.error("generate error", e=e)
emit("status", message="Client API: Permission Denied", status="error")
@@ -151,7 +162,33 @@ class OpenAICompatibleClient(ClientBase):
self.api_key = kwargs["api_key"]
if "api_handles_prompt_template" in kwargs:
self.api_handles_prompt_template = kwargs["api_handles_prompt_template"]
# TODO: why isn't this calling super()?
if "enabled" in kwargs:
self.enabled = bool(kwargs["enabled"])
if "double_coercion" in kwargs:
self.double_coercion = kwargs["double_coercion"]
log.warning("reconfigure", kwargs=kwargs)
self.set_client(**kwargs)
def jiggle_randomness(self, prompt_config: dict, offset: float = 0.3) -> dict:
"""
adjusts temperature and presence penalty
by random values using the base value as a center
"""
temp = prompt_config["temperature"]
min_offset = offset * 0.3
prompt_config["temperature"] = random.uniform(temp + min_offset, temp + offset)
try:
presence_penalty = prompt_config["presence_penalty"]
prompt_config["presence_penalty"] = round(random.uniform(
presence_penalty + 0.1, presence_penalty + offset
),1)
except KeyError:
pass

View File

@@ -11,10 +11,15 @@ __all__ = [
"PRESET_SIMPLE_1",
]
# TODO: refactor abstraction and make configurable
PRESENCE_PENALTY_BASE = 0.2
PRESET_TALEMATE_CONVERSATION = {
"temperature": 0.65,
"top_p": 0.47,
"top_k": 42,
"presence_penalty": PRESENCE_PENALTY_BASE,
"repetition_penalty": 1.18,
"repetition_penalty_range": 2048,
}
@@ -23,6 +28,7 @@ PRESET_TALEMATE_CREATOR = {
"temperature": 0.7,
"top_p": 0.9,
"top_k": 20,
"presence_penalty": PRESENCE_PENALTY_BASE,
"repetition_penalty": 1.15,
"repetition_penalty_range": 512,
}
@@ -31,6 +37,7 @@ PRESET_LLAMA_PRECISE = {
"temperature": 0.7,
"top_p": 0.1,
"top_k": 40,
"presence_penalty": PRESENCE_PENALTY_BASE,
"repetition_penalty": 1.18,
}
@@ -45,6 +52,7 @@ PRESET_DIVINE_INTELLECT = {
"temperature": 1.31,
"top_p": 0.14,
"top_k": 49,
"presence_penalty": PRESENCE_PENALTY_BASE,
"repetition_penalty_range": 1024,
"repetition_penalty": 1.17,
}
@@ -53,6 +61,7 @@ PRESET_SIMPLE_1 = {
"temperature": 0.7,
"top_p": 0.9,
"top_k": 20,
"presence_penalty": PRESENCE_PENALTY_BASE,
"repetition_penalty": 1.15,
}

View File

@@ -51,6 +51,39 @@ class TextGeneratorWebuiClient(ClientBase):
# is this needed?
parameters["max_new_tokens"] = parameters["max_tokens"]
parameters["stop"] = parameters["stopping_strings"]
# textgenwebui does not error on unsupported parameters
# but we should still drop them so they don't get passed to the API
# and show up in our prompt debugging tool.
# note that this is not the full list of their supported parameters
# but only those we send.
allowed_params = [
"temperature",
"top_p",
"top_k",
"max_tokens",
"repetition_penalty",
"repetition_penalty_range",
"max_tokens",
"stopping_strings",
"skip_special_tokens",
"stream",
# is this needed?
"max_new_tokens",
"stop",
# talemate internal
# These will be removed before sending to the API
# but we keep them here since they are used during the prompt finalization
"extra_stopping_strings",
]
# drop unsupported params
for param in list(parameters.keys()):
if param not in allowed_params:
del parameters[param]
def set_client(self, **kwargs):
self.api_key = kwargs.get("api_key", self.api_key)

View File

@@ -5,7 +5,7 @@ import json
import re
import textwrap
from typing import List, Union
import struct
import isodate
import structlog
from colorama import Back, Fore, Style, init
@@ -179,6 +179,29 @@ def color_emotes(text: str, color: str = "blue") -> str:
def extract_metadata(img_path, img_format):
return chara_read(img_path)
def read_metadata_from_png_text(image_path:str) -> dict:
"""
Reads the character metadata from the tEXt chunk of a PNG image.
"""
# Read the image
with open(image_path, 'rb') as f:
png_data = f.read()
# Split the PNG data into chunks
offset = 8 # Skip the PNG signature
while offset < len(png_data):
length = struct.unpack('!I', png_data[offset:offset+4])[0]
chunk_type = png_data[offset+4:offset+8]
chunk_data = png_data[offset+8:offset+8+length]
if chunk_type == b'tEXt':
keyword, text_data = chunk_data.split(b'\x00', 1)
if keyword == b'chara':
return json.loads(base64.b64decode(text_data).decode('utf-8'))
offset += 12 + length
raise ValueError('No character metadata found.')
def chara_read(img_url, input_format=None):
if input_format is None:
@@ -194,7 +217,6 @@ def chara_read(img_url, input_format=None):
image = Image.open(io.BytesIO(image_data))
exif_data = image.getexif()
if format == "webp":
try:
if 37510 in exif_data:
@@ -235,7 +257,15 @@ def chara_read(img_url, input_format=None):
return base64_decoded_data
else:
log.warn("chara_load", msg="No chara data found in PNG image.")
return False
log.warn("chara_load", msg="Trying to read from PNG text.")
try:
return read_metadata_from_png_text(img_url)
except ValueError:
return False
except Exception as exc:
log.error("chara_load", msg="Error reading metadata from PNG text.", exc_info=exc)
return False
else:
return None

View File

@@ -1,12 +1,12 @@
{
"name": "talemate_frontend",
"version": "0.25.3",
"version": "0.25.5",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "talemate_frontend",
"version": "0.25.3",
"version": "0.25.5",
"dependencies": {
"@codemirror/lang-markdown": "^6.2.5",
"@codemirror/theme-one-dark": "^6.1.2",

View File

@@ -1,6 +1,6 @@
{
"name": "talemate_frontend",
"version": "0.25.3",
"version": "0.25.5",
"private": true,
"scripts": {
"serve": "vue-cli-service serve",

View File

@@ -1,13 +1,9 @@
const { defineConfig } = require('@vue/cli-service')
const ALLOWED_HOSTS = process.env.ALLOWED_HOSTS || "all"
const ALLOWED_HOSTS = ((process.env.ALLOWED_HOSTS || "all") !== "all" ? process.env.ALLOWED_HOSTS.split(",") : "all")
const VUE_APP_TALEMATE_BACKEND_WEBSOCKET_URL = process.env.VUE_APP_TALEMATE_BACKEND_WEBSOCKET_URL || null
// if ALLOWED_HOSTS is set and has , then split it
if (ALLOWED_HOSTS !== "all") {
ALLOWED_HOSTS = ALLOWED_HOSTS.split(",")
}
console.log("NODE_ENV", process.env.NODE_ENV)
console.log("ALLOWED_HOSTS", ALLOWED_HOSTS)
console.log("VUE_APP_TALEMATE_BACKEND_WEBSOCKET_URL", VUE_APP_TALEMATE_BACKEND_WEBSOCKET_URL)

View File

@@ -0,0 +1 @@
<s>[INST] {{ system_message }} {{ user_message }} [/INST] {{ coercion_message }}