Compare commits

..

10 Commits

Author SHA1 Message Date
veguAI
abdfb1abbf WIP: Prep 0.21.0 (#83)
* cleanup

* refactor clean_dialogue

* prompt fixes

* prompt fixes

* conversation format types - movie script and chat (legacy)

* stopping strings updated

* mistral.ai client

* prompt tweaks

* mistral client return token counts

* anthropic client

* archive history emits whole object so we can inspectr time stamps

* show timestamp in history dialog

* openai compat fixes to stop trying to coerce openai url path schema and to never attempt to retrieve the model name automatically, hopefully improving compatibility with the various openai api implementations across the board

* openai compat client let api control prompt template via config option

* fix custom client configs and implement max backscroll

* fix backscroll limit

* remove debug message

* prep 0.21.0

* include model name in prompt template selection label

* use tabs for side nav in app config modal

* readme / docs

* fix issue where "No API key set" could be persisted as the selected model name to the config

* deepinfra example

* linting
2024-03-10 18:03:12 +02:00
veguAI
2f07248211 Prep 0.20.0 (#77)
* fix issue where recent save cover images would sometimes not load

* paraphrase prompt tweaks

* action_to_narration regenerate compatibility fixes

* sim suite add asnwer question instruction

* more sim suite tweaks

* refactor agent details display in agent bar

* visual agent progres (a1111 support)

* visual gen prompt tweaks

* openai compat client pass max_tokens

* world state sequential reinforcement max tokens tightened

* improve item names

* Improve item names

* attempt to remove "changed from.." notes when altering an existing character sheet

* prompt improvements for single character portraits

* visual agent progress

* fix issue where character.update wouldn't update long-term memory

* remove experimental flag for now

* add better instructions for updating existing character sheet

* background processing for agents, visual and tts

* fix selected voice not saving between restarts for elevenlabs

* lessen timeout

* clean up agent status logic

* conditional agent configs

* comfyui support

* visualization queue

* refactor visual styles, comfyui progress

* regen images
auto cover image assign
websocket handler plugin abstraction
agent websocket handler

* automatic1111 fixes
agent status and ready checks

* tweaks to character portrait prompt

* system prompt for visualize

* textgenwebui use temp smoothing on yi models

* comment out api key for now

* fixes issues with openai compat client for retaining api key and auto fixing urls

* update_reinforcment tweaks

* agent status emit from one place

* emit agent status as asyncio task

* remove debug output

* tts add openai support

* openai img gen support

* fix issue with confyui checkbox list not loading

* tts model selection for openai

* narrate_query include character sheet if character is referenced in query
improve visual character portrit generation prompt

* client implementation extra field support and runpod vllm client example

* relock

* fix issue where changing context length would cause next generation to error

* visual agent tweaks and auto gen character cover image in sim suite

* fix issue with readyness lock when there werent any clients defined

* load scene readiness fixes

* linting

* docs

* notes for the runpod vllm example
2024-02-16 13:57:45 +02:00
veguAI
9ae6fc822b Update README.md 2024-02-12 18:31:49 +02:00
veguAI
5094359c4e Update README.md 2024-02-10 23:07:30 +02:00
veguAI
28801b54bf Update README.md 2024-02-07 03:12:56 +02:00
veguAI
4d69f0e837 Update README.md 2024-02-06 09:15:55 +02:00
veguAI
d91b3f8042 Update README.md 2024-02-06 09:15:11 +02:00
veguAI
03a0ab2fcf Update README.md 2024-02-06 01:01:00 +02:00
veguAI
d860d62972 Update README.md 2024-02-06 01:00:35 +02:00
veguAI
add4893939 Prep 0.19.0 (#67)
* linting

* improve prompt devtools: test changes, show more information

* some more polish for the new promp devtools

* up default conversation gen length to 128

* openai client tweaks, talemate sets max_tokens on gpt-3.5 generations

* support new openai embeddings (and default to text-embedding-3-small)

* ux polish for character sheet and character state ux

* actor instructions

* experiment using # for context / instructions

* fix bug where regenerating history would mess up time stamps

* remove trailing ]

* prevent client ctx from being unset

* fix issue where sometimes you'd need to delete a client twice for it to disappear

* upgrade dependencies

* set 0.19.0

* fix performance degradation caused by circular loading animation

* remove coqui studio support

* fix issue when switching from unsaved creative mode to loading a scene

* third party client / agent support

* edit dialogue examples through character / actor editor

* remove "edit dialogue" action from editor - replaced by character actor instructions

* different icon for delete

* prompt adjustment for acting instructions

* adhoc context generation for character attributes and details

* add adhoc generation for character description

* contextual generation tweaks

* contextual generation for dialogue examples
fix some formatting issues

* contextual generation for world entries

* prepopulate initial recen scenarios with demo scenes
add experimental holodeck scenario

* scene info
scene experimental

* assortment of fixes for holodeck improvements

* more holodeck fixes

* refactor holodeck instructions

* rename holodeck to simulation suite

* better scene status messages

* add new gpt-3.5-turbo model, better json response coercion for older models

* allow exclusion of characters when persisting based on world state

* better error handling of world state response

* better error handling of world state response

* more simulation suite fixes

* progress color

* world state character name mapping support

* if neither quote nor asterisk is in message default to quotes

* fix rerun of new paraphrase op

* sim suite ping that ensure's characters are not aware of sim

* fixes for better character name assessment
simulation suite can now give the player character a proper name

* fix bug with new status notifications

* sim suite adjustments and fixes and tuning

* sim suite tweaks

* impl scene restore from file

* prompting tweaks for reinforcement messages and acting instructions

* more tweaks

* dialogue prompt tweaks for rerun + rewrite

* fix bug with character entry / exit with narration

* linting

* simsuite screenshots

* screenshots
2024-02-06 00:40:55 +02:00
155 changed files with 8136 additions and 2362 deletions

141
README.md
View File

@@ -1,35 +1,41 @@
# Talemate
Allows you to play roleplay scenarios with large language models.
Roleplay with AI with a focus on strong narration and consistent world and game state tracking.
|![Screenshot 1](docs/img/0.17.0/ss-1.png)|![Screenshot 2](docs/img/0.17.0/ss-2.png)|
|![Screenshot 3](docs/img/0.17.0/ss-1.png)|![Screenshot 3](docs/img/0.17.0/ss-2.png)|
|------------------------------------------|------------------------------------------|
|![Screenshot 1](docs/img/0.17.0/ss-4.png)|![Screenshot 2](docs/img/0.17.0/ss-3.png)|
|![Screenshot 4](docs/img/0.17.0/ss-4.png)|![Screenshot 1](docs/img/0.19.0/Screenshot_15.png)|
|![Screenshot 2](docs/img/0.19.0/Screenshot_16.png)|![Screenshot 3](docs/img/0.19.0/Screenshot_17.png)|
> :warning: **It does not run any large language models itself but relies on existing APIs. Currently supports OpenAI, text-generation-webui and LMStudio. 0.18.0 also adds support for generic OpenAI api implementations, but generation quality on that will vary.**
> :warning: **It does not run any large language models itself but relies on existing APIs. Currently supports OpenAI, Anthropic, mistral.ai, self-hosted text-generation-webui and LMStudio. 0.18.0 also adds support for generic OpenAI api implementations, but generation quality on that will vary.**
This means you need to either have:
- an [OpenAI](https://platform.openai.com/overview) api key
- setup local (or remote via runpod) LLM inference via:
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui)
- [LMStudio](https://lmstudio.ai/)
- Any other OpenAI api implementation that implements the v1/completions endpoint
- tested llamacpp with the `api_like_OAI.py` wrapper
- let me know if you have tested any other implementations and they failed / worked or landed somewhere in between
Officially supported APIs:
- [OpenAI](https://platform.openai.com/overview)
- [Anthropic](https://www.anthropic.com/)
- [mistral.ai](https://mistral.ai/)
Officially supported self-hosted APIs:
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) (local or with runpod support)
- [LMStudio](https://lmstudio.ai/)
Generic OpenAI api implementations (tested and confirmed working):
- [DeepInfra](https://deepinfra.com/) - see [instructions](https://github.com/vegu-ai/talemate/issues/78#issuecomment-1986884304)
- [llamacpp](https://github.com/ggerganov/llama.cpp) with the `api_like_OAI.py` wrapper
- let me know if you have tested any other implementations and they failed / worked or landed somewhere in between
## Current features
- responive modern ui
- responsive modern ui
- agents
- conversation: handles character dialogue
- narration: handles narrative exposition
- summarization: handles summarization to compress context while maintain history
- summarization: handles summarization to compress context while maintaining history
- director: can be used to direct the story / characters
- editor: improves AI responses (very hit and miss at the moment)
- world state: generates world snapshot and handles passage of time (objects and characters)
- creator: character / scenario creator
- tts: text to speech via elevenlabs, coqui studio, coqui local
- tts: text to speech via elevenlabs, OpenAI or local tts
- visual: stable-diffusion client for in place visual generation via AUTOMATIC1111, ComfyUI or OpenAI
- multi-client support (agents can be connected to separate APIs)
- long term memory
- chromadb integration
@@ -54,7 +60,6 @@ Kinda making it up as i go along, but i want to lean more into gameplay through
In no particular order:
- Extension support
- modular agents and clients
- Improved world state
@@ -68,7 +73,27 @@ In no particular order:
- objectives
- quests
- win / lose conditions
- stable-diffusion client for in place visual generation
# Instructions
Please read the documents in the `docs` folder for more advanced configuration and usage.
- [Quickstart](#quickstart)
- [Installation](#installation)
- [Connecting to an LLM](#connecting-to-an-llm)
- [Text-generation-webui](#text-generation-webui)
- [Recommended Models](#recommended-models)
- [OpenAI / mistral.ai / Anthropic](#openai)
- [DeepInfra via OpenAI Compatible client](#deepinfra-via-openai-compatible-client)
- [Ready to go](#ready-to-go)
- [Load the introductory scenario "Infinity Quest"](#load-the-introductory-scenario-infinity-quest)
- [Loading character cards](#loading-character-cards)
- [Text-to-Speech (TTS)](docs/tts.md)
- [Visual Generation](docs/visual.md)
- [ChromaDB (long term memory) configuration](docs/chromadb.md)
- [Runpod Integration](docs/runpod.md)
- [Prompt template overrides](docs/templates.md)
# Quickstart
@@ -99,33 +124,67 @@ There is also a [troubleshooting guide](docs/troubleshoot.md) that might help.
1. Start the backend: `python src/talemate/server/run.py runserver --host 0.0.0.0 --port 5050`.
1. Open a new terminal, navigate to the `talemate_frontend` directory, and start the frontend server by running `npm run serve`.
## Connecting to an LLM
# Connecting to an LLM
On the right hand side click the "Add Client" button. If there is no button, you may need to toggle the client options by clicking this button:
![Client options](docs/img/client-options-toggle.png)
### Text-generation-webui
![No clients](docs/img/0.21.0/no-clients.png)
## Text-generation-webui
> :warning: As of version 0.13.0 the legacy text-generator-webui API `--extension api` is no longer supported, please use their new `--extension openai` api implementation instead.
In the modal if you're planning to connect to text-generation-webui, you can likely leave everything as is and just click Save.
![Add client modal](docs/img/client-setup-0.13.png)
![Add client modal](docs/img/0.21.0/text-gen-webui-setup.png)
### Specifying the correct prompt template
#### Recommended Models
For good results it is **vital** that the correct prompt template is specified for whichever model you have loaded.
Any of the top models in any of the size classes here should work well (i wouldn't recommend going lower than 7B):
Talemate does come with a set of pre-defined templates for some popular models, but going forward, due to the sheet number of models released every day, understanding and specifying the correct prompt template is something you should familiarize yourself with.
If the text-gen-webui client shows a yellow triangle next to it, it means that the prompt template is not set, and it is currently using the default `VICUNA` style prompt template.
![Default prompt template](docs/img/0.21.0/prompt-template-default.png)
Click the two cogwheels to the right of the triangle to open the client settings.
![Client settings](docs/img/0.21.0/select-prompt-template.png)
You can first try by clicking the `DETERMINE VIA HUGGINGFACE` button, depending on the model's README file, it may be able to determine the correct prompt template for you. (basically the readme needs to contain an example of the template)
If that doesn't work, you can manually select the prompt template from the dropdown.
In the case for `bartowski_Nous-Hermes-2-Mistral-7B-DPO-exl2_8_0` that is `ChatML` - select it from the dropdown and click `Save`.
![Client settings](docs/img/0.21.0/selected-prompt-template.png)
### Recommended Models
As of 2024.03.07 my personal regular drivers (the ones i test with) are:
- Kunoichi-7B
- sparsetral-16x7B
- Nous-Hermes-2-Mistral-7B-DPO
- brucethemoose_Yi-34B-200K-RPMerge
- dolphin-2.7-mixtral-8x7b
- rAIfle_Verdict-8x7B
- Mixtral-8x7B-instruct
That said, any of the top models in any of the size classes here should work well (i wouldn't recommend going lower than 7B):
https://www.reddit.com/r/LocalLLaMA/comments/18yp9u4/llm_comparisontest_api_edition_gpt4_vs_gemini_vs/
## OpenAI / mistral.ai / Anthropic
### OpenAI
The setup is the same for all three, the example below is for OpenAI.
If you want to add an OpenAI client, just change the client type and select the apropriate model.
![Add client modal](docs/img/add-client-modal-openai.png)
![Add client modal](docs/img/0.21.0/openai-setup.png)
If you are setting this up for the first time, you should now see the client, but it will have a red dot next to it, stating that it requires an API key.
@@ -133,17 +192,33 @@ If you are setting this up for the first time, you should now see the client, bu
Click the `SET API KEY` button. This will open a modal where you can enter your API key.
![OpenAI API Key missing](docs/img/0.18.0/openai-api-key-2.png)
![OpenAI API Key missing](docs/img/0.21.0/openai-add-api-key.png)
Click `Save` and after a moment the client should have a green dot next to it, indicating that it is ready to go.
![OpenAI API Key set](docs/img/0.18.0/openai-api-key-3.png)
## DeepInfra via OpenAI Compatible client
You can use the OpenAI compatible client to connect to [DeepInfra](https://deepinfra.com/).
![DeepInfra](docs/img/0.21.0/deepinfra-setup.png)
```
API URL: https://api.deepinfra.com/v1/openai
```
Models on DeepInfra that work well with Talemate:
- [mistralai/Mixtral-8x7B-Instruct-v0.1](https://deepinfra.com/mistralai/Mixtral-8x7B-Instruct-v0.1) (max context 32k, 8k recommended)
- [cognitivecomputations/dolphin-2.6-mixtral-8x7b](https://deepinfra.com/cognitivecomputations/dolphin-2.6-mixtral-8x7b) (max context 32k, 8k recommended)
- [lizpreciatior/lzlv_70b_fp16_hf](https://deepinfra.com/lizpreciatior/lzlv_70b_fp16_hf) (max context 4k)
## Ready to go
You will know you are good to go when the client and all the agents have a green dot next to them.
![Ready to go](docs/img/client-setup-complete.png)
![Ready to go](docs/img/0.21.0/ready-to-go.png)
## Load the introductory scenario "Infinity Quest"
@@ -163,14 +238,4 @@ Expand the "Load" menu in the top left corner and either click on "Upload a char
Once a character is uploaded, talemate may actually take a moment because it needs to convert it to a talemate format and will also run additional LLM prompts to generate character attributes and world state.
Make sure you save the scene after the character is loaded as it can then be loaded as normal talemate scenario in the future.
## Further documentation
Please read the documents in the `docs` folder for more advanced configuration and usage.
- [Prompt template overrides](docs/templates.md)
- [Text-to-Speech (TTS)](docs/tts.md)
- [ChromaDB (long term memory)](docs/chromadb.md)
- [Runpod Integration](docs/runpod.md)
- Creative mode
Make sure you save the scene after the character is loaded as it can then be loaded as normal talemate scenario in the future.

View File

@@ -48,6 +48,7 @@ game:
# embeddings: instructor
# instructor_device: cuda
# instructor_model: hkunlp/instructor-xl
# openai_model: text-embedding-3-small
## Remote LLMs

View File

@@ -56,6 +56,7 @@ Then add the following to `config.yaml` for chromadb:
```yaml
chromadb:
embeddings: openai
openai_model: text-embedding-3-small
```
**Note**: As with everything openai, using this isn't free. It's way cheaper than their text completion though. ALSO - if you send super explicit content they may flag / ban your key, so keep that in mind (i hear they usually send warnings first though), and always monitor your usage on their dashboard.

View File

@@ -0,0 +1,48 @@
from talemate.agents.base import Agent, AgentAction
from talemate.agents.registry import register
from talemate.events import GameLoopEvent
import talemate.emit.async_signals
from talemate.emit import emit
@register()
class TestAgent(Agent):
agent_type = "test"
verbose_name = "Test"
def __init__(self, client):
self.client = client
self.is_enabled = True
self.actions = {
"test": AgentAction(
enabled=True,
label="Test",
description="Test",
),
}
@property
def enabled(self):
return self.is_enabled
@property
def has_toggle(self):
return True
@property
def experimental(self):
return True
def connect(self, scene):
super().connect(scene)
talemate.emit.async_signals.get("game_loop").connect(self.on_game_loop)
async def on_game_loop(self, emission: GameLoopEvent):
"""
Called on the beginning of every game loop
"""
if not self.enabled:
return
emit("status", status="info", message="Annoying you with a test message every game loop.")

View File

@@ -0,0 +1,130 @@
"""
An attempt to write a client against the runpod serverless vllm worker.
This is close to functional, but since runpod serverless gpu availability is currently terrible, i have
been unable to properly test it.
Putting it here for now since i think it makes a decent example of how to write a client against a new service.
"""
import pydantic
import structlog
import runpod
import asyncio
import aiohttp
from talemate.client.base import ClientBase, ExtraField
from talemate.client.registry import register
from talemate.emit import emit
from talemate.config import Client as BaseClientConfig
log = structlog.get_logger("talemate.client.runpod_vllm")
class Defaults(pydantic.BaseModel):
max_token_length: int = 4096
model: str = ""
runpod_id: str = ""
class ClientConfig(BaseClientConfig):
runpod_id: str = ""
@register()
class RunPodVLLMClient(ClientBase):
client_type = "runpod_vllm"
conversation_retries = 5
config_cls = ClientConfig
class Meta(ClientBase.Meta):
title: str = "Runpod VLLM"
name_prefix: str = "Runpod VLLM"
enable_api_auth: bool = True
manual_model: bool = True
defaults: Defaults = Defaults()
extra_fields: dict[str, ExtraField] = {
"runpod_id": ExtraField(
name="runpod_id",
type="text",
label="Runpod ID",
required=True,
description="The Runpod ID to connect to.",
)
}
def __init__(self, model=None, runpod_id=None, **kwargs):
self.model_name = model
self.runpod_id = runpod_id
super().__init__(**kwargs)
@property
def experimental(self):
return False
def set_client(self, **kwargs):
log.debug("set_client", kwargs=kwargs, runpod_id=self.runpod_id)
self.runpod_id = kwargs.get("runpod_id", self.runpod_id)
def tune_prompt_parameters(self, parameters: dict, kind: str):
super().tune_prompt_parameters(parameters, kind)
keys = list(parameters.keys())
valid_keys = ["temperature", "top_p", "max_tokens"]
for key in keys:
if key not in valid_keys:
del parameters[key]
async def get_model_name(self):
return self.model_name
async def generate(self, prompt: str, parameters: dict, kind: str):
"""
Generates text from the given prompt and parameters.
"""
prompt = prompt.strip()
self.log.debug("generate", prompt=prompt[:128] + " ...", parameters=parameters)
try:
async with aiohttp.ClientSession() as session:
endpoint = runpod.AsyncioEndpoint(self.runpod_id, session)
run_request = await endpoint.run({
"input": {
"prompt": prompt,
}
#"parameters": parameters
})
while (await run_request.status()) not in ["COMPLETED", "FAILED", "CANCELLED"]:
status = await run_request.status()
log.debug("generate", status=status)
await asyncio.sleep(0.1)
status = await run_request.status()
log.debug("generate", status=status)
response = await run_request.output()
log.debug("generate", response=response)
return response["choices"][0]["tokens"][0]
except Exception as e:
self.log.error("generate error", e=e)
emit(
"status", message="Error during generation (check logs)", status="error"
)
return ""
def reconfigure(self, **kwargs):
if kwargs.get("model"):
self.model_name = kwargs["model"]
if "runpod_id" in kwargs:
self.api_auth = kwargs["runpod_id"]
log.warning("reconfigure", kwargs=kwargs)
self.set_client(**kwargs)

View File

@@ -0,0 +1,67 @@
import pydantic
from openai import AsyncOpenAI
from talemate.client.base import ClientBase
from talemate.client.registry import register
class Defaults(pydantic.BaseModel):
api_url: str = "http://localhost:1234"
max_token_length: int = 4096
@register()
class TestClient(ClientBase):
client_type = "test"
class Meta(ClientBase.Meta):
name_prefix: str = "test"
title: str = "Test"
defaults: Defaults = Defaults()
def set_client(self, **kwargs):
self.client = AsyncOpenAI(base_url=self.api_url + "/v1", api_key="sk-1111")
def tune_prompt_parameters(self, parameters: dict, kind: str):
"""
Talemate adds a bunch of parameters to the prompt, but not all of them are valid for all clients.
This method is called before the prompt is sent to the client, and it allows the client to remove
any parameters that it doesn't support.
"""
super().tune_prompt_parameters(parameters, kind)
keys = list(parameters.keys())
valid_keys = ["temperature", "top_p"]
for key in keys:
if key not in valid_keys:
del parameters[key]
async def get_model_name(self):
"""
This should return the name of the model that is being used.
"""
return "Mock test model"
async def generate(self, prompt: str, parameters: dict, kind: str):
"""
Generates text from the given prompt and parameters.
"""
human_message = {"role": "user", "content": prompt.strip()}
self.log.debug("generate", prompt=prompt[:128] + " ...", parameters=parameters)
try:
response = await self.client.chat.completions.create(
model=self.model_name, messages=[human_message], **parameters
)
return response.choices[0].message.content
except Exception as e:
self.log.error("generate error", e=e)
return ""

Binary file not shown.

After

Width:  |  Height:  |  Size: 418 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 413 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 364 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 128 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 933 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

View File

@@ -17,21 +17,6 @@ elevenlabs:
api_key: <YOUR_ELEVENLABS_API_KEY>
```
## Configuring Coqui TTS
To use Coqui TTS with Talemate, follow these steps:
1. Visit [Coqui](https://app.coqui.ai) and sign up for an account.
2. Go to the [account page](https://app.coqui.ai/account) and scroll to the bottom to find your API key.
3. In the `config.yaml` file, under the `coqui` section, set the `api_key` field with your Coqui API key.
Example configuration snippet:
```yaml
coqui:
api_key: <YOUR_COQUI_API_KEY>
```
## Configuring Local TTS API
For running a local TTS API, Talemate requires specific dependencies to be installed.

117
docs/visual.md Normal file
View File

@@ -0,0 +1,117 @@
# Visual Agent
The visual agent currently allows for some bare bones visual generation using various stable-diffusion APIs. This is early development and experimental.
Its important to note that the visualization agent actually specifies two clients. One is the backend for the visual generation, and the other is the text generation client to use for prompt generation.
The client for prompt generation can be assigned to the agent as you would for any other agent. The client for visual generation is assigned in the Visualizer config.
## Index
- [OpenAI](#openai)
- [AUTOMATIC1111](#automatic1111)
- [ComfyUI](#comfyui)
- [How to use](#how-to-use)
## OpenAI
Most straightforward to use, as it runs on the OpenAI API. You will need to have an API key and set it in the application config.
![Set OpenAI Api Key](img/0.18.0/openai-api-key-2.png)
Then open the Visualizer config by clicking the agent's name in the agent list and choose `OpenAI` as the backend.
![OpenAI Visualizer Config](img/0.20.0/visual-config-openai.png)
Note: `Client` here refers to the text-generation client to use for prompt generation. While `Backend` refers to the visual generation backend. You are **NOT** required to use the OpenAI client for prompt generation even if you are using the OpenAI backend for image generation.
## AUTOMATIC1111
This requires you to setup a local instance of the AUTOMATIC1111 API. Follow the instructions from their [GitHub](https://github.com/AUTOMATIC1111/stable-diffusion-webui) to get it running.
Once you have it running, you will want to adjust the `webui-user.bat` in the AUTOMATIC1111 directory to include the following command arguments:
```bat
set COMMANDLINE_ARGS=--api --listen --port 7861
```
Then run the `webui-user.bat` to start the API.
Once your AUTOAMTIC1111 API is running (check with your browser) you can set the Visualizer config to use the `AUTOMATIC1111` backend
![AUTOMATIC1111 Visualizer Config](img/0.20.0/visual-config-a1111.png)
#### Extra Configuration
- `api url`: the url of the API, usually `http://localhost:7861`
- `steps`: render steps
- `model type`: sdxl or sd1.5 - this will dictate the resolution of the image generation and actually matters for the quality so make sure this is set to the correct model type for the model you are using.
## ComfyUI
This requires you to setup a local instance of the ComfyUI API. Follow the instructions from their [GitHub](https://github.com/comfyanonymous/ComfyUI) to get it running.
Once you're setup, copy their `start.bat` file to a new `start-listen.bat` file and change the contents to.
```bat
call venv\Scripts\activate
call python main.py --port 8188 --listen 0.0.0.0
```
Then run the `start-listen.bat` to start the API.
Once your ComfyUI API is running (check with your browser) you can set the Visualizer config to use the `ComfyUI` backend.
![ComfyUI Visualizer Config](img/0.20.0/visual-config-comfyui.png)
### Extra Configuration
- `api url`: the url of the API, usually `http://localhost:8188`
- `workflow`: the workflow file to use. This is a comfyui api workflow file that needs to exist in `./templates/comfyui-workflows` inside the talemate directory. Talemate provides two very barebones workflows with `default-sdxl.json` and `default-sd15.json`. You can create your own workflows and place them in this directory to use them. :warning: The workflow file must be generated using the API Workflow export not the UI export. Please refer to their documentation for more information.
- `checkpoint`: the model to use - this will load a list of all available models in your comfyui instance. Select which one you want to use for the image generation.
### Custom Workflows
When creating custom workflows for ideal compatibility with Talemate, ensure the following.
- A `CheckpointLoaderSimple` node named `Talemate Load Checkpoint`
- A `EmptyLatentImage` node name `Talemate Resolution`
- A `ClipTextEncode` node named `Talemate Positive Prompt`
- A `ClipTextEncode` node named `Talemate Negative Prompt`
- A `SaveImage` node at the end of the workflow.
![ComfyUI Base workflow example](img/0.20.0/comfyui-base-workflow.png)
## How to use
Once you're done setting up the visualizer agent should have a green dot next to it and display both the selected image generation backend and the selected prompt generation client.
![Visualizer ready](img/0.20.0/visualizer-ready.png)
Your hotbar should then also enable the visualization menu for you to use (once you have a scene loaded).
![Visualization actions](img/0.20.0/visualize-scene-tools.png)
Right now you can generate a portrait for any NPC in the scene or a background image for the scene itself.
Image generation by default will actually happen in the background, allowing you to continue using Talemate while the image is being generated.
You can tell if an image is being generated by the blueish spinner next to the visualization agent.
![Visualizer busy](img/0.20.0/visualizer-busy.png)
Once the image is generated, it will be avaible for you to view via the visual queue button on top of the screen.
![Images ready](img/0.20.0/visualze-new-images.png)
Click it to open the visual queue and view the generated images.
![alt text](img/0.20.0/visual-queue.png)
### Character Portrait
For character potraits you can chose whether or not to replace the main portrait for the character (the one being displated in the left sidebar when a talemate scene is active).
### Background Image
Right now there is nothing to do with the background image, other than to view it in the visual queue. More functionality will be added in the future.

2482
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -4,7 +4,7 @@ build-backend = "poetry.masonry.api"
[tool.poetry]
name = "talemate"
version = "0.18.2"
version = "0.21.0"
description = "AI-backed roleplay and narrative tools"
authors = ["FinalWombat"]
license = "GNU Affero General Public License v3.0"
@@ -20,7 +20,7 @@ jinja2 = "^3.0"
openai = ">=1"
requests = "^2.26"
colorama = ">=0.4.6"
Pillow = "^9.5"
Pillow = ">=9.5"
httpx = "<1"
piexif = "^1.1"
typing-inspect = "0.8.0"
@@ -39,6 +39,7 @@ thefuzz = ">=0.20.0"
tiktoken = ">=0.5.1"
nltk = ">=3.8.1"
huggingface-hub = ">=0.20.2"
anthropic = ">=0.19.1"
# ChromaDB
chromadb = ">=0.4.17,<1"

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 MiB

View File

@@ -98,6 +98,7 @@
}
],
"immutable_save": true,
"experimental": true,
"goal": null,
"goals": [],
"context": "an epic sci-fi adventure aimed at an adult audience.",
@@ -109,10 +110,10 @@
"variables": {}
},
"assets": {
"cover_image": "52b1388ed6f77a43981bd27e05df54f16e12ba8de1c48f4b9bbcb138fa7367df",
"cover_image": "e7c712a0b276342d5767ba23806b03912d10c7c4b82dd1eec0056611e2cd5404",
"assets": {
"52b1388ed6f77a43981bd27e05df54f16e12ba8de1c48f4b9bbcb138fa7367df": {
"id": "52b1388ed6f77a43981bd27e05df54f16e12ba8de1c48f4b9bbcb138fa7367df",
"e7c712a0b276342d5767ba23806b03912d10c7c4b82dd1eec0056611e2cd5404": {
"id": "e7c712a0b276342d5767ba23806b03912d10c7c4b82dd1eec0056611e2cd5404",
"file_type": "png",
"media_type": "image/png"
}

View File

@@ -5,7 +5,7 @@
{%- set _ = emit_system("warning", "This is a dynamic scenario generation experiment for Infinity Quest. It will likely require a strong LLM to generate something coherent. GPT-4 or 34B+ if local. Temper your expectations.") -%}
{#- emit status update to the UX -#}
{%- set _ = emit_status("busy", "Generating scenario ... [1/3]") -%}
{%- set _ = emit_status("busy", "Generating scenario ... [1/3]", as_scene_message=True) -%}
{#- thematic tags will be used to randomize generation -#}
{%- set tags = thematic_generator.generate("color", "state_of_matter", "scifi_trope") -%}
@@ -17,17 +17,17 @@
{#- generate introductory text -#}
{%- set _ = emit_status("busy", "Generating scenario ... [2/3]") -%}
{%- set _ = emit_status("busy", "Generating scenario ... [2/3]", as_scene_message=True) -%}
{%- set tmpl__scenario_intro = render_template('generate-scenario-intro', premise=instr__premise) %}
{%- set instr__intro = "*"+render_and_request(tmpl__scenario_intro)+"*" -%}
{#- generate win conditions -#}
{%- set _ = emit_status("busy", "Generating scenario ... [3/3]") -%}
{%- set _ = emit_status("busy", "Generating scenario ... [3/3]", as_scene_message=True) -%}
{%- set tmpl__win_conditions = render_template('generate-win-conditions', premise=instr__premise) %}
{%- set instr__win_conditions = render_and_request(tmpl__win_conditions) -%}
{#- emit status update to the UX -#}
{%- set status = emit_status("info", "Scenario ready.") -%}
{%- set status = emit_status("success", "Scenario ready.", as_scene_message=True) -%}
{# set gamestate variables #}
{%- set _ = game_state.set_var("instr.premise", instr__premise, commit=True) -%}

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 MiB

View File

@@ -0,0 +1,52 @@
{
"name": "Simulation Suite",
"environment": "scene",
"immutable_save": true,
"restore_from": "simulation-suite.json",
"experimental": true,
"help": "Address the computer by starting your statements with 'Computer, ' followed by an instruction.\n\nExamples:\n'Computer, i would like to experience an adventure on a derelict space station'\n'Computer, add a horrific alien creature that is chasing me.'",
"description": "",
"intro": "*You have entered the simulation suite. No simulation is currently active and you are in a non-descript space with paneled walls surrounding you. The control panel next to you is pulsating with a green light, indicating readiness to receive a prompt to start the simulation.*",
"archived_history": [],
"history": [],
"ts": "PT1S",
"characters": [
{
"name": "You",
"gender": "unknown",
"color": "cornflowerblue",
"base_attributes": {},
"is_player": true
}
],
"context": "a simulated experience",
"game_state": {
"ops":{
"run_on_start": true,
"always_direct": true
},
"variables": {}
},
"world_state": {
"character_name_mappings": {
"You": [
"user",
"player",
"player character",
"user character",
"the user",
"the player"
]
}
},
"assets": {
"cover_image": "4b157dccac2ba71adb078a9d591f9900d6d62f3e86168a5e0e5e1e9faf6dc103",
"assets": {
"4b157dccac2ba71adb078a9d591f9900d6d62f3e86168a5e0e5e1e9faf6dc103": {
"id": "4b157dccac2ba71adb078a9d591f9900d6d62f3e86168a5e0e5e1e9faf6dc103",
"file_type": "png",
"media_type": "image/png"
}
}
}
}

View File

@@ -0,0 +1,118 @@
<|SECTION:CONTEXT|>
{% set scene_history=scene.context_history(budget=1024) %}
{% for scene_context in scene_history -%}
{{ loop.index }}. {{ scene_context }}
{% endfor %}
<|CLOSE_SECTION|>
<|SECTION:FUNCTIONS|>
The player has instructed the computer to alter the current simulation.
You have access to the following functions, you can call as many as you want to fulfill the player's requests.
You must at least call one of the following functions:
- change_environment
- add_ai_character
- change_ai_character
- remove_ai_character
- set_player_persona
- set_player_name
- end_simulation
- answer_question
`add_ai_character` and `change_ai_character` are exclusive if they are targeting the same character.
Set the player persona at the beginning of a new simulation or if the player requests a change.
Only end the simulation if the player requests it explicitly.
<|CLOSE_SECTION|>
<|SECTION:EXAMPLES|>
Request: Computer, I want to be on a mountain top
```simulation-stack
change_environment("mountain top")
set_player_persona("mountain climber")
set_player_name("Hank")
```
Request: Computer, I want to be more muscular and taller
```simulation-stack
set_player_persona("make player more muscular and taller")
```
Request: Computer, the building should be on fire
```simulation-stack
change_environment("building on fire")
```
Request: Computer, a rocket hits the building and George is now injured
```simulation-stack
change_environment("building on fire")
change_ai_character("George is injured")
```
Request: Computer, I want to experience a rollercoaster ride with a friend
```simulation-stack
change_environment("theme park, riding a rollercoaster")
set_player_persona("young female experiencing rollercoaster ride")
set_player_name("Susanne")
add_ai_character("a female friend of player named Sarah")
```
Request: Computer, I want to experience the international space station
```simulation-stack
change_environment("international space station")
set_player_persona("astronaut experiencing first trip to ISS")
set_player_name("George")
add_ai_character("astronaut named Henry")
```
Request: Computer, remove the goblin and add an elven woman instead
```simulation-stack
remove_ai_character("goblin")
add_ai_character("elven woman named Elune")
```
Request: Computer, change the skiing instructor to be older.
```simulation-stack
change_ai_character("make skiing instructor older")
```
Request: Computer, change my grandma to my grandpa
```simulation-stack
remove_ai_character("grandma")
add_ai_character("grandpa named Steven")
```
Request: Computer, remove the skiing instructor and add my friend instead.
```simulation-stack
remove_ai_character("skiing instructor")
add_ai_character("player's friend named Tara")
```
Request: Computer, replace the skiing instructor with my friend.
```simulation-stack
remove_ai_character("skiing instructor")
add_ai_character("player's friend named Lisa")
```
Request: Computer, I want to end the simulation
```simulation-stack
end_simulation("simulation ended")
```
Request: Computer, shut down the simulation
```simulation-stack
end_simulation("simulation ended")
```
Request: Computer, what do you know about the game of thrones?
```simulation-stack
answer_question("what do you know about the game of thrones?")
```
<|CLOSE_SECTION|>
<|SECTION:TASK|>
Respond with the simulation stack for the following request:
Request: {{ player_instruction }}
{{ bot_token }}```simulation-stack

View File

@@ -0,0 +1,177 @@
{% set update_world_state = False %}
{% set _ = debug("HOLODECK SIMULATION") -%}
{% set player_character = scene.get_player_character() %}
{% set player_message = scene.last_player_message() %}
{% set last_processed = game_state.get_var('instr.last_processed', -1) %}
{% set player_message_is_instruction = (player_message and player_message.raw.lower().startswith("computer") and not player_message.hidden) and not player_message.raw.lower().strip() == "computer" and not last_processed >= player_message.id %}
{% set simulation_reset = False %}
{% if not game_state.has_var('instr.simulation_stopped') %}
{# simulation NOT started #}
{# get last player instruction #}
{% if player_message_is_instruction %}
{# player message exists #}
{#% set _ = agent_action("narrator", "action_to_narration", action_name="paraphrase", narration="The computer is processing the request, please wait a moment.", emit_message=True) %#}
{% set calls = render_and_request(render_template("computer", player_instruction=player_message.raw), dedupe_enabled=False) %}
{% set _ = debug("HOLODECK simulation calls", calls=calls ) %}
{% set processed = make_list() %}
{% for call in calls.split("\n") %}
{% set _ = debug("CALL", call=call, processed=processed) %}
{% set inject = "The computer executes the function `"+call+"`" %}
{% if call.strip().startswith('change_environment') %}
{# change environment #}
{% set _ = processed.append(call) %}
{% elif call.strip().startswith("answer_question") %}
{# answert a query #}
{% set _ = agent_action("narrator", "action_to_narration", action_name="progress_story", narrative_direction="The computer calls the following function:\n"+call+"\nand answers the player's question.", emit_message=True) %}
{% elif call.strip().startswith("set_player_persona") %}
{# treansform player #}
{% set _ = emit_status("busy", "Simulation suite altering user persona.", as_scene_message=True) %}
{% set character_attributes = agent_action("world_state", "extract_character_sheet", name=player_character.name, text=player_message.raw)%}
{% set _ = player_character.update(base_attributes=character_attributes) %}
{% set character_description = agent_action("creator", "determine_character_description", character=player_character) %}
{% set _ = player_character.update(description=character_description) %}
{% set _ = debug("HOLODECK transform player", attributes=character_attributes, description=character_description) %}
{% set _ = processed.append(call) %}
{% elif call.strip().startswith("set_player_name") %}
{# change player name #}
{% set _ = emit_status("busy", "Simulation suite adjusting user idenity.", as_scene_message=True) %}
{% set character_name = agent_action("creator", "determine_character_name", character_name=inject+" - What is a fitting name for the player persona? Respond with the current name if it still fits.") %}
{% set _ = debug("HOLODECK player name", character_name=character_name) %}
{% if character_name != player_character.name %}
{% set _ = processed.append(call) %}
{% set _ = player_character.rename(character_name) %}
{% endif %}
{% elif call.strip().startswith("add_ai_character") %}
{# add new npc #}
{% set _ = emit_status("busy", "Simulation suite adding character.", as_scene_message=True) %}
{% set character_name = agent_action("creator", "determine_character_name", character_name=inject+" - what is the name of the character to be added to the scene? If no name can extracted from the text, extract a short descriptive name instead. Respond only with the name.") %}
{% set _ = emit_status("busy", "Simulation suite adding character: "+character_name, as_scene_message=True) %}
{% set _ = debug("HOLODECK add npc", name=character_name)%}
{% set npc = agent_action("director", "persist_character", name=character_name, content=player_message.raw )%}
{% set _ = agent_action("world_state", "manager", action_name="add_detail_reinforcement", character_name=npc.name, question="Goal", instructions="Generate a goal for "+npc.name+", based on the user's chosen simulation", interval=25, run_immediately=True) %}
{% set _ = debug("HOLODECK added npc", npc=npc) %}
{% set _ = processed.append(call) %}
{% set _ = agent_action("visual", "generate_character_portrait", character_name=npc.name) %}
{% elif call.strip().startswith("remove_ai_character") %}
{# remove npc #}
{% set _ = emit_status("busy", "Simulation suite removing character.", as_scene_message=True) %}
{% set character_name = agent_action("creator", "determine_character_name", character_name=inject+" - what is the name of the character being removed?", allowed_names=scene.npc_character_names) %}
{% set npc = scene.get_character(character_name) %}
{% if npc %}
{% set _ = debug("HOLODECK remove npc", npc=npc.name) %}
{% set _ = agent_action("world_state", "manager", action_name="deactivate_character", character_name=npc.name) %}
{% set _ = processed.append(call) %}
{% endif %}
{% elif call.strip().startswith("change_ai_character") %}
{# change existing npc #}
{% set _ = emit_status("busy", "Simulation suite altering character.", as_scene_message=True) %}
{% set character_name = agent_action("creator", "determine_character_name", character_name=inject+" - what is the name of the character receiving the changes (before the change)?", allowed_names=scene.npc_character_names) %}
{% set character_name_after = agent_action("creator", "determine_character_name", character_name=inject+" - what is the name of the character receiving the changes (after the changes)?") %}
{% set npc = scene.get_character(character_name) %}
{% if npc %}
{% set _ = emit_status("busy", "Changing "+character_name+" -> "+character_name_after, as_scene_message=True) %}
{% set _ = debug("HOLODECK transform npc", npc=npc) %}
{% set character_attributes = agent_action("world_state", "extract_character_sheet", name=npc.name, alteration_instructions=player_message.raw)%}
{% set _ = npc.update(base_attributes=character_attributes) %}
{% set character_description = agent_action("creator", "determine_character_description", character=npc) %}
{% set _ = npc.update(description=character_description) %}
{% set _ = debug("HOLODECK transform npc", attributes=character_attributes, description=character_description) %}
{% set _ = processed.append(call) %}
{% if character_name_after != character_name %}
{% set _ = npc.rename(character_name_after) %}
{% endif %}
{% endif %}
{% elif call.strip().startswith("end_simulation") %}
{# end simulation #}
{% set explicit_command = query_text_eval("has the player explicitly asked to end the simulation?", player_message.raw) %}
{% if explicit_command %}
{% set _ = emit_status("busy", "Simulation suite ending current simulation.", as_scene_message=True) %}
{% set _ = agent_action("narrator", "action_to_narration", action_name="progress_story", narrative_direction="The computer ends the simulation, disolving the environment and all artifical characters, erasing all memory of it and finally returning the player to the inactive simulation suite.List of artificial characters: "+(",".join(scene.npc_character_names))+". The player is also transformed back to their normal persona.", emit_message=True) %}
{% set _ = scene.sync_restore() %}
{% set _ = agent_action("world_state", "update_world_state", force=True) %}
{% set simulation_reset = True %}
{% endif %}
{% elif "(" in call.strip() %}
{# unknown function call, still add it to processed stack so it can be incoorporated in the narration #}
{% set _ = processed.append(call) %}
{% endif %}
{% endfor %}
{% if processed and not simulation_reset %}
{% set _ = game_state.set_var("instr.has_issued_instructions", "yes", commit=False) %}
{% set _ = emit_status("busy", "Simulation suite altering environment.", as_scene_message=True) %}
{% set update_world_state = True %}
{% set _ = agent_action("narrator", "action_to_narration", action_name="progress_story", narrative_direction="The computer calls the following functions:\n"+processed.join("\n")+"\nand the simulation adjusts the environment according to the user's wishes.\n\nWrite the narrative that describes the changes to the player in the context of the simulation starting up.", emit_message=True) %}
{% endif %}
{% elif not game_state.has_var("instr.simulation_started") %}
{# no player message yet, start of scenario #}
{% set _ = emit_status("busy", "Simulation suite powering up.", as_scene_message=True) %}
{% set _ = game_state.set_var("instr.simulation_started", "yes", commit=False) %}
{% set _ = agent_action("narrator", "action_to_narration", action_name="progress_story", narrative_direction="Narrate the computer asking the user to state the nature of their desired simulation.", emit_message=False) %}
{% set _ = agent_action("narrator", "action_to_narration", action_name="passthrough", narration="Please state your commands by addressing the computer by stating \"Computer,\" followed by an instruction.") %}
{# pin to make sure characters don't try to interact with the simulation #}
{% set _ = agent_action("world_state", "manager", action_name="save_world_entry", entry_id="sim.quarantined", text="Characters in the simulation ARE NOT AWARE OF THE COMPUTER.", meta=make_dict(), pin=True) %}
{% set _ = emit_status("success", "Simulation suite ready", as_scene_message=True) %}
{% endif %}
{% else %}
{# simulation ongoing #}
{% endif %}
{% if update_world_state %}
{% set _ = emit_status("busy", "Simulation suite updating world state.", as_scene_message=True) %}
{% set _ = agent_action("world_state", "update_world_state", force=True) %}
{% endif %}
{% if not scene.npc_character_names and not simulation_reset %}
{# no characters in the scene, see if there are any to add #}
{% set npcs = agent_action("director", "persist_characters_from_worldstate", exclude=["computer", "user", "player", "you"]) %}
{% for npc in npcs %}
{% set _ = agent_action("world_state", "manager", action_name="add_detail_reinforcement", character_name=npc.name, question="Goal", instructions="Generate a goal for the character, based on the user's chosen simulation", interval=25, run_immediately=True) %}
{% endfor %}
{% if npcs %}
{% set _ = agent_action("world_state", "update_world_state", force=True) %}
{% endif %}
{% endif %}
{% if player_message_is_instruction %}
{# hide player message to the computer, so its not included in the scene context #}
{% set _ = player_message.hide() %}
{% set _ = game_state.set_var("instr.last_processed", player_message.id, commit=False) %}
{% set _ = emit_status("success", "Simulation suite processed instructions", as_scene_message=True) %}
{% elif player_message and not game_state.has_var("instr.has_issued_instructions") %}
{# simulation not started, but player message is not an instruction #}
{% set _ = agent_action("narrator", "action_to_narration", action_name="paraphrase", narration="Instructions to the simulation computer are only process if the computer is addressed at the beginning of the instruction. Please state your commands by addressing the computer by stating \"Computer,\" followed by an instruction. For example ... \"Computer, i want to experience being on a derelict spaceship.\"", emit_message=True) %}
{% elif player_message and not scene.npc_character_names %}
{# simulation started, player message is NOT an instruction, but there are no npcs to interact with #}
{% set _ = agent_action("narrator", "action_to_narration", action_name="progress_story", narrative_direction="The environment reacts to the player's actions. YOU MUST NOT ACT ON BEHALF OF THE PLAYER. YOU MUST NOT INTERACT WITH THE COMPUTER.", emit_message=True) %}
{% endif %}

View File

@@ -2,4 +2,4 @@ from .agents import Agent
from .client import TextGeneratorWebuiClient
from .tale_mate import *
VERSION = "0.18.2"
VERSION = "0.21.0"

View File

@@ -8,4 +8,5 @@ from .narrator import NarratorAgent
from .registry import AGENT_CLASSES, get_agent_class, register
from .summarize import SummarizeAgent
from .tts import TTSAgent
from .visual import VisualAgent
from .world_state import WorldStateAgent

View File

@@ -4,6 +4,7 @@ import asyncio
import dataclasses
import re
from abc import ABC
from functools import wraps
from typing import TYPE_CHECKING, Callable, List, Optional, Union
import pydantic
@@ -19,6 +20,11 @@ from talemate.events import GameLoopStartEvent
__all__ = [
"Agent",
"AgentAction",
"AgentActionConditional",
"AgentActionConfig",
"AgentDetail",
"AgentEmission",
"set_processing",
]
@@ -42,11 +48,24 @@ class AgentActionConfig(pydantic.BaseModel):
arbitrary_types_allowed = True
class AgentActionConditional(pydantic.BaseModel):
attribute: str
value: Union[int, float, str, bool, None] = None
class AgentAction(pydantic.BaseModel):
enabled: bool = True
label: str
description: str = ""
config: Union[dict[str, AgentActionConfig], None] = None
condition: Union[AgentActionConditional, None] = None
class AgentDetail(pydantic.BaseModel):
value: Union[str, None] = None
description: Union[str, None] = None
icon: Union[str, None] = None
color: str = "grey"
def set_processing(fn):
@@ -58,6 +77,7 @@ def set_processing(fn):
the function fails.
"""
@wraps(fn)
async def wrapper(self, *args, **kwargs):
with ActiveAgent(self, fn):
try:
@@ -71,8 +91,6 @@ def set_processing(fn):
# some concurrency error?
log.error("error emitting agent status", exc=exc)
wrapper.__name__ = fn.__name__
return wrapper
@@ -86,6 +104,9 @@ class Agent(ABC):
set_processing = set_processing
requires_llm_client = True
auto_break_repetition = False
websocket_handler = None
essential = True
ready_check_error = None
@property
def agent_details(self):
@@ -110,13 +131,20 @@ class Agent(ABC):
@property
def status(self):
if self.ready:
if not self.enabled:
return "disabled"
return "idle" if getattr(self, "processing", 0) == 0 else "busy"
else:
if not self.enabled:
return "disabled"
if not self.ready:
return "uninitialized"
if getattr(self, "processing", 0) > 0:
return "busy"
if getattr(self, "processing_bg", 0) > 0:
return "busy_bg"
return "idle"
@property
def enabled(self):
# by default, agents are enabled, an agent class that
@@ -160,7 +188,41 @@ class Agent(ABC):
return config_options
def apply_config(self, *args, **kwargs):
@property
def meta(self):
return {
"essential": self.essential,
}
async def _handle_ready_check(self, fut: asyncio.Future):
callback_failure = getattr(self, "on_ready_check_failure", None)
if fut.cancelled():
if callback_failure:
await callback_failure()
return
if fut.exception():
exc = fut.exception()
self.ready_check_error = exc
log.error("agent ready check error", agent=self.agent_type, exc=exc)
if callback_failure:
await callback_failure(exc)
return
callback = getattr(self, "on_ready_check_success", None)
if callback:
await callback()
async def ready_check(self, task: asyncio.Task = None):
self.ready_check_error = None
if task:
task.add_done_callback(
lambda fut: asyncio.create_task(self._handle_ready_check(fut))
)
return
return True
async def apply_config(self, *args, **kwargs):
if self.has_toggle and "enabled" in kwargs:
self.is_enabled = kwargs.get("enabled", False)
@@ -228,27 +290,55 @@ class Agent(ABC):
if getattr(self, "processing", None) is None:
self.processing = 0
if not processing:
if processing is False:
self.processing -= 1
self.processing = max(0, self.processing)
else:
elif processing is True:
self.processing += 1
status = "busy" if self.processing > 0 else "idle"
if not self.enabled:
status = "disabled"
emit(
"agent_status",
message=self.verbose_name or "",
id=self.agent_type,
status=status,
status=self.status,
details=self.agent_details,
meta=self.meta,
data=self.config_options(agent=self),
)
await asyncio.sleep(0.01)
async def _handle_background_processing(self, fut: asyncio.Future):
try:
if fut.cancelled():
return
if fut.exception():
log.error(
"background processing error",
agent=self.agent_type,
exc=fut.exception(),
)
await self.emit_status()
return
log.info("background processing done", agent=self.agent_type)
finally:
self.processing_bg -= 1
await self.emit_status()
async def set_background_processing(self, task: asyncio.Task):
log.info("set_background_processing", agent=self.agent_type)
if not hasattr(self, "processing_bg"):
self.processing_bg = 0
self.processing_bg += 1
await self.emit_status()
task.add_done_callback(
lambda fut: asyncio.create_task(self._handle_background_processing(fut))
)
def connect(self, scene):
self.scene = scene
talemate.emit.async_signals.get("game_loop_start").connect(

View File

@@ -13,6 +13,7 @@ active_agent = contextvars.ContextVar("active_agent", default=None)
class ActiveAgentContext(pydantic.BaseModel):
agent: object
fn: Callable
agent_stack: list = pydantic.Field(default_factory=list)
class Config:
arbitrary_types_allowed = True
@@ -21,12 +22,23 @@ class ActiveAgentContext(pydantic.BaseModel):
def action(self):
return self.fn.__name__
def __str__(self):
return f"{self.agent.verbose_name}.{self.action}"
class ActiveAgent:
def __init__(self, agent, fn):
self.agent = ActiveAgentContext(agent=agent, fn=fn)
def __enter__(self):
previous_agent = active_agent.get()
if previous_agent:
self.agent.agent_stack = previous_agent.agent_stack + [str(self.agent)]
else:
self.agent.agent_stack = [str(self.agent)]
self.token = active_agent.set(self.agent)
def __exit__(self, *args, **kwargs):

View File

@@ -78,14 +78,23 @@ class ConversationAgent(Agent):
self.actions = {
"generation_override": AgentAction(
enabled=True,
label="Generation Override",
description="Override generation parameters",
label="Generation Settings",
config={
"format": AgentActionConfig(
type="text",
label="Format",
description="The format of the dialogue, as seen by the AI.",
choices=[
{"label": "Movie Script", "value": "movie_script"},
{"label": "Chat (legacy)", "value": "chat"},
],
value="chat",
),
"length": AgentActionConfig(
type="number",
label="Generation Length (tokens)",
description="Maximum number of tokens to generate for a conversation response.",
value=96,
value=128,
min=32,
max=512,
step=32,
@@ -166,6 +175,12 @@ class ConversationAgent(Agent):
),
}
@property
def conversation_format(self):
if self.actions["generation_override"].enabled:
return self.actions["generation_override"].config["format"].value
return "movie_script"
def connect(self, scene):
super().connect(scene)
talemate.emit.async_signals.get("game_loop").connect(self.on_game_loop)
@@ -605,14 +620,20 @@ class ConversationAgent(Agent):
result = result.replace(" :", ":")
total_result = total_result.split("#")[0]
total_result = total_result.split("#")[0].strip()
# movie script format
# {uppercase character name}
# {dialogue}
total_result = total_result.replace(f"{character.name.upper()}\n", f"")
# chat format
# {character name}: {dialogue}
total_result = total_result.replace(f"{character.name}:", "")
# Removes partial sentence at the end
total_result = util.clean_dialogue(total_result, main_name=character.name)
# Remove "{character.name}:" - all occurences
total_result = total_result.replace(f"{character.name}:", "")
# Check if total_result starts with character name, if not, prepend it
if not total_result.startswith(character.name):
total_result = f"{character.name}: {total_result}"
@@ -660,4 +681,4 @@ class ConversationAgent(Agent):
):
if prompt_param.get("extra_stopping_strings") is None:
prompt_param["extra_stopping_strings"] = []
prompt_param["extra_stopping_strings"] += ["["]
prompt_param["extra_stopping_strings"] += ["#"]

View File

@@ -9,13 +9,13 @@ from talemate.agents.registry import register
from talemate.emit import emit
from talemate.prompts import Prompt
from .assistant import AssistantMixin
from .character import CharacterCreatorMixin
from .scenario import ScenarioCreatorMixin
@register()
class CreatorAgent(CharacterCreatorMixin, ScenarioCreatorMixin, Agent):
class CreatorAgent(CharacterCreatorMixin, ScenarioCreatorMixin, AssistantMixin, Agent):
"""
Creates characters and scenarios and other fun stuff!
"""

View File

@@ -0,0 +1,95 @@
from typing import TYPE_CHECKING, Union
import pydantic
import talemate.util as util
from talemate.agents.base import set_processing
from talemate.prompts import Prompt
if TYPE_CHECKING:
from talemate.tale_mate import Character, Scene
class ContentGenerationContext(pydantic.BaseModel):
"""
A context for generating content.
"""
context: str
instructions: str
length: int
character: Union[str, None] = None
original: Union[str, None] = None
@property
def computed_context(self) -> (str, str):
typ, context = self.context.split(":", 1)
return typ, context
class AssistantMixin:
"""
Creator mixin that allows quick contextual generation of content.
"""
async def contextual_generate_from_args(
self,
context: str,
instructions: str,
length: int = 100,
character: Union[str, None] = None,
original: Union[str, None] = None,
):
"""
Request content from the assistant.
"""
generation_context = ContentGenerationContext(
context=context,
instructions=instructions,
length=length,
character=character,
original=original,
)
return await self.contextual_generate(generation_context)
@set_processing
async def contextual_generate(
self,
generation_context: ContentGenerationContext,
):
"""
Request content from the assistant.
"""
context_typ, context_name = generation_context.computed_context
if generation_context.length < 100:
kind = "create_short"
elif generation_context.length < 500:
kind = "create_concise"
else:
kind = "create"
content = await Prompt.request(
f"creator.contextual-generate",
self.client,
kind,
vars={
"scene": self.scene,
"max_tokens": self.client.max_token_length,
"generation_context": generation_context,
"context_typ": context_typ,
"context_name": context_name,
"character": (
self.scene.get_character(generation_context.character)
if generation_context.character
else None
),
},
)
content = util.strip_partial_sentences(content)
return content.strip()

View File

@@ -208,6 +208,25 @@ class CharacterCreatorMixin:
)
return attributes
@set_processing
async def determine_character_name(
self,
character_name: str,
allowed_names: list[str] = None,
) -> str:
name = await Prompt.request(
f"creator.determine-character-name",
self.client,
"analyze_freeform_short",
vars={
"scene": self.scene,
"max_tokens": self.client.max_token_length,
"character_name": character_name,
"allowed_names": allowed_names or [],
},
)
return name.split('"', 1)[0].strip().strip(".").strip()
@set_processing
async def determine_character_description(
self, character: Character, text: str = ""

View File

@@ -7,7 +7,6 @@ from talemate.prompts import Prompt
class ScenarioCreatorMixin:
"""
Adds scenario creation functionality to the creator agent
"""

View File

@@ -0,0 +1,34 @@
import importlib
import os
import structlog
log = structlog.get_logger("talemate.agents.custom")
# import every submodule in this directory
#
# each directory in this directory is a submodule
# get the current directory
current_directory = os.path.dirname(__file__)
# get all subdirectories
subdirectories = [
os.path.join(current_directory, name)
for name in os.listdir(current_directory)
if os.path.isdir(os.path.join(current_directory, name))
]
# import every submodule
for subdirectory in subdirectories:
# get the name of the submodule
submodule_name = os.path.basename(subdirectory)
if submodule_name.startswith("__"):
continue
log.info("activating custom agent", module=submodule_name)
# import the submodule
importlib.import_module(f".{submodule_name}", __package__)

View File

@@ -0,0 +1,5 @@
Each agent should be in its own subdirectory.
The subdirectory itself must be a valid python module.
Check out docs/dev/agents/example/test for a very simplistic custom agent example.

View File

@@ -182,7 +182,10 @@ class DirectorAgent(Agent):
# no character, see if there are NPC characters at all
# if not we always want to direct narration
always_direct = not self.scene.npc_character_names
always_direct = (
not self.scene.npc_character_names
or self.scene.game_state.ops.always_direct
)
next_direct = self.next_direct_scene
@@ -253,6 +256,34 @@ class DirectorAgent(Agent):
# run scene instructions
self.scene.game_state.scene_instructions
@set_processing
async def persist_characters_from_worldstate(
self, exclude: list[str] = None
) -> List[Character]:
log.warning(
"persist_characters_from_worldstate",
world_state_characters=self.scene.world_state.characters,
scene_characters=self.scene.character_names,
)
created_characters = []
for character_name in self.scene.world_state.characters.keys():
if exclude and character_name.lower() in exclude:
continue
if character_name in self.scene.character_names:
continue
character = await self.persist_character(name=character_name)
created_characters.append(character)
self.scene.emit_status()
return created_characters
@set_processing
async def persist_character(
self,
@@ -262,7 +293,10 @@ class DirectorAgent(Agent):
):
world_state = instance.get_agent("world_state")
creator = instance.get_agent("creator")
self.scene.log.debug("persist_character", name=name)
name = await creator.determine_character_name(name)
self.scene.log.debug("persist_character", adjusted_name=name)
character = self.scene.Character(name=name)
character.color = random.choice(

View File

@@ -40,11 +40,6 @@ class EditorAgent(Agent):
self.client = client
self.is_enabled = True
self.actions = {
"edit_dialogue": AgentAction(
enabled=False,
label="Edit dialogue",
description="Will attempt to improve the quality of dialogue based on the character and scene. Runs automatically after each AI dialogue.",
),
"fix_exposition": AgentAction(
enabled=True,
label="Fix exposition",
@@ -100,8 +95,6 @@ class EditorAgent(Agent):
for text in emission.generation:
edit = await self.add_detail(text, emission.character)
edit = await self.edit_conversation(edit, emission.character)
edit = await self.fix_exposition(edit, emission.character)
edited.append(edit)
@@ -126,35 +119,6 @@ class EditorAgent(Agent):
emission.generation = edited
@set_processing
async def edit_conversation(self, content: str, character: Character):
"""
Edits a conversation
"""
if not self.actions["edit_dialogue"].enabled:
return content
response = await Prompt.request(
"editor.edit-dialogue",
self.client,
"edit_dialogue",
vars={
"content": content,
"character": character,
"scene": self.scene,
"max_length": self.client.max_token_length,
},
)
response = response.split("[end]")[0]
response = util.replace_exposition_markers(response)
response = util.clean_dialogue(response, main_name=character.name)
response = util.strip_partial_sentences(response)
return response
@set_processing
async def fix_exposition(self, content: str, character: Character):
"""
@@ -169,7 +133,7 @@ class EditorAgent(Agent):
content = util.strip_partial_sentences(content)
character_prefix = f"{character.name}: "
message = content.split(character_prefix)[1]
content = f"{character_prefix}*{message.strip('*')}*"
content = f'{character_prefix}"{message.strip()}"'
return content
elif '"' in content:
# silly hack to clean up some LLMs that always start with a quote

View File

@@ -30,7 +30,7 @@ if not chromadb:
log.info("ChromaDB not found, disabling Chroma agent")
from .base import Agent
from .base import Agent, AgentDetail
class MemoryDocument(str):
@@ -368,8 +368,30 @@ class ChromaDBMemoryAgent(MemoryAgent):
@property
def agent_details(self):
details = {
"backend": AgentDetail(
icon="mdi-server-outline",
value="ChromaDB",
description="The backend to use for long-term memory",
).model_dump(),
"embeddings": AgentDetail(
icon="mdi-cube-unfolded",
value=self.embeddings,
description="The embeddings model.",
).model_dump(),
}
if self.embeddings == "openai" and not self.openai_api_key:
return "No OpenAI API key set"
# return "No OpenAI API key set"
details["error"] = {
"icon": "mdi-alert",
"value": "No OpenAI API key set",
"description": "You must provide an OpenAI API key to use OpenAI embeddings",
"color": "error",
}
return details
return f"ChromaDB: {self.embeddings}"
@@ -425,7 +447,13 @@ class ChromaDBMemoryAgent(MemoryAgent):
def make_collection_name(self, scene):
if self.USE_OPENAI:
suffix = "-openai"
model_name = self.config.get("chromadb").get(
"openai_model", "text-embedding-3-small"
)
if model_name == "text-embedding-ada-002":
suffix = "-openai"
else:
suffix = f"-openai-{model_name}"
elif self.USE_INSTRUCTOR:
suffix = "-instructor"
model = self.config.get("chromadb").get(
@@ -472,12 +500,19 @@ class ChromaDBMemoryAgent(MemoryAgent):
"You must provide an the openai ai key in the config if you want to use it for chromadb embeddings"
)
model_name = self.config.get("chromadb").get(
"openai_model", "text-embedding-3-small"
)
log.info(
"crhomadb", status="using openai", openai_key=openai_key[:5] + "..."
"crhomadb",
status="using openai",
openai_key=openai_key[:5] + "...",
model=model_name,
)
openai_ef = embedding_functions.OpenAIEmbeddingFunction(
api_key=openai_key,
model_name="text-embedding-ada-002",
model_name=model_name,
)
self.db = self.db_client.get_or_create_collection(
collection_name, embedding_function=openai_ef

View File

@@ -2,6 +2,7 @@ from __future__ import annotations
import dataclasses
import random
from functools import wraps
from typing import TYPE_CHECKING, Callable, List, Optional, Union
import structlog
@@ -40,7 +41,8 @@ def set_processing(fn):
"""
@_set_processing
async def wrapper(self, *args, **kwargs):
@wraps(fn)
async def narration_wrapper(self, *args, **kwargs):
response = await fn(self, *args, **kwargs)
emission = NarratorAgentEmission(
agent=self,
@@ -49,13 +51,11 @@ def set_processing(fn):
await talemate.emit.async_signals.get("agent.narrator.generated").send(emission)
return emission.generation[0]
wrapper.__name__ = fn.__name__
return wrapper
return narration_wrapper
@register()
class NarratorAgent(Agent):
"""
Handles narration of the story
"""
@@ -524,21 +524,98 @@ class NarratorAgent(Agent):
return response
@set_processing
async def paraphrase(self, narration: str):
"""
Paraphrase a narration
"""
response = await Prompt.request(
"narrator.paraphrase",
self.client,
"narrate",
vars={
"text": narration,
"scene": self.scene,
"max_tokens": self.client.max_token_length,
},
)
log.info("paraphrase", narration=narration, response=response)
response = self.clean_result(response.strip().strip("*"))
response = f"*{response}*"
return response
async def passthrough(self, narration: str) -> str:
"""
Pass through narration message as is
"""
narration = narration.replace("*", "")
narration = f"*{narration}*"
narration = util.ensure_dialog_format(narration)
return narration
def action_to_source(
self,
action_name: str,
parameters: dict,
) -> str:
"""
Generate a source string for a given action and parameters
The source string is used to identify the source of a NarratorMessage
and will also help regenerate the action and parameters from the source string
later on
"""
args = []
if action_name == "paraphrase":
args.append(parameters.get("narration"))
elif action_name == "narrate_character_entry":
args.append(parameters.get("character").name)
# args.append(parameters.get("direction"))
elif action_name == "narrate_character_exit":
args.append(parameters.get("character").name)
# args.append(parameters.get("direction"))
elif action_name == "narrate_character":
args.append(parameters.get("character").name)
elif action_name == "narrate_query":
args.append(parameters.get("query"))
elif action_name == "narrate_time_passage":
args.append(parameters.get("duration"))
args.append(parameters.get("time_passed"))
args.append(parameters.get("narrative"))
elif action_name == "progress_story":
args.append(parameters.get("narrative_direction"))
elif action_name == "narrate_after_dialogue":
args.append(parameters.get("character"))
arg_str = ";".join(args) if args else ""
return f"{action_name}:{arg_str}".rstrip(":")
async def action_to_narration(
self,
action_name: str,
*args,
emit_message: bool = False,
**kwargs,
):
# calls self[action_name] and returns the result as a NarratorMessage
# that is pushed to the history
fn = getattr(self, action_name)
narration = await fn(*args, **kwargs)
narrator_message = NarratorMessage(
narration, source=f"{action_name}:{args[0] if args else ''}".rstrip(":")
)
narration = await fn(**kwargs)
source = self.action_to_source(action_name, kwargs)
narrator_message = NarratorMessage(narration, source=source)
self.scene.push_history(narrator_message)
if emit_message:
emit("narrator", narrator_message)
return narrator_message
# LLM client related methods. These are called during or after the client

View File

@@ -262,9 +262,11 @@ class SummarizeAgent(Agent):
"dialogue": text,
"scene": self.scene,
"max_tokens": self.client.max_token_length,
"summarization_method": self.actions["archive"].config["method"].value
if method is None
else method,
"summarization_method": (
self.actions["archive"].config["method"].value
if method is None
else method
),
"extra_context": extra_context or "",
"extra_instructions": extra_instructions or "",
},

View File

@@ -15,6 +15,7 @@ import nltk
import pydantic
import structlog
from nltk.tokenize import sent_tokenize
from openai import AsyncOpenAI
import talemate.config as config
import talemate.emit.async_signals
@@ -24,7 +25,14 @@ from talemate.emit.signals import handlers
from talemate.events import GameLoopNewMessageEvent
from talemate.scene_message import CharacterMessage, NarratorMessage
from .base import Agent, AgentAction, AgentActionConfig, set_processing
from .base import (
Agent,
AgentAction,
AgentActionConditional,
AgentActionConfig,
AgentDetail,
set_processing,
)
from .registry import register
try:
@@ -109,7 +117,6 @@ class VoiceLibrary(pydantic.BaseModel):
@register()
class TTSAgent(Agent):
"""
Text to speech agent
"""
@@ -117,6 +124,7 @@ class TTSAgent(Agent):
agent_type = "tts"
verbose_name = "Voice"
requires_llm_client = False
essential = False
@classmethod
def config_options(cls, agent=None):
@@ -135,11 +143,12 @@ class TTSAgent(Agent):
self.voices = {
"elevenlabs": VoiceLibrary(api="elevenlabs"),
"coqui": VoiceLibrary(api="coqui"),
"tts": VoiceLibrary(api="tts"),
"openai": VoiceLibrary(api="openai"),
}
self.config = config.load_config()
self.playback_done_event = asyncio.Event()
self.preselect_voice = None
self.actions = {
"_config": AgentAction(
enabled=True,
@@ -149,10 +158,9 @@ class TTSAgent(Agent):
"api": AgentActionConfig(
type="text",
choices=[
# TODO at local TTS support
{"value": "tts", "label": "TTS (Local)"},
{"value": "elevenlabs", "label": "Eleven Labs"},
{"value": "coqui", "label": "Coqui Studio"},
{"value": "openai", "label": "OpenAI"},
],
value="tts",
label="API",
@@ -192,6 +200,25 @@ class TTSAgent(Agent):
),
},
),
"openai": AgentAction(
enabled=True,
condition=AgentActionConditional(
attribute="_config.config.api", value="openai"
),
label="OpenAI Settings",
config={
"model": AgentActionConfig(
type="text",
value="tts-1",
choices=[
{"value": "tts-1", "label": "TTS 1"},
{"value": "tts-1-hd", "label": "TTS 1 HD"},
],
label="Model",
description="TTS model to use",
),
},
),
}
self.actions["_config"].model_dump()
@@ -230,27 +257,45 @@ class TTSAgent(Agent):
@property
def agent_details(self):
suffix = ""
if not self.ready:
suffix = f" - {self.not_ready_reason}"
else:
suffix = f" - {self.voice_id_to_label(self.default_voice_id)}"
details = {
"api": AgentDetail(
icon="mdi-server-outline",
value=self.api_label,
description="The backend to use for TTS",
).model_dump(),
}
api = self.api
choices = self.actions["_config"].config["api"].choices
api_label = api
for choice in choices:
if choice["value"] == api:
api_label = choice["label"]
break
if self.ready and self.enabled:
details["voice"] = AgentDetail(
icon="mdi-account-voice",
value=self.voice_id_to_label(self.default_voice_id) or "",
description="The voice to use for TTS",
color="info",
).model_dump()
elif self.enabled:
details["error"] = AgentDetail(
icon="mdi-alert",
value=self.not_ready_reason,
description=self.not_ready_reason,
color="error",
).model_dump()
return f"{api_label}{suffix}"
return details
@property
def api(self):
return self.actions["_config"].config["api"].value
@property
def api_label(self):
choices = self.actions["_config"].config["api"].choices
api = self.api
for choice in choices:
if choice["value"] == api:
return choice["label"]
return api
@property
def token(self):
api = self.api
@@ -278,6 +323,8 @@ class TTSAgent(Agent):
if not self.enabled:
return "disabled"
if self.ready:
if getattr(self, "processing_bg", 0) > 0:
return "busy_bg" if not getattr(self, "processing", False) else "busy"
return "active" if not getattr(self, "processing", False) else "busy"
if self.requires_token and not self.token:
return "error"
@@ -295,7 +342,11 @@ class TTSAgent(Agent):
return 250
def apply_config(self, *args, **kwargs):
@property
def openai_api_key(self):
return self.config.get("openai", {}).get("api_key")
async def apply_config(self, *args, **kwargs):
try:
api = kwargs["actions"]["_config"]["config"]["api"]["value"]
except KeyError:
@@ -304,10 +355,22 @@ class TTSAgent(Agent):
api_changed = api != self.api
log.debug(
"apply_config", api=api, api_changed=api != self.api, current_api=self.api
"apply_config",
api=api,
api_changed=api != self.api,
current_api=self.api,
args=args,
kwargs=kwargs,
)
super().apply_config(*args, **kwargs)
try:
self.preselect_voice = kwargs["actions"]["_config"]["config"]["voice_id"][
"value"
]
except KeyError:
self.preselect_voice = self.default_voice_id
await super().apply_config(*args, **kwargs)
if api_changed:
try:
@@ -400,6 +463,11 @@ class TTSAgent(Agent):
library.voices = await list_fn()
library.last_synced = time.time()
if self.preselect_voice:
if self.voice(self.preselect_voice):
self.actions["_config"].config["voice_id"].value = self.preselect_voice
self.preselect_voice = None
# if the current voice cannot be found, reset it
if not self.voice(self.default_voice_id):
self.actions["_config"].config["voice_id"].value = ""
@@ -425,9 +493,10 @@ class TTSAgent(Agent):
# Start generating audio chunks in the background
generation_task = asyncio.create_task(self.generate_chunks(generate_fn, chunks))
await self.set_background_processing(generation_task)
# Wait for both tasks to complete
await asyncio.gather(generation_task)
# await asyncio.gather(generation_task)
async def generate_chunks(self, generate_fn, chunks):
for chunk in chunks:
@@ -552,96 +621,32 @@ class TTSAgent(Agent):
return voices
# COQUI STUDIO
# OPENAI
async def _generate_coqui(self, text: str) -> Union[bytes, None]:
api_key = self.token
if not api_key:
return
async def _generate_openai(self, text: str, chunk_size: int = 1024):
async with httpx.AsyncClient() as client:
url = "https://app.coqui.ai/api/v2/samples/xtts/render/"
headers = {
"Accept": "application/json",
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}",
}
data = {
"voice_id": self.default_voice_id,
"text": text,
"language": "en", # Assuming English language for simplicity; this could be parameterized
}
client = AsyncOpenAI(api_key=self.openai_api_key)
# Make the POST request to Coqui API
response = await client.post(url, json=data, headers=headers, timeout=300)
if response.status_code in [200, 201]:
# Parse the JSON response to get the audio URL
response_data = response.json()
audio_url = response_data.get("audio_url")
if audio_url:
# Make a GET request to download the audio file
audio_response = await client.get(audio_url)
if audio_response.status_code == 200:
# delete the sample from Coqui Studio
# await self._cleanup_coqui(response_data.get('id'))
return audio_response.content
else:
log.error(f"Error downloading audio: {audio_response.text}")
else:
log.error("No audio URL in response")
else:
log.error(f"Error generating audio: {response.text}")
model = self.actions["openai"].config["model"].value
async def _cleanup_coqui(self, sample_id: str):
api_key = self.token
if not api_key or not sample_id:
return
response = await client.audio.speech.create(
model=model, voice=self.default_voice_id, input=text
)
async with httpx.AsyncClient() as client:
url = f"https://app.coqui.ai/api/v2/samples/xtts/{sample_id}"
headers = {"Authorization": f"Bearer {api_key}"}
bytes_io = io.BytesIO()
for chunk in response.iter_bytes(chunk_size=chunk_size):
if chunk:
bytes_io.write(chunk)
# Make the DELETE request to Coqui API
response = await client.delete(url, headers=headers)
# Put the audio data in the queue for playback
return bytes_io.getvalue()
if response.status_code == 204:
log.info(f"Successfully deleted sample with ID: {sample_id}")
else:
log.error(
f"Error deleting sample with ID: {sample_id}: {response.text}"
)
async def _list_voices_coqui(self) -> dict[str, str]:
url_speakers = "https://app.coqui.ai/api/v2/speakers"
url_custom_voices = "https://app.coqui.ai/api/v2/voices"
voices = []
async with httpx.AsyncClient() as client:
headers = {"Authorization": f"Bearer {self.token}"}
response = await client.get(
url_speakers, headers=headers, params={"per_page": 1000}
)
speakers = response.json()["result"]
voices.extend(
[
Voice(value=speaker["id"], label=speaker["name"])
for speaker in speakers
]
)
response = await client.get(
url_custom_voices, headers=headers, params={"per_page": 1000}
)
custom_voices = response.json()["result"]
voices.extend(
[
Voice(value=voice["id"], label=voice["name"])
for voice in custom_voices
]
)
# sort by name
voices.sort(key=lambda x: x.label)
return voices
async def _list_voices_openai(self) -> dict[str, str]:
return [
Voice(value="alloy", label="Alloy"),
Voice(value="echo", label="Echo"),
Voice(value="fable", label="Fable"),
Voice(value="onyx", label="Onyx"),
Voice(value="nova", label="Nova"),
Voice(value="shimmer", label="Shimmer"),
]

View File

@@ -0,0 +1,452 @@
import asyncio
import traceback
import structlog
import talemate.agents.visual.automatic1111
import talemate.agents.visual.comfyui
import talemate.agents.visual.openai_image
from talemate.agents.base import (
Agent,
AgentAction,
AgentActionConditional,
AgentActionConfig,
AgentDetail,
set_processing,
)
from talemate.agents.registry import register
from talemate.client.base import ClientBase
from talemate.config import load_config
from talemate.emit import emit
from talemate.emit.signals import handlers as signal_handlers
from talemate.prompts.base import Prompt
from .commands import * # noqa
from .context import VIS_TYPES, VisualContext, visual_context
from .handlers import HANDLERS
from .schema import RESOLUTION_MAP, RenderSettings
from .style import MAJOR_STYLES, STYLE_MAP, Style, combine_styles
from .websocket_handler import VisualWebsocketHandler
__all__ = [
"VisualAgent",
]
BACKENDS = [
{"value": mixin_backend, "label": mixin["label"]}
for mixin_backend, mixin in HANDLERS.items()
]
log = structlog.get_logger("talemate.agents.visual")
class VisualBase(Agent):
"""
The visual agent
"""
agent_type = "visual"
verbose_name = "Visualizer"
essential = False
websocket_handler = VisualWebsocketHandler
ACTIONS = {}
def __init__(self, client: ClientBase, *kwargs):
self.client = client
self.is_enabled = False
self.backend_ready = False
self.initialized = False
self.config = load_config()
self.actions = {
"_config": AgentAction(
enabled=True,
label="Configure",
description="Visual agent configuration",
config={
"backend": AgentActionConfig(
type="text",
choices=BACKENDS,
value="automatic1111",
label="Backend",
description="The backend to use for visual processing",
),
"default_style": AgentActionConfig(
type="text",
value="ink_illustration",
choices=MAJOR_STYLES,
label="Default Style",
description="The default style to use for visual processing",
),
},
),
"automatic_generation": AgentAction(
enabled=False,
label="Automatic Generation",
description="Allow automatic generation of visual content",
),
"process_in_background": AgentAction(
enabled=True,
label="Process in Background",
description="Process renders in the background",
),
}
for action_name, action in self.ACTIONS.items():
self.actions[action_name] = action
signal_handlers["config_saved"].connect(self.on_config_saved)
@property
def enabled(self):
return self.is_enabled
@property
def has_toggle(self):
return True
@property
def experimental(self):
return False
@property
def backend(self):
return self.actions["_config"].config["backend"].value
@property
def backend_name(self):
key = self.actions["_config"].config["backend"].value
for backend in BACKENDS:
if backend["value"] == key:
return backend["label"]
@property
def default_style(self):
return STYLE_MAP.get(
self.actions["_config"].config["default_style"].value, Style()
)
@property
def ready(self):
return self.backend_ready
@property
def api_url(self):
try:
return self.actions[self.backend].config["api_url"].value
except KeyError:
return None
@property
def agent_details(self):
details = {
"backend": AgentDetail(
icon="mdi-server-outline",
value=self.backend_name,
description="The backend to use for visual processing",
).model_dump(),
"client": AgentDetail(
icon="mdi-network-outline",
value=self.client.name if self.client else None,
description="The client to use for prompt generation",
).model_dump(),
}
if not self.ready and self.enabled:
details["status"] = AgentDetail(
icon="mdi-alert",
value=f"{self.backend_name} not ready",
color="error",
description=self.ready_check_error
or f"{self.backend_name} is not ready for processing",
).model_dump()
return details
@property
def process_in_background(self):
return self.actions["process_in_background"].enabled
@property
def allow_automatic_generation(self):
return self.actions["automatic_generation"].enabled
def on_config_saved(self, event):
config = event.data
self.config = config
asyncio.create_task(self.emit_status())
async def on_ready_check_success(self):
prev_ready = self.backend_ready
self.backend_ready = True
if not prev_ready:
await self.emit_status()
async def on_ready_check_failure(self, error):
prev_ready = self.backend_ready
self.backend_ready = False
self.ready_check_error = str(error)
if prev_ready:
await self.emit_status()
async def ready_check(self):
if not self.enabled:
return
backend = self.backend
fn = getattr(self, f"{backend.lower()}_ready", None)
task = asyncio.create_task(fn())
await super().ready_check(task)
async def apply_config(self, *args, **kwargs):
try:
backend = kwargs["actions"]["_config"]["config"]["backend"]["value"]
except KeyError:
backend = self.backend
backend_changed = backend != self.backend
if backend_changed:
self.backend_ready = False
log.info(
"apply_config",
backend=backend,
backend_changed=backend_changed,
old_backend=self.backend,
)
await super().apply_config(*args, **kwargs)
backend_fn = getattr(self, f"{self.backend.lower()}_apply_config", None)
if backend_fn:
task = asyncio.create_task(
backend_fn(backend_changed=backend_changed, *args, **kwargs)
)
await self.set_background_processing(task)
if not self.backend_ready:
await self.ready_check()
self.initialized = True
def resolution_from_format(self, format: str, model_type: str = "sdxl"):
if model_type not in RESOLUTION_MAP:
raise ValueError(f"Model type {model_type} not found in resolution map")
return RESOLUTION_MAP[model_type].get(
format, RESOLUTION_MAP[model_type]["portrait"]
)
def prepare_prompt(self, prompt: str, styles: list[Style] = None) -> Style:
prompt_style = Style()
prompt_style.load(prompt)
if styles:
prompt_style.prepend(*styles)
return prompt_style
def vis_type_styles(self, vis_type: str):
if vis_type == VIS_TYPES.CHARACTER:
portrait_style = STYLE_MAP["character_portrait"].copy()
return portrait_style
elif vis_type == VIS_TYPES.ENVIRONMENT:
environment_style = STYLE_MAP["environment"].copy()
return environment_style
return Style()
async def apply_image(self, image: str):
context = visual_context.get()
log.debug("apply_image", image=image[:100], context=context)
if context.vis_type == VIS_TYPES.CHARACTER:
await self.apply_image_character(image, context.character_name)
async def apply_image_character(self, image: str, character_name: str):
character = self.scene.get_character(character_name)
if not character:
log.error("character not found", character_name=character_name)
return
if character.cover_image:
log.info("character cover image already set", character_name=character_name)
return
asset = self.scene.assets.add_asset_from_image_data(
f"data:image/png;base64,{image}"
)
character.cover_image = asset.id
self.scene.assets.cover_image = asset.id
self.scene.emit_status()
async def emit_image(self, image: str):
context = visual_context.get()
await self.apply_image(image)
emit(
"image_generated",
websocket_passthrough=True,
data={
"base64": image,
"context": context.model_dump() if context else None,
},
)
@set_processing
async def generate(
self, format: str = "portrait", prompt: str = None, automatic: bool = False
):
context = visual_context.get()
if not self.enabled:
log.warning("generate", skipped="Visual agent not enabled")
return
if automatic and not self.allow_automatic_generation:
log.warning(
"generate",
skipped="Automatic generation disabled",
prompt=prompt,
format=format,
context=context,
)
return
if not context and not prompt:
log.error("generate", error="No context or prompt provided")
return
# Handle prompt generation based on context
if not prompt and context.prompt:
prompt = context.prompt
if context.vis_type == VIS_TYPES.ENVIRONMENT and not prompt:
prompt = await self.generate_environment_prompt(
instructions=context.instructions
)
elif context.vis_type == VIS_TYPES.CHARACTER and not prompt:
prompt = await self.generate_character_prompt(
context.character_name, instructions=context.instructions
)
else:
prompt = prompt or context.prompt
initial_prompt = prompt
# Augment the prompt with styles based on context
thematic_style = self.default_style
vis_type_styles = self.vis_type_styles(context.vis_type)
prompt = self.prepare_prompt(prompt, [vis_type_styles, thematic_style])
if not prompt:
log.error(
"generate", error="No prompt provided and no context to generate from"
)
return
context.prompt = initial_prompt
context.prepared_prompt = str(prompt)
# Handle format (can either come from context or be passed in)
if not format and context.format:
format = context.format
elif not format:
format = "portrait"
context.format = format
# Call the backend specific generate function
backend = self.backend
fn = f"{backend.lower()}_generate"
log.info(
"generate", backend=backend, prompt=prompt, format=format, context=context
)
if not hasattr(self, fn):
log.error("generate", error=f"Backend {backend} does not support generate")
# add the function call to the asyncio task queue
if self.process_in_background:
task = asyncio.create_task(getattr(self, fn)(prompt=prompt, format=format))
await self.set_background_processing(task)
else:
await getattr(self, fn)(prompt=prompt, format=format)
@set_processing
async def generate_environment_prompt(self, instructions: str = None):
response = await Prompt.request(
"visual.generate-environment-prompt",
self.client,
"visualize",
{
"scene": self.scene,
"max_tokens": self.client.max_token_length,
},
)
return response.strip()
@set_processing
async def generate_character_prompt(
self, character_name: str, instructions: str = None
):
character = self.scene.get_character(character_name)
response = await Prompt.request(
"visual.generate-character-prompt",
self.client,
"visualize",
{
"scene": self.scene,
"character_name": character_name,
"character": character,
"max_tokens": self.client.max_token_length,
"instructions": instructions or "",
},
)
return response.strip()
async def generate_environment_background(self, instructions: str = None):
with VisualContext(vis_type=VIS_TYPES.ENVIRONMENT, instructions=instructions):
await self.generate(format="landscape")
async def generate_character_portrait(
self,
character_name: str,
instructions: str = None,
):
with VisualContext(
vis_type=VIS_TYPES.CHARACTER,
character_name=character_name,
instructions=instructions,
):
await self.generate(format="portrait")
# apply mixins to the agent (from HANDLERS dict[str, cls])
for mixin_backend, mixin in HANDLERS.items():
mixin_cls = mixin["cls"]
VisualBase = type("VisualAgent", (mixin_cls, VisualBase), {})
extend_actions = getattr(mixin_cls, "EXTEND_ACTIONS", {})
for action_name, action in extend_actions.items():
VisualBase.ACTIONS[action_name] = action
@register()
class VisualAgent(VisualBase):
pass

View File

@@ -0,0 +1,117 @@
import base64
import io
import httpx
import structlog
from PIL import Image
from talemate.agents.base import (
Agent,
AgentAction,
AgentActionConditional,
AgentActionConfig,
AgentDetail,
set_processing,
)
from .handlers import register
from .schema import RenderSettings, Resolution
from .style import STYLE_MAP, Style
log = structlog.get_logger("talemate.agents.visual.automatic1111")
@register(backend_name="automatic1111", label="AUTOMATIC1111")
class Automatic1111Mixin:
automatic1111_default_render_settings = RenderSettings()
EXTEND_ACTIONS = {
"automatic1111": AgentAction(
enabled=True,
condition=AgentActionConditional(
attribute="_config.config.backend", value="automatic1111"
),
label="Automatic1111 Settings",
description="Setting overrides for the automatic1111 backend",
config={
"api_url": AgentActionConfig(
type="text",
value="http://localhost:7860",
label="API URL",
description="The URL of the backend API",
),
"steps": AgentActionConfig(
type="number",
value=40,
label="Steps",
min=5,
max=150,
step=1,
description="number of render steps",
),
"model_type": AgentActionConfig(
type="text",
value="sdxl",
choices=[
{"value": "sdxl", "label": "SDXL"},
{"value": "sd15", "label": "SD1.5"},
],
label="Model Type",
description="Right now just differentiates between sdxl and sd15 - affect generation resolution",
),
},
)
}
@property
def automatic1111_render_settings(self):
if self.actions["automatic1111"].enabled:
return RenderSettings(
steps=self.actions["automatic1111"].config["steps"].value,
type_model=self.actions["automatic1111"].config["model_type"].value,
)
else:
return self.automatic1111_default_render_settings
async def automatic1111_generate(self, prompt: Style, format: str):
url = self.api_url
resolution = self.resolution_from_format(
format, self.automatic1111_render_settings.type_model
)
render_settings = self.automatic1111_render_settings
payload = {
"prompt": prompt.positive_prompt,
"negative_prompt": prompt.negative_prompt,
"steps": render_settings.steps,
"width": resolution.width,
"height": resolution.height,
}
log.info("automatic1111_generate", payload=payload, url=url)
async with httpx.AsyncClient() as client:
response = await client.post(
url=f"{url}/sdapi/v1/txt2img", json=payload, timeout=90
)
r = response.json()
# image = Image.open(io.BytesIO(base64.b64decode(r['images'][0])))
# image.save('a1111-test.png')
#'log.info("automatic1111_generate", saved_to="a1111-test.png")
for image in r["images"]:
await self.emit_image(image)
async def automatic1111_ready(self) -> bool:
"""
Will send a GET to /sdapi/v1/memory and on 200 will return True
"""
async with httpx.AsyncClient() as client:
response = await client.get(
url=f"{self.api_url}/sdapi/v1/memory", timeout=2
)
return response.status_code == 200

View File

@@ -0,0 +1,324 @@
import asyncio
import base64
import io
import json
import os
import random
import time
import urllib.parse
import httpx
import pydantic
import structlog
from PIL import Image
from talemate.agents.base import AgentAction, AgentActionConditional, AgentActionConfig
from .handlers import register
from .schema import RenderSettings, Resolution
from .style import STYLE_MAP, Style
log = structlog.get_logger("talemate.agents.visual.comfyui")
class Workflow(pydantic.BaseModel):
nodes: dict
def set_resolution(self, resolution: Resolution):
# will collect all latent image nodes
# if there is multiple will look for the one with the
# title "Talemate Resolution"
# if there is no latent image node with the title "Talemate Resolution"
# the first latent image node will be used
# resolution will be updated on the selected node
# if no latent image node is found a warning will be logged
latent_image_node = None
for node_id, node in self.nodes.items():
if node["class_type"] == "EmptyLatentImage":
if not latent_image_node:
latent_image_node = node
elif node["_meta"]["title"] == "Talemate Resolution":
latent_image_node = node
break
if not latent_image_node:
log.warning("set_resolution", error="No latent image node found")
return
latent_image_node["inputs"]["width"] = resolution.width
latent_image_node["inputs"]["height"] = resolution.height
def set_prompt(self, prompt: str, negative_prompt: str = None):
# will collect all CLIPTextEncode nodes
# if there is multiple will look for the one with the
# title "Talemate Positive Prompt" and "Talemate Negative Prompt"
#
# if there is no CLIPTextEncode node with the title "Talemate Positive Prompt"
# the first CLIPTextEncode node will be used
#
# if there is no CLIPTextEncode node with the title "Talemate Negative Prompt"
# the second CLIPTextEncode node will be used
#
# prompt will be updated on the selected node
# if no CLIPTextEncode node is found an exception will be raised for
# the positive prompt
# if no CLIPTextEncode node is found an exception will be raised for
# the negative prompt if it is not None
positive_prompt_node = None
negative_prompt_node = None
for node_id, node in self.nodes.items():
if node["class_type"] == "CLIPTextEncode":
if not positive_prompt_node:
positive_prompt_node = node
elif node["_meta"]["title"] == "Talemate Positive Prompt":
positive_prompt_node = node
elif not negative_prompt_node:
negative_prompt_node = node
elif node["_meta"]["title"] == "Talemate Negative Prompt":
negative_prompt_node = node
if not positive_prompt_node:
raise ValueError("No positive prompt node found")
positive_prompt_node["inputs"]["text"] = prompt
if negative_prompt and not negative_prompt_node:
raise ValueError("No negative prompt node found")
if negative_prompt:
negative_prompt_node["inputs"]["text"] = negative_prompt
def set_checkpoint(self, checkpoint: str):
# will collect all CheckpointLoaderSimple nodes
# if there is multiple will look for the one with the
# title "Talemate Load Checkpoint"
# if there is no CheckpointLoaderSimple node with the title "Talemate Load Checkpoint"
# the first CheckpointLoaderSimple node will be used
# checkpoint will be updated on the selected node
# if no CheckpointLoaderSimple node is found a warning will be logged
checkpoint_node = None
for node_id, node in self.nodes.items():
if node["class_type"] == "CheckpointLoaderSimple":
if not checkpoint_node:
checkpoint_node = node
elif node["_meta"]["title"] == "Talemate Load Checkpoint":
checkpoint_node = node
break
if not checkpoint_node:
log.warning("set_checkpoint", error="No checkpoint node found")
return
checkpoint_node["inputs"]["ckpt_name"] = checkpoint
def set_seeds(self):
for node in self.nodes.values():
for field in node.get("inputs", {}).keys():
if field == "noise_seed":
node["inputs"]["noise_seed"] = random.randint(0, 999999999999999)
@register(backend_name="comfyui", label="ComfyUI")
class ComfyUIMixin:
comfyui_default_render_settings = RenderSettings()
EXTEND_ACTIONS = {
"comfyui": AgentAction(
enabled=True,
condition=AgentActionConditional(
attribute="_config.config.backend", value="comfyui"
),
label="ComfyUI Settings",
description="Setting overrides for the comfyui backend",
config={
"api_url": AgentActionConfig(
type="text",
value="http://localhost:8188",
label="API URL",
description="The URL of the backend API",
),
"workflow": AgentActionConfig(
type="text",
value="default-sdxl.json",
label="Workflow",
description="The workflow to use for comfyui (workflow file name inside ./templates/comfyui-workflows)",
),
"checkpoint": AgentActionConfig(
type="text",
value="default",
label="Checkpoint",
choices=[],
description="The main checkpoint to use.",
),
},
)
}
@property
def comfyui_workflow_filename(self):
base_name = self.actions["comfyui"].config["workflow"].value
# make absolute path
abs_path = os.path.join(
os.path.dirname(__file__),
"..",
"..",
"..",
"..",
"templates",
"comfyui-workflows",
base_name,
)
return abs_path
@property
def comfyui_workflow_is_sdxl(self) -> bool:
"""
Returns true if `sdxl` is in worhflow file name (case insensitive)
"""
return "sdxl" in self.comfyui_workflow_filename.lower()
@property
def comfyui_workflow(self) -> Workflow:
workflow = self.comfyui_workflow_filename
if not workflow:
raise ValueError("No comfyui workflow file specified")
with open(workflow, "r") as f:
return Workflow(nodes=json.load(f))
@property
async def comfyui_object_info(self):
if hasattr(self, "_comfyui_object_info"):
return self._comfyui_object_info
async with httpx.AsyncClient() as client:
response = await client.get(url=f"{self.api_url}/object_info")
self._comfyui_object_info = response.json()
return self._comfyui_object_info
@property
async def comfyui_checkpoints(self):
loader_node = (await self.comfyui_object_info)["CheckpointLoaderSimple"]
_checkpoints = loader_node["input"]["required"]["ckpt_name"][0]
return [
{"label": checkpoint, "value": checkpoint} for checkpoint in _checkpoints
]
async def comfyui_get_image(self, filename: str, subfolder: str, folder_type: str):
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
async with httpx.AsyncClient() as client:
response = await client.get(url=f"{self.api_url}/view?{url_values}")
return response.content
async def comfyui_get_history(self, prompt_id: str):
async with httpx.AsyncClient() as client:
response = await client.get(url=f"{self.api_url}/history/{prompt_id}")
return response.json()
async def comfyui_get_images(self, prompt_id: str, max_wait: int = 60.0):
output_images = {}
history = {}
start = time.time()
while not history:
log.info(
"comfyui_get_images", waiting_for_history=True, prompt_id=prompt_id
)
history = await self.comfyui_get_history(prompt_id)
await asyncio.sleep(1.0)
if time.time() - start > max_wait:
raise TimeoutError("Max wait time exceeded")
for node_id, node_output in history[prompt_id]["outputs"].items():
if "images" in node_output:
images_output = []
for image in node_output["images"]:
image_data = await self.comfyui_get_image(
image["filename"], image["subfolder"], image["type"]
)
images_output.append(image_data)
output_images[node_id] = images_output
return output_images
async def comfyui_generate(self, prompt: Style, format: str):
url = self.api_url
workflow = self.comfyui_workflow
is_sdxl = self.comfyui_workflow_is_sdxl
resolution = self.resolution_from_format(format, "sdxl" if is_sdxl else "sd15")
workflow.set_resolution(resolution)
workflow.set_prompt(prompt.positive_prompt, prompt.negative_prompt)
workflow.set_seeds()
workflow.set_checkpoint(self.actions["comfyui"].config["checkpoint"].value)
payload = {"prompt": workflow.model_dump().get("nodes")}
log.info("comfyui_generate", payload=payload, url=url)
async with httpx.AsyncClient() as client:
response = await client.post(url=f"{url}/prompt", json=payload, timeout=90)
log.info("comfyui_generate", response=response.text)
r = response.json()
prompt_id = r["prompt_id"]
images = await self.comfyui_get_images(prompt_id)
for node_id, node_images in images.items():
for i, image in enumerate(node_images):
await self.emit_image(base64.b64encode(image).decode("utf-8"))
# image = Image.open(io.BytesIO(image))
# image.save(f'comfyui-test.png')
async def comfyui_apply_config(
self, backend_changed: bool = False, *args, **kwargs
):
log.debug(
"comfyui_apply_config",
backend_changed=backend_changed,
enabled=self.enabled,
)
if (not self.initialized or backend_changed) and self.enabled:
checkpoints = await self.comfyui_checkpoints
selected_checkpoint = self.actions["comfyui"].config["checkpoint"].value
self.actions["comfyui"].config["checkpoint"].choices = checkpoints
self.actions["comfyui"].config["checkpoint"].value = selected_checkpoint
async def comfyui_ready(self) -> bool:
"""
Will send a GET to /system_stats and on 200 will return True
"""
async with httpx.AsyncClient() as client:
response = await client.get(url=f"{self.api_url}/system_stats", timeout=2)
return response.status_code == 200

View File

@@ -0,0 +1,68 @@
from talemate.agents.visual.context import VIS_TYPES, VisualContext
from talemate.commands.base import TalemateCommand
from talemate.commands.manager import register
from talemate.instance import get_agent
__all__ = [
"CmdVisualizeTestGenerate",
]
@register
class CmdVisualizeTestGenerate(TalemateCommand):
"""
Generates a visual test
"""
name = "visual_test_generate"
description = "Will generate a visual test"
aliases = ["vis_test", "vtg"]
label = "Visualize test"
async def run(self):
visual = get_agent("visual")
prompt = self.args[0]
with VisualContext(vis_type=VIS_TYPES.UNSPECIFIED):
await visual.generate(prompt)
return True
@register
class CmdVisualizeEnvironment(TalemateCommand):
"""
Shows the environment
"""
name = "visual_environment"
description = "Will show the environment"
aliases = ["vis_env"]
label = "Visualize environment"
async def run(self):
visual = get_agent("visual")
await visual.generate_environment_background(
instructions=self.args[0] if len(self.args) > 0 else None
)
return True
@register
class CmdVisualizeCharacter(TalemateCommand):
"""
Shows a character
"""
name = "visual_character"
description = "Will show a character"
aliases = ["vis_char"]
label = "Visualize character"
async def run(self):
visual = get_agent("visual")
character_name = self.args[0]
instructions = self.args[1] if len(self.args) > 1 else None
await visual.generate_character_portrait(character_name, instructions)
return True

View File

@@ -0,0 +1,55 @@
import contextvars
import enum
from typing import Union
import pydantic
__all__ = [
"VIS_TYPES",
"visual_context",
"VisualContext",
]
class VIS_TYPES(str, enum.Enum):
UNSPECIFIED = "UNSPECIFIED"
ENVIRONMENT = "ENVIRONMENT"
CHARACTER = "CHARACTER"
ITEM = "ITEM"
visual_context = contextvars.ContextVar("visual_context", default=None)
class VisualContextState(pydantic.BaseModel):
character_name: Union[str, None] = None
instructions: Union[str, None] = None
vis_type: VIS_TYPES = VIS_TYPES.ENVIRONMENT
prompt: Union[str, None] = None
prepared_prompt: Union[str, None] = None
format: Union[str, None] = None
class VisualContext:
def __init__(
self,
character_name: Union[str, None] = None,
instructions: Union[str, None] = None,
vis_type: VIS_TYPES = VIS_TYPES.ENVIRONMENT,
prompt: Union[str, None] = None,
**kwargs,
):
self.state = VisualContextState(
character_name=character_name,
instructions=instructions,
vis_type=vis_type,
prompt=prompt,
**kwargs,
)
def __enter__(self):
self.token = visual_context.set(self.state)
def __exit__(self, *args, **kwargs):
visual_context.reset(self.token)
return False

View File

@@ -0,0 +1,17 @@
__all__ = [
"HANDLERS",
"register",
]
HANDLERS = {}
class register:
def __init__(self, backend_name: str, label: str):
self.backend_name = backend_name
self.label = label
def __call__(self, mixin_cls):
HANDLERS[self.backend_name] = {"label": self.label, "cls": mixin_cls}
return mixin_cls

View File

@@ -0,0 +1,127 @@
import base64
import io
import httpx
import structlog
from openai import AsyncOpenAI
from PIL import Image
from talemate.agents.base import (
Agent,
AgentAction,
AgentActionConditional,
AgentActionConfig,
AgentDetail,
set_processing,
)
from .handlers import register
from .schema import RenderSettings, Resolution
from .style import STYLE_MAP, Style
log = structlog.get_logger("talemate.agents.visual.openai_image")
@register(backend_name="openai_image", label="OpenAI")
class OpenAIImageMixin:
openai_image_default_render_settings = RenderSettings()
EXTEND_ACTIONS = {
"openai_image": AgentAction(
enabled=False,
condition=AgentActionConditional(
attribute="_config.config.backend", value="openai_image"
),
label="OpenAI Image Generation Advanced Settings",
description="Setting overrides for the openai backend",
config={
"model_type": AgentActionConfig(
type="text",
value="dall-e-3",
choices=[
{"value": "dall-e-3", "label": "DALL-E 3"},
{"value": "dall-e-2", "label": "DALL-E 2"},
],
label="Model Type",
description="Image generation model",
),
"quality": AgentActionConfig(
type="text",
value="standard",
choices=[
{"value": "standard", "label": "Standard"},
{"value": "hd", "label": "HD"},
],
label="Quality",
description="Image generation quality",
),
},
)
}
@property
def openai_api_key(self):
return self.config.get("openai", {}).get("api_key")
@property
def openai_model_type(self):
return self.actions["openai_image"].config["model_type"].value
@property
def openai_quality(self):
return self.actions["openai_image"].config["quality"].value
async def openai_image_generate(self, prompt: Style, format: str):
"""
#
from openai import OpenAI
client = OpenAI()
response = client.images.generate(
model="dall-e-3",
prompt="a white siamese cat",
size="1024x1024",
quality="standard",
n=1,
)
image_url = response.data[0].url
"""
client = AsyncOpenAI(api_key=self.openai_api_key)
# When using DALL·E 3, images can have a size of 1024x1024, 1024x1792 or 1792x1024 pixels.#
if format == "portrait":
resolution = Resolution(width=1024, height=1792)
elif format == "landscape":
resolution = Resolution(width=1792, height=1024)
else:
resolution = Resolution(width=1024, height=1024)
response = await client.images.generate(
model=self.openai_model_type,
prompt=prompt.positive_prompt,
size=f"{resolution.width}x{resolution.height}",
quality=self.openai_quality,
n=1,
)
download_url = response.data[0].url
async with httpx.AsyncClient() as client:
response = await client.get(download_url, timeout=90)
# bytes to base64encoded
image = base64.b64encode(response.content).decode("utf-8")
await self.emit_image(image)
async def openai_image_ready(self) -> bool:
"""
Will send a GET to /sdapi/v1/memory and on 200 will return True
"""
if not self.openai_api_key:
raise ValueError("OpenAI API Key not set")
return True

View File

@@ -0,0 +1,32 @@
import pydantic
__all__ = [
"RenderSettings",
"Resolution",
"RESOLUTION_MAP",
]
RESOLUTION_MAP = {}
class RenderSettings(pydantic.BaseModel):
type_model: str = "sdxl"
steps: int = 40
class Resolution(pydantic.BaseModel):
width: int
height: int
RESOLUTION_MAP["sdxl"] = {
"portrait": Resolution(width=832, height=1216),
"landscape": Resolution(width=1216, height=832),
"square": Resolution(width=1024, height=1024),
}
RESOLUTION_MAP["sd15"] = {
"portrait": Resolution(width=512, height=768),
"landscape": Resolution(width=768, height=512),
"square": Resolution(width=768, height=768),
}

View File

@@ -0,0 +1,112 @@
import pydantic
__all__ = [
"Style",
"STYLE_MAP",
"THEME_MAP",
"MAJOR_STYLES",
"combine_styles",
]
STYLE_MAP = {}
THEME_MAP = {}
MAJOR_STYLES = {}
class Style(pydantic.BaseModel):
keywords: list[str] = pydantic.Field(default_factory=list)
negative_keywords: list[str] = pydantic.Field(default_factory=list)
@property
def positive_prompt(self):
return ", ".join(self.keywords)
@property
def negative_prompt(self):
return ", ".join(self.negative_keywords)
def __str__(self):
return f"POSITIVE: {self.positive_prompt}\nNEGATIVE: {self.negative_prompt}"
def load(self, prompt: str, negative_prompt: str = ""):
self.keywords = prompt.split(", ")
self.negative_keywords = negative_prompt.split(", ")
return self
def prepend(self, *styles):
for style in styles:
for idx in range(len(style.keywords) - 1, -1, -1):
kw = style.keywords[idx]
if kw not in self.keywords:
self.keywords.insert(0, kw)
for idx in range(len(style.negative_keywords) - 1, -1, -1):
kw = style.negative_keywords[idx]
if kw not in self.negative_keywords:
self.negative_keywords.insert(0, kw)
return self
def append(self, *styles):
for style in styles:
for kw in style.keywords:
if kw not in self.keywords:
self.keywords.append(kw)
for kw in style.negative_keywords:
if kw not in self.negative_keywords:
self.negative_keywords.append(kw)
return self
def copy(self):
return Style(
keywords=self.keywords.copy(),
negative_keywords=self.negative_keywords.copy(),
)
# Almost taken straight from some of the fooocus style presets, credit goes to the original author
STYLE_MAP["digital_art"] = Style(
keywords="digital artwork, masterpiece, best quality, high detail".split(", "),
negative_keywords="text, watermark, low quality, blurry, photo".split(", "),
)
STYLE_MAP["concept_art"] = Style(
keywords="concept art, conceptual sketch, masterpiece, best quality, high detail".split(
", "
),
negative_keywords="text, watermark, low quality, blurry, photo".split(", "),
)
STYLE_MAP["ink_illustration"] = Style(
keywords="ink illustration, painting, masterpiece, best quality".split(", "),
negative_keywords="text, watermark, low quality, blurry, photo".split(", "),
)
STYLE_MAP["anime"] = Style(
keywords="anime, masterpiece, best quality, illustration".split(", "),
negative_keywords="text, watermark, low quality, blurry, photo, 3d".split(", "),
)
STYLE_MAP["character_portrait"] = Style(keywords="solo, looking at viewer".split(", "))
STYLE_MAP["environment"] = Style(
keywords="scenery, environment, background, postcard".split(", "),
negative_keywords="character, portrait, looking at viewer, people".split(", "),
)
MAJOR_STYLES = [
{"value": "digital_art", "label": "Digital Art"},
{"value": "concept_art", "label": "Concept Art"},
{"value": "ink_illustration", "label": "Ink Illustration"},
{"value": "anime", "label": "Anime"},
]
def combine_styles(*styles):
keywords = []
for style in styles:
keywords.extend(style.keywords)
return Style(keywords=list(set(keywords)))

View File

@@ -0,0 +1,84 @@
from typing import Union
import pydantic
import structlog
from talemate.instance import get_agent
from talemate.server.websocket_plugin import Plugin
from .context import VisualContext, VisualContextState
__all__ = [
"VisualWebsocketHandler",
]
log = structlog.get_logger("talemate.server.visual")
class SetCoverImagePayload(pydantic.BaseModel):
base64: str
context: Union[VisualContextState, None] = None
class RegeneratePayload(pydantic.BaseModel):
context: Union[VisualContextState, None] = None
class VisualWebsocketHandler(Plugin):
router = "visual"
async def handle_regenerate(self, data: dict):
"""
Regenerate the image based on the context.
"""
payload = RegeneratePayload(**data)
context = payload.context
visual = get_agent("visual")
with VisualContext(**context.model_dump()):
await visual.generate(format="")
async def handle_cover_image(self, data: dict):
"""
Sets the cover image for a character and the scene.
"""
payload = SetCoverImagePayload(**data)
context = payload.context
scene = self.scene
if context and context.character_name:
character = scene.get_character(context.character_name)
if not character:
log.error("character not found", character_name=context.character_name)
return
asset = scene.assets.add_asset_from_image_data(payload.base64)
log.info("setting scene cover image", character_name=context.character_name)
scene.assets.cover_image = asset.id
log.info(
"setting character cover image", character_name=context.character_name
)
character.cover_image = asset.id
scene.emit_status()
self.websocket_handler.request_scene_assets([asset.id])
self.websocket_handler.queue_put(
{
"type": "scene_asset_character_cover_image",
"asset_id": asset.id,
"asset": self.scene.assets.get_asset_bytes_as_base64(asset.id),
"media_type": asset.media_type,
"character": character.name,
}
)
return

View File

@@ -187,7 +187,7 @@ class WorldStateAgent(Agent):
await self.check_pin_conditions()
async def update_world_state(self):
async def update_world_state(self, force: bool = False):
if not self.enabled:
return
@@ -206,7 +206,7 @@ class WorldStateAgent(Agent):
self.next_update % self.actions["update_world_state"].config["turns"].value
!= 0
or self.next_update == 0
):
) and not force:
self.next_update += 1
return
@@ -349,11 +349,15 @@ class WorldStateAgent(Agent):
self,
text: str,
instruction: str,
short: bool = False,
):
kind = "analyze_freeform_short" if short else "analyze_freeform"
response = await Prompt.request(
"world_state.analyze-text-and-follow-instruction",
self.client,
"analyze_freeform",
kind,
vars={
"scene": self.scene,
"max_tokens": self.client.max_token_length,
@@ -376,11 +380,13 @@ class WorldStateAgent(Agent):
self,
text: str,
query: str,
short: bool = False,
):
kind = "analyze_freeform_short" if short else "analyze_freeform"
response = await Prompt.request(
"world_state.analyze-text-and-answer-question",
self.client,
"analyze_freeform",
kind,
vars={
"scene": self.scene,
"max_tokens": self.client.max_token_length,
@@ -439,6 +445,7 @@ class WorldStateAgent(Agent):
self,
name: str,
text: str = None,
alteration_instructions: str = None,
):
"""
Attempts to extract a character sheet from the given text.
@@ -453,6 +460,8 @@ class WorldStateAgent(Agent):
"max_tokens": self.client.max_token_length,
"text": text,
"name": name,
"character": self.scene.get_character(name),
"alteration_instructions": alteration_instructions or "",
},
)
@@ -518,23 +527,37 @@ class WorldStateAgent(Agent):
if reset and reinforcement.insert == "sequential":
self.scene.pop_history(typ="reinforcement", source=source, all=True)
if reinforcement.insert == "sequential":
kind = "analyze_freeform_medium_short"
else:
kind = "analyze_freeform"
answer = await Prompt.request(
"world_state.update-reinforcements",
self.client,
"analyze_freeform",
kind,
vars={
"scene": self.scene,
"max_tokens": self.client.max_token_length,
"question": reinforcement.question,
"instructions": reinforcement.instructions or "",
"character": self.scene.get_character(reinforcement.character)
if reinforcement.character
else None,
"character": (
self.scene.get_character(reinforcement.character)
if reinforcement.character
else None
),
"answer": (reinforcement.answer if not reset else None) or "",
"reinforcement": reinforcement,
},
)
# sequential reinforcment should be single sentence so we
# split on line breaks and take the first line in case the
# LLM did not understand the request and returned a longer response
if reinforcement.insert == "sequential":
answer = answer.split("\n")[0]
reinforcement.answer = answer
reinforcement.due = reinforcement.interval
@@ -735,3 +758,28 @@ class WorldStateAgent(Agent):
)
return is_leaving.lower().startswith("y")
@set_processing
async def manager(self, action_name: str, *args, **kwargs):
"""
Executes a world state manager action through self.scene.world_state_manager
"""
manager = self.scene.world_state_manager
try:
fn = getattr(manager, action_name, None)
if not fn:
raise ValueError(f"Unknown action: {action_name}")
return await fn(*args, **kwargs)
except Exception as e:
log.error(
"worldstate.manager",
action_name=action_name,
args=args,
kwargs=kwargs,
error=e,
)
raise

View File

@@ -3,6 +3,8 @@ import os
import talemate.client.runpod
from talemate.client.lmstudio import LMStudioClient
from talemate.client.openai import OpenAIClient
from talemate.client.mistral import MistralAIClient
from talemate.client.anthropic import AnthropicClient
from talemate.client.openai_compat import OpenAICompatibleClient
from talemate.client.registry import CLIENT_CLASSES, get_client_class, register
from talemate.client.textgenwebui import TextGeneratorWebuiClient

View File

@@ -0,0 +1,224 @@
import pydantic
import structlog
from anthropic import AsyncAnthropic, PermissionDeniedError
from talemate.client.base import ClientBase, ErrorAction
from talemate.client.registry import register
from talemate.config import load_config
from talemate.emit import emit
from talemate.emit.signals import handlers
__all__ = [
"AnthropicClient",
]
log = structlog.get_logger("talemate")
# Edit this to add new models / remove old models
SUPPORTED_MODELS = [
"claude-3-sonnet-20240229",
"claude-3-opus-20240229",
]
class Defaults(pydantic.BaseModel):
max_token_length: int = 16384
model: str = "claude-3-sonnet-20240229"
@register()
class AnthropicClient(ClientBase):
"""
Anthropic client for generating text.
"""
client_type = "anthropic"
conversation_retries = 0
auto_break_repetition_enabled = False
# TODO: make this configurable?
decensor_enabled = False
class Meta(ClientBase.Meta):
name_prefix: str = "Anthropic"
title: str = "Anthropic"
manual_model: bool = True
manual_model_choices: list[str] = SUPPORTED_MODELS
requires_prompt_template: bool = False
defaults: Defaults = Defaults()
def __init__(self, model="claude-3-sonnet-20240229", **kwargs):
self.model_name = model
self.api_key_status = None
self.config = load_config()
super().__init__(**kwargs)
handlers["config_saved"].connect(self.on_config_saved)
@property
def anthropic_api_key(self):
return self.config.get("anthropic", {}).get("api_key")
def emit_status(self, processing: bool = None):
error_action = None
if processing is not None:
self.processing = processing
if self.anthropic_api_key:
status = "busy" if self.processing else "idle"
model_name = self.model_name
else:
status = "error"
model_name = "No API key set"
error_action = ErrorAction(
title="Set API Key",
action_name="openAppConfig",
icon="mdi-key-variant",
arguments=[
"application",
"anthropic_api",
],
)
if not self.model_name:
status = "error"
model_name = "No model loaded"
self.current_status = status
emit(
"client_status",
message=self.client_type,
id=self.name,
details=model_name,
status=status,
data={
"error_action": error_action.model_dump() if error_action else None,
"meta": self.Meta().model_dump(),
},
)
def set_client(self, max_token_length: int = None):
if not self.anthropic_api_key:
self.client = AsyncAnthropic(api_key="sk-1111")
log.error("No anthropic API key set")
if self.api_key_status:
self.api_key_status = False
emit("request_client_status")
emit("request_agent_status")
return
if not self.model_name:
self.model_name = "claude-3-opus-20240229"
if max_token_length and not isinstance(max_token_length, int):
max_token_length = int(max_token_length)
model = self.model_name
self.client = AsyncAnthropic(api_key=self.anthropic_api_key)
self.max_token_length = max_token_length or 16384
if not self.api_key_status:
if self.api_key_status is False:
emit("request_client_status")
emit("request_agent_status")
self.api_key_status = True
log.info(
"anthropic set client",
max_token_length=self.max_token_length,
provided_max_token_length=max_token_length,
model=model,
)
def reconfigure(self, **kwargs):
if kwargs.get("model"):
self.model_name = kwargs["model"]
self.set_client(kwargs.get("max_token_length"))
def on_config_saved(self, event):
config = event.data
self.config = config
self.set_client(max_token_length=self.max_token_length)
def response_tokens(self, response: str):
return response.usage.output_tokens
def prompt_tokens(self, response: str):
return response.usage.input_tokens
async def status(self):
self.emit_status()
def prompt_template(self, system_message: str, prompt: str):
if "<|BOT|>" in prompt:
_, right = prompt.split("<|BOT|>", 1)
if right:
prompt = prompt.replace("<|BOT|>", "\nStart your response with: ")
else:
prompt = prompt.replace("<|BOT|>", "")
return prompt
def tune_prompt_parameters(self, parameters: dict, kind: str):
super().tune_prompt_parameters(parameters, kind)
keys = list(parameters.keys())
valid_keys = ["temperature", "top_p", "max_tokens"]
for key in keys:
if key not in valid_keys:
del parameters[key]
async def generate(self, prompt: str, parameters: dict, kind: str):
"""
Generates text from the given prompt and parameters.
"""
if not self.anthropic_api_key:
raise Exception("No anthropic API key set")
right = None
expected_response = None
try:
_, right = prompt.split("\nStart your response with: ")
expected_response = right.strip()
except (IndexError, ValueError):
pass
human_message = {"role": "user", "content": prompt.strip()}
system_message = self.get_system_message(kind)
self.log.debug(
"generate",
prompt=prompt[:128] + " ...",
parameters=parameters,
system_message=system_message,
)
try:
response = await self.client.messages.create(
model=self.model_name,
system=system_message,
messages=[human_message],
**parameters,
)
self._returned_prompt_tokens = self.prompt_tokens(response)
self._returned_response_tokens = self.response_tokens(response)
log.debug("generated response", response=response.content)
response = response.content[0].text
if expected_response and expected_response.startswith("{"):
if response.startswith("```json") and response.endswith("```"):
response = response[7:-3].strip()
if right and response.startswith(right):
response = response[len(right) :].strip()
return response
except PermissionDeniedError as e:
self.log.error("generate error", e=e)
emit("status", message="anthropic API: Permission Denied", status="error")
return ""
except Exception as e:
raise

View File

@@ -1,6 +1,7 @@
"""
A unified client base, based on the openai API
"""
import logging
import random
import time
@@ -32,6 +33,19 @@ REMOTE_SERVICES = [
STOPPING_STRINGS = ["<|im_end|>", "</s>"]
class PromptData(pydantic.BaseModel):
kind: str
prompt: str
response: str
prompt_tokens: int
response_tokens: int
client_name: str
client_type: str
time: Union[float, int]
agent_stack: list[str] = pydantic.Field(default_factory=list)
generation_parameters: dict = pydantic.Field(default_factory=dict)
class ErrorAction(pydantic.BaseModel):
title: str
action_name: str
@@ -44,6 +58,14 @@ class Defaults(pydantic.BaseModel):
max_token_length: int = 4096
class ExtraField(pydantic.BaseModel):
name: str
type: str
label: str
required: bool
description: str
class ClientBase:
api_url: str
model_name: str
@@ -77,7 +99,9 @@ class ClientBase:
self.name = name or self.client_type
self.log = structlog.get_logger(f"client.{self.client_type}")
if "max_token_length" in kwargs:
self.max_token_length = kwargs["max_token_length"]
self.max_token_length = (
int(kwargs["max_token_length"]) if kwargs["max_token_length"] else 4096
)
self.set_client(max_token_length=self.max_token_length)
def __str__(self):
@@ -121,7 +145,7 @@ class ClientBase:
self.api_url = kwargs["api_url"]
if kwargs.get("max_token_length"):
self.max_token_length = kwargs["max_token_length"]
self.max_token_length = int(kwargs["max_token_length"])
if "enabled" in kwargs:
self.enabled = bool(kwargs["enabled"])
@@ -154,7 +178,7 @@ class ClientBase:
"""
if self.decensor_enabled:
if "narrate" in kind:
return system_prompts.NARRATOR
if "story" in kind:
@@ -179,9 +203,11 @@ class ClientBase:
return system_prompts.ANALYST
if "summarize" in kind:
return system_prompts.SUMMARIZE
if "visualize" in kind:
return system_prompts.VISUALIZE
else:
if "narrate" in kind:
return system_prompts.NARRATOR_NO_DECENSOR
if "story" in kind:
@@ -206,7 +232,9 @@ class ClientBase:
return system_prompts.ANALYST_NO_DECENSOR
if "summarize" in kind:
return system_prompts.SUMMARIZE_NO_DECENSOR
if "visualize" in kind:
return system_prompts.VISUALIZE_NO_DECENSOR
return system_prompts.BASIC
def emit_status(self, processing: bool = None):
@@ -235,22 +263,27 @@ class ClientBase:
prompt_template_example, prompt_template_file = self.prompt_template_example()
data = {
"api_key": self.api_key,
"prompt_template_example": prompt_template_example,
"has_prompt_template": (
prompt_template_file and prompt_template_file != "default.jinja2"
),
"template_file": prompt_template_file,
"meta": self.Meta().model_dump(),
"error_action": None,
}
for field_name in getattr(self.Meta(), "extra_fields", {}).keys():
data[field_name] = getattr(self, field_name, None)
emit(
"client_status",
message=self.client_type,
id=self.name,
details=model_name,
status=status,
data={
"api_key": self.api_key,
"prompt_template_example": prompt_template_example,
"has_prompt_template": (
prompt_template_file and prompt_template_file != "default.jinja2"
),
"template_file": prompt_template_file,
"meta": self.Meta().model_dump(),
"error_action": None,
},
data=data,
)
if status_change:
@@ -330,6 +363,11 @@ class ClientBase:
f"{character}:" for character in conversation_context["other_characters"]
]
dialog_stopping_strings += [
f"{character.upper()}\n"
for character in conversation_context["other_characters"]
]
if "extra_stopping_strings" in parameters:
parameters["extra_stopping_strings"] += dialog_stopping_strings
else:
@@ -372,6 +410,9 @@ class ClientBase:
"""
try:
self._returned_prompt_tokens = None
self._returned_response_tokens = None
self.emit_status(processing=True)
await self.status()
@@ -411,21 +452,30 @@ class ClientBase:
response = response.split(stopping_string)[0]
break
agent_context = active_agent.get()
emit(
"prompt_sent",
data={
"kind": kind,
"prompt": finalized_prompt,
"response": response,
"prompt_tokens": token_length,
"response_tokens": self.count_tokens(response),
"time": time_end - time_start,
},
data=PromptData(
kind=kind,
prompt=finalized_prompt,
response=response,
prompt_tokens=self._returned_prompt_tokens or token_length,
response_tokens=self._returned_response_tokens
or self.count_tokens(response),
agent_stack=agent_context.agent_stack if agent_context else [],
client_name=self.name,
client_type=self.client_type,
time=time_end - time_start,
generation_parameters=prompt_param,
).model_dump(),
)
return response
finally:
self.emit_status(processing=False)
self._returned_prompt_tokens = None
self._returned_response_tokens = None
async def auto_break_repetition(
self,

View File

@@ -0,0 +1,34 @@
import importlib
import os
import structlog
log = structlog.get_logger("talemate.client.custom")
# import every submodule in this directory
#
# each directory in this directory is a submodule
# get the current directory
current_directory = os.path.dirname(__file__)
# get all subdirectories
subdirectories = [
os.path.join(current_directory, name)
for name in os.listdir(current_directory)
if os.path.isdir(os.path.join(current_directory, name))
]
# import every submodule
for subdirectory in subdirectories:
# get the name of the submodule
submodule_name = os.path.basename(subdirectory)
if submodule_name.startswith("__"):
continue
log.info("activating custom client", module=submodule_name)
# import the submodule
importlib.import_module(f".{submodule_name}", __package__)

View File

@@ -0,0 +1,5 @@
Each client should be in its own subdirectory.
The subdirectory itself must be a valid python module.
Check out docs/dev/client/example/test for a very simplistic custom client example.

View File

@@ -9,6 +9,7 @@ class Defaults(pydantic.BaseModel):
api_url: str = "http://localhost:1234"
max_token_length: int = 4096
@register()
class LMStudioClient(ClientBase):
client_type = "lmstudio"

View File

@@ -0,0 +1,232 @@
import json
import pydantic
import structlog
import tiktoken
from openai import AsyncOpenAI, PermissionDeniedError
from talemate.client.base import ClientBase, ErrorAction
from talemate.client.registry import register
from talemate.config import load_config
from talemate.emit import emit
from talemate.emit.signals import handlers
__all__ = [
"MistralAIClient",
]
log = structlog.get_logger("talemate")
# Edit this to add new models / remove old models
SUPPORTED_MODELS = [
"open-mistral-7b",
"open-mixtral-8x7b",
"mistral-small-latest",
"mistral-medium-latest",
"mistral-large-latest",
]
class Defaults(pydantic.BaseModel):
max_token_length: int = 16384
model: str = "open-mixtral-8x7b"
@register()
class MistralAIClient(ClientBase):
"""
OpenAI client for generating text.
"""
client_type = "mistral"
conversation_retries = 0
auto_break_repetition_enabled = False
# TODO: make this configurable?
decensor_enabled = False
class Meta(ClientBase.Meta):
name_prefix: str = "MistralAI"
title: str = "MistralAI"
manual_model: bool = True
manual_model_choices: list[str] = SUPPORTED_MODELS
requires_prompt_template: bool = False
defaults: Defaults = Defaults()
def __init__(self, model="open-mixtral-8x7b", **kwargs):
self.model_name = model
self.api_key_status = None
self.config = load_config()
super().__init__(**kwargs)
handlers["config_saved"].connect(self.on_config_saved)
@property
def mistralai_api_key(self):
return self.config.get("mistralai", {}).get("api_key")
def emit_status(self, processing: bool = None):
error_action = None
if processing is not None:
self.processing = processing
if self.mistralai_api_key:
status = "busy" if self.processing else "idle"
model_name = self.model_name
else:
status = "error"
model_name = "No API key set"
error_action = ErrorAction(
title="Set API Key",
action_name="openAppConfig",
icon="mdi-key-variant",
arguments=[
"application",
"mistralai_api",
],
)
if not self.model_name:
status = "error"
model_name = "No model loaded"
self.current_status = status
emit(
"client_status",
message=self.client_type,
id=self.name,
details=model_name,
status=status,
data={
"error_action": error_action.model_dump() if error_action else None,
"meta": self.Meta().model_dump(),
},
)
def set_client(self, max_token_length: int = None):
if not self.mistralai_api_key:
self.client = AsyncOpenAI(api_key="sk-1111")
log.error("No mistral.ai API key set")
if self.api_key_status:
self.api_key_status = False
emit("request_client_status")
emit("request_agent_status")
return
if not self.model_name:
self.model_name = "open-mixtral-8x7b"
if max_token_length and not isinstance(max_token_length, int):
max_token_length = int(max_token_length)
model = self.model_name
self.client = AsyncOpenAI(
api_key=self.mistralai_api_key, base_url="https://api.mistral.ai/v1/"
)
self.max_token_length = max_token_length or 16384
if not self.api_key_status:
if self.api_key_status is False:
emit("request_client_status")
emit("request_agent_status")
self.api_key_status = True
log.info(
"mistral.ai set client",
max_token_length=self.max_token_length,
provided_max_token_length=max_token_length,
model=model,
)
def reconfigure(self, **kwargs):
if kwargs.get("model"):
self.model_name = kwargs["model"]
self.set_client(kwargs.get("max_token_length"))
def on_config_saved(self, event):
config = event.data
self.config = config
self.set_client(max_token_length=self.max_token_length)
def response_tokens(self, response: str):
return response.usage.completion_tokens
def prompt_tokens(self, response: str):
return response.usage.prompt_tokens
async def status(self):
self.emit_status()
def prompt_template(self, system_message: str, prompt: str):
if "<|BOT|>" in prompt:
_, right = prompt.split("<|BOT|>", 1)
if right:
prompt = prompt.replace("<|BOT|>", "\nStart your response with: ")
else:
prompt = prompt.replace("<|BOT|>", "")
return prompt
def tune_prompt_parameters(self, parameters: dict, kind: str):
super().tune_prompt_parameters(parameters, kind)
keys = list(parameters.keys())
valid_keys = ["temperature", "top_p", "max_tokens"]
for key in keys:
if key not in valid_keys:
del parameters[key]
async def generate(self, prompt: str, parameters: dict, kind: str):
"""
Generates text from the given prompt and parameters.
"""
if not self.mistralai_api_key:
raise Exception("No mistral.ai API key set")
right = None
expected_response = None
try:
_, right = prompt.split("\nStart your response with: ")
expected_response = right.strip()
except (IndexError, ValueError):
pass
human_message = {"role": "user", "content": prompt.strip()}
system_message = {"role": "system", "content": self.get_system_message(kind)}
self.log.debug(
"generate",
prompt=prompt[:128] + " ...",
parameters=parameters,
system_message=system_message,
)
try:
response = await self.client.chat.completions.create(
model=self.model_name,
messages=[system_message, human_message],
**parameters,
)
self._returned_prompt_tokens = self.prompt_tokens(response)
self._returned_response_tokens = self.response_tokens(response)
response = response.choices[0].message.content
# older models don't support json_object response coersion
# and often like to return the response wrapped in ```json
# so we strip that out if the expected response is a json object
if expected_response and expected_response.startswith("{"):
if response.startswith("```json") and response.endswith("```"):
response = response[7:-3].strip()
if right and response.startswith(right):
response = response[len(right) :].strip()
return response
except PermissionDeniedError as e:
self.log.error("generate error", e=e)
emit("status", message="mistral.ai API: Permission Denied", status="error")
return ""
except Exception as e:
raise

View File

@@ -38,7 +38,6 @@ log = structlog.get_logger("talemate.model_prompts")
class ModelPrompt:
"""
Will attempt to load an LLM prompt template based on the model name

View File

@@ -16,6 +16,25 @@ __all__ = [
]
log = structlog.get_logger("talemate")
# Edit this to add new models / remove old models
SUPPORTED_MODELS = [
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-0125",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo",
"gpt-4",
"gpt-4-1106-preview",
"gpt-4-0125-preview",
"gpt-4-turbo-preview",
]
JSON_OBJECT_RESPONSE_MODELS = [
"gpt-4-1106-preview",
"gpt-4-0125-preview",
"gpt-4-turbo-preview",
"gpt-3.5-turbo-0125",
]
def num_tokens_from_messages(messages: list[dict], model: str = "gpt-3.5-turbo-0613"):
"""Return the number of tokens used by a list of messages."""
@@ -90,14 +109,7 @@ class OpenAIClient(ClientBase):
name_prefix: str = "OpenAI"
title: str = "OpenAI"
manual_model: bool = True
manual_model_choices: list[str] = [
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-4",
"gpt-4-1106-preview",
"gpt-4-0125-preview",
"gpt-4-turbo-preview",
]
manual_model_choices: list[str] = SUPPORTED_MODELS
requires_prompt_template: bool = False
defaults: Defaults = Defaults()
@@ -165,6 +177,9 @@ class OpenAIClient(ClientBase):
if not self.model_name:
self.model_name = "gpt-3.5-turbo-16k"
if max_token_length and not isinstance(max_token_length, int):
max_token_length = int(max_token_length)
model = self.model_name
self.client = AsyncOpenAI(api_key=self.openai_api_key)
@@ -216,7 +231,7 @@ class OpenAIClient(ClientBase):
if "<|BOT|>" in prompt:
_, right = prompt.split("<|BOT|>", 1)
if right:
prompt = prompt.replace("<|BOT|>", "\nContinue this response: ")
prompt = prompt.replace("<|BOT|>", "\nStart your response with: ")
else:
prompt = prompt.replace("<|BOT|>", "")
@@ -229,6 +244,15 @@ class OpenAIClient(ClientBase):
valid_keys = ["temperature", "top_p"]
# GPT-3.5 models tend to run away with the generated
# response size so we allow talemate to set the max_tokens
#
# GPT-4 on the other hand seems to benefit from letting it
# decide the generation length naturally and it will generally
# produce reasonably sized responses
if self.model_name.startswith("gpt-3.5-"):
valid_keys.append("max_tokens")
for key in keys:
if key not in valid_keys:
del parameters[key]
@@ -242,10 +266,14 @@ class OpenAIClient(ClientBase):
raise Exception("No OpenAI API key set")
# only gpt-4-* supports enforcing json object
supports_json_object = self.model_name.startswith("gpt-4-")
supports_json_object = (
self.model_name.startswith("gpt-4-")
or self.model_name in JSON_OBJECT_RESPONSE_MODELS
)
right = None
expected_response = None
try:
_, right = prompt.split("\nContinue this response: ")
_, right = prompt.split("\nStart your response with: ")
expected_response = right.strip()
if expected_response.startswith("{") and supports_json_object:
parameters["response_format"] = {"type": "json_object"}
@@ -255,8 +283,13 @@ class OpenAIClient(ClientBase):
human_message = {"role": "user", "content": prompt.strip()}
system_message = {"role": "system", "content": self.get_system_message(kind)}
self.log.debug("generate", prompt=prompt[:128] + " ...", parameters=parameters, system_message=system_message)
self.log.debug(
"generate",
prompt=prompt[:128] + " ...",
parameters=parameters,
system_message=system_message,
)
try:
response = await self.client.chat.completions.create(
model=self.model_name,
@@ -266,6 +299,17 @@ class OpenAIClient(ClientBase):
response = response.choices[0].message.content
# older models don't support json_object response coersion
# and often like to return the response wrapped in ```json
# so we strip that out if the expected response is a json object
if (
not supports_json_object
and expected_response
and expected_response.startswith("{")
):
if response.startswith("```json") and response.endswith("```"):
response = response[7:-3].strip()
if right and response.startswith(right):
response = response[len(right) :].strip()

View File

@@ -1,9 +1,14 @@
import pydantic
import structlog
import urllib
from openai import AsyncOpenAI, NotFoundError, PermissionDeniedError
from talemate.client.base import ClientBase
from talemate.client.base import ClientBase, ExtraField
from talemate.client.registry import register
from talemate.emit import emit
from talemate.config import Client as BaseClientConfig
log = structlog.get_logger("talemate.client.openai_compat")
EXPERIMENTAL_DESCRIPTION = """Use this client if you want to connect to a service implementing an OpenAI-compatible API. Success is going to depend on the level of compatibility. Use the actual OpenAI client if you want to connect to OpenAI's API."""
@@ -13,12 +18,18 @@ class Defaults(pydantic.BaseModel):
api_key: str = ""
max_token_length: int = 4096
model: str = ""
api_handles_prompt_template: bool = False
class ClientConfig(BaseClientConfig):
api_handles_prompt_template: bool = False
@register()
class OpenAICompatibleClient(ClientBase):
client_type = "openai_compat"
conversation_retries = 5
config_cls = ClientConfig
class Meta(ClientBase.Meta):
title: str = "OpenAI Compatible API"
@@ -27,9 +38,22 @@ class OpenAICompatibleClient(ClientBase):
enable_api_auth: bool = True
manual_model: bool = True
defaults: Defaults = Defaults()
extra_fields: dict[str, ExtraField] = {
"api_handles_prompt_template": ExtraField(
name="api_handles_prompt_template",
type="bool",
label="API Handles Prompt Template",
required=False,
description="The API handles the prompt template, meaning your choice in the UI for the prompt template below will be ignored.",
)
}
def __init__(self, model=None, **kwargs):
def __init__(
self, model=None, api_key=None, api_handles_prompt_template=False, **kwargs
):
self.model_name = model
self.api_key = api_key
self.api_handles_prompt_template = api_handles_prompt_template
super().__init__(**kwargs)
@property
@@ -37,8 +61,12 @@ class OpenAICompatibleClient(ClientBase):
return EXPERIMENTAL_DESCRIPTION
def set_client(self, **kwargs):
self.api_key = kwargs.get("api_key")
self.client = AsyncOpenAI(base_url=self.api_url + "/v1", api_key=self.api_key)
self.api_key = kwargs.get("api_key", self.api_key)
self.api_handles_prompt_template = kwargs.get(
"api_handles_prompt_template", self.api_handles_prompt_template
)
url = self.api_url
self.client = AsyncOpenAI(base_url=url, api_key=self.api_key)
self.model_name = (
kwargs.get("model") or kwargs.get("model_name") or self.model_name
)
@@ -48,32 +76,33 @@ class OpenAICompatibleClient(ClientBase):
keys = list(parameters.keys())
valid_keys = ["temperature", "top_p"]
valid_keys = ["temperature", "top_p", "max_tokens"]
for key in keys:
if key not in valid_keys:
del parameters[key]
def prompt_template(self, system_message: str, prompt: str):
log.debug(
"IS API HANDLING PROMPT TEMPLATE",
api_handles_prompt_template=self.api_handles_prompt_template,
)
if not self.api_handles_prompt_template:
return super().prompt_template(system_message, prompt)
if "<|BOT|>" in prompt:
_, right = prompt.split("<|BOT|>", 1)
if right:
prompt = prompt.replace("<|BOT|>", "\nStart your response with: ")
else:
prompt = prompt.replace("<|BOT|>", "")
return prompt
async def get_model_name(self):
try:
model_name = await super().get_model_name()
except NotFoundError as e:
# api does not implement model listing
return self.model_name
except Exception as e:
self.log.error("get_model_name error", e=e)
return self.model_name
# model name may be a file path, so we need to extract the model name
# the path could be windows or linux so it needs to handle both backslash and forward slash
is_filepath = "/" in model_name
is_filepath_windows = "\\" in model_name
if is_filepath or is_filepath_windows:
model_name = model_name.replace("\\", "/").split("/")[-1]
return model_name
return self.model_name
async def generate(self, prompt: str, parameters: dict, kind: str):
"""
@@ -106,8 +135,14 @@ class OpenAICompatibleClient(ClientBase):
if "api_url" in kwargs:
self.api_url = kwargs["api_url"]
if "max_token_length" in kwargs:
self.max_token_length = kwargs["max_token_length"]
self.max_token_length = (
int(kwargs["max_token_length"]) if kwargs["max_token_length"] else 4096
)
if "api_key" in kwargs:
self.api_auth = kwargs["api_key"]
if "api_handles_prompt_template" in kwargs:
self.api_handles_prompt_template = kwargs["api_handles_prompt_template"]
log.warning("reconfigure", kwargs=kwargs)
self.set_client(**kwargs)

View File

@@ -121,62 +121,62 @@ def preset_for_kind(kind: str):
return PRESET_DIVINE_INTELLECT # Assuming adding detail uses the same preset as divine intellect
elif kind == "edit_fix_exposition":
return PRESET_DIVINE_INTELLECT # Assuming fixing exposition uses the same preset as divine intellect
elif kind == "visualize":
return PRESET_SIMPLE_1
else:
return PRESET_SIMPLE_1 # Default preset if none of the kinds match
def max_tokens_for_kind(kind: str, total_budget: int):
if kind == "conversation":
return 75 # Example value, adjust as needed
return 75
elif kind == "conversation_old":
return 75 # Example value, adjust as needed
return 75
elif kind == "conversation_long":
return 300 # Example value, adjust as needed
return 300
elif kind == "conversation_select_talking_actor":
return 30 # Example value, adjust as needed
return 30
elif kind == "summarize":
return 500 # Example value, adjust as needed
return 500
elif kind == "analyze":
return 500 # Example value, adjust as needed
return 500
elif kind == "analyze_creative":
return 1024 # Example value, adjust as needed
return 1024
elif kind == "analyze_long":
return 2048 # Example value, adjust as needed
return 2048
elif kind == "analyze_freeform":
return 500 # Example value, adjust as needed
return 500
elif kind == "analyze_freeform_medium":
return 192
elif kind == "analyze_freeform_medium_short":
return 128
elif kind == "analyze_freeform_short":
return 10 # Example value, adjust as needed
return 10
elif kind == "narrate":
return 500 # Example value, adjust as needed
return 500
elif kind == "story":
return 300 # Example value, adjust as needed
return 300
elif kind == "create":
return min(
1024, int(total_budget * 0.35)
) # Example calculation, adjust as needed
return min(1024, int(total_budget * 0.35))
elif kind == "create_concise":
return min(
400, int(total_budget * 0.25)
) # Example calculation, adjust as needed
return min(400, int(total_budget * 0.25))
elif kind == "create_precise":
return min(
400, int(total_budget * 0.25)
) # Example calculation, adjust as needed
return min(400, int(total_budget * 0.25))
elif kind == "create_short":
return 25
elif kind == "director":
return min(
192, int(total_budget * 0.25)
) # Example calculation, adjust as needed
return min(192, int(total_budget * 0.25))
elif kind == "director_short":
return 25 # Example value, adjust as needed
return 25
elif kind == "director_yesno":
return 2 # Example value, adjust as needed
return 2
elif kind == "edit_dialogue":
return 100 # Example value, adjust as needed
return 100
elif kind == "edit_add_detail":
return 200 # Example value, adjust as needed
return 200
elif kind == "edit_fix_exposition":
return 1024 # Example value, adjust as needed
return 1024
elif kind == "visualize":
return 150
else:
return 150 # Default value if none of the kinds match

View File

@@ -20,6 +20,8 @@ WORLD_STATE = str(Prompt.get("world_state.system-analyst"))
SUMMARIZE = str(Prompt.get("summarizer.system"))
VISUALIZE = str(Prompt.get("visual.system"))
# CAREBEAR PROMPTS
ROLEPLAY_NO_DECENSOR = str(Prompt.get("conversation.system-no-decensor"))
@@ -32,10 +34,14 @@ DIRECTOR_NO_DECENSOR = str(Prompt.get("director.system-no-decensor"))
ANALYST_NO_DECENSOR = str(Prompt.get("world_state.system-analyst-no-decensor"))
ANALYST_FREEFORM_NO_DECENSOR = str(Prompt.get("world_state.system-analyst-freeform-no-decensor"))
ANALYST_FREEFORM_NO_DECENSOR = str(
Prompt.get("world_state.system-analyst-freeform-no-decensor")
)
EDITOR_NO_DECENSOR = str(Prompt.get("editor.system-no-decensor"))
WORLD_STATE_NO_DECENSOR = str(Prompt.get("world_state.system-analyst-no-decensor"))
SUMMARIZE_NO_DECENSOR = str(Prompt.get("summarizer.system-no-decensor"))
VISUALIZE_NO_DECENSOR = str(Prompt.get("visual.system-no-decensor"))

View File

@@ -1,4 +1,5 @@
import random
import re
import httpx
import structlog
@@ -28,20 +29,23 @@ class TextGeneratorWebuiClient(ClientBase):
parameters["stop"] = parameters["stopping_strings"]
# Half temperature on -Yi- models
if (
self.model_name
and "-yi-" in self.model_name.lower()
and parameters["temperature"] > 0.1
):
parameters["temperature"] = parameters["temperature"] / 2
if self.model_name and self.is_yi_model():
parameters["smoothing_factor"] = 0.3
# also half the temperature
parameters["temperature"] = max(0.1, parameters["temperature"] / 2)
log.debug(
"halfing temperature for -yi- model",
temperature=parameters["temperature"],
"applying temperature smoothing for Yi model",
)
def set_client(self, **kwargs):
self.client = AsyncOpenAI(base_url=self.api_url + "/v1", api_key="sk-1111")
def is_yi_model(self):
model_name = self.model_name.lower()
# regex match for yi encased by non-word characters
return bool(re.search(r"[\-_]yi[\-_]", model_name))
async def get_model_name(self):
async with httpx.AsyncClient() as client:
response = await client.get(

View File

@@ -79,7 +79,7 @@ class CmdDeactivateCharacter(TalemateCommand):
)
message = await narrator.action_to_narration(
"narrate_character_exit",
self.scene.get_character(character_name),
character=self.scene.get_character(character_name),
direction=direction,
)
self.narrator_message(message)
@@ -159,7 +159,7 @@ class CmdActivateCharacter(TalemateCommand):
)
message = await narrator.action_to_narration(
"narrate_character_entry",
self.scene.get_character(character_name),
character=self.scene.get_character(character_name),
direction=direction,
)
self.narrator_message(message)

View File

@@ -1,6 +1,9 @@
import asyncio
import json
import logging
import structlog
from talemate.commands.base import TalemateCommand
from talemate.commands.manager import register
from talemate.prompts.base import set_default_sectioning_handler
@@ -12,6 +15,8 @@ __all__ = [
"CmdRunAutomatic",
]
log = structlog.get_logger("talemate.commands.cmd_debug_tools")
@register
class CmdDebugOn(TalemateCommand):
@@ -144,3 +149,32 @@ class CmdSetContentContext(TalemateCommand):
self.scene.context = context
self.emit("system", f"Content context set to {context}")
@register
class CmdDumpHistory(TalemateCommand):
"""
Command class for the 'dump_history' command
"""
name = "dump_history"
description = "Dump the history of the scene"
aliases = []
async def run(self):
for entry in self.scene.history:
log.debug("dump_history", entry=entry)
@register
class CmdDumpSceneSerialization(TalemateCommand):
"""
Command class for the 'dump_scene_serialization' command
"""
name = "dump_scene_serialization"
description = "Dump the scene serialization"
aliases = []
async def run(self):
log.debug("dump_scene_serialization", serialization=self.scene.json)

View File

@@ -36,7 +36,11 @@ class CmdAIDialogue(TalemateCommand):
if conversation_agent.actions["natural_flow"].enabled:
await conversation_agent.apply_natural_flow(force=True, npcs_only=True)
character_name = self.scene.next_actor
actor = self.scene.get_character(character_name).actor
try:
actor = self.scene.get_character(character_name).actor
except AttributeError:
return
if actor.character.is_player:
actor = random.choice(list(self.scene.get_npc_characters())).actor
else:

View File

@@ -26,6 +26,12 @@ class CmdRebuildArchive(TalemateCommand):
ah for ah in self.scene.archived_history if ah.get("end") is None
]
self.scene.ts = (
self.scene.archived_history[-1].ts
if self.scene.archived_history
else "PT0S"
)
while True:
more = await summarizer.agent.build_archive(self.scene)

View File

@@ -50,7 +50,6 @@ class CmdWorldState(TalemateCommand):
@register
class CmdPersistCharacter(TalemateCommand):
"""
Will attempt to create an actual character from a currently non
tracked character in the scene, by name.
@@ -177,7 +176,6 @@ class CmdPersistCharacter(TalemateCommand):
@register
class CmdAddReinforcement(TalemateCommand):
"""
Will attempt to create an actual character from a currently non
tracked character in the scene, by name.
@@ -204,7 +202,6 @@ class CmdAddReinforcement(TalemateCommand):
@register
class CmdRemoveReinforcement(TalemateCommand):
"""
Will attempt to create an actual character from a currently non
tracked character in the scene, by name.
@@ -236,7 +233,6 @@ class CmdRemoveReinforcement(TalemateCommand):
@register
class CmdUpdateReinforcements(TalemateCommand):
"""
Will attempt to create an actual character from a currently non
tracked character in the scene, by name.
@@ -258,7 +254,6 @@ class CmdUpdateReinforcements(TalemateCommand):
@register
class CmdCheckPinConditions(TalemateCommand):
"""
Will attempt to create an actual character from a currently non
tracked character in the scene, by name.
@@ -277,7 +272,6 @@ class CmdCheckPinConditions(TalemateCommand):
@register
class CmdApplyWorldStateTemplate(TalemateCommand):
"""
Will apply a world state template setting up
automatic state tracking.
@@ -337,7 +331,6 @@ class CmdApplyWorldStateTemplate(TalemateCommand):
@register
class CmdSummarizeAndPin(TalemateCommand):
"""
Will take a message index and then walk back N messages
summarizing the scene and pinning it to the context.

View File

@@ -1,12 +1,16 @@
import datetime
import os
from typing import TYPE_CHECKING, ClassVar, Dict, Optional, Union
import copy
from typing import TYPE_CHECKING, ClassVar, Dict, Optional, TypeVar, Union, Any
from typing_extensions import Annotated
import pydantic
import structlog
import yaml
from pydantic import BaseModel, Field
from talemate.agents.registry import get_agent_class
from talemate.client.registry import get_client_class
from talemate.emit import emit
from talemate.scene_assets import Asset
@@ -16,6 +20,16 @@ if TYPE_CHECKING:
log = structlog.get_logger("talemate.config")
def scenes_dir():
relative_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"..",
"..",
"scenes",
)
return os.path.abspath(relative_path)
class Client(BaseModel):
type: str
name: str
@@ -28,6 +42,9 @@ class Client(BaseModel):
extra = "ignore"
ClientType = TypeVar("ClientType", bound=Client)
class AgentActionConfig(BaseModel):
value: Union[int, float, str, bool, None] = None
@@ -66,6 +83,7 @@ class GamePlayerCharacter(BaseModel):
class General(BaseModel):
auto_save: bool = True
auto_progress: bool = True
max_backscroll: int = 512
class StateReinforcementTemplate(BaseModel):
@@ -87,6 +105,9 @@ class WorldStateTemplates(BaseModel):
default_factory=dict
)
def get_template(self, name: str) -> Union[StateReinforcementTemplate, None]:
return self.state_reinforcement.get(name)
class WorldState(BaseModel):
templates: WorldStateTemplates = WorldStateTemplates()
@@ -111,6 +132,14 @@ class OpenAIConfig(BaseModel):
api_key: Union[str, None] = None
class MistralAIConfig(BaseModel):
api_key: Union[str, None] = None
class AnthropicConfig(BaseModel):
api_key: Union[str, None] = None
class RunPodConfig(BaseModel):
api_key: Union[str, None] = None
@@ -138,6 +167,7 @@ class TTSConfig(BaseModel):
class ChromaDB(BaseModel):
instructor_device: str = "cpu"
instructor_model: str = "default"
openai_model: str = "text-embedding-3-small"
embeddings: str = "default"
@@ -149,8 +179,56 @@ class RecentScene(BaseModel):
cover_image: Union[Asset, None] = None
def gnerate_intro_scenes():
"""
When there are no recent scenes, generate from a set of introdutory scenes
"""
scenes = [
RecentScene(
name="Simulation Suite",
path=os.path.join(
scenes_dir(), "simulation-suite", "simulation-suite.json"
),
filename="simulation-suite.json",
date=datetime.datetime.now().isoformat(),
cover_image=Asset(
id="4b157dccac2ba71adb078a9d591f9900d6d62f3e86168a5e0e5e1e9faf6dc103",
file_type="png",
media_type="image/png",
),
),
RecentScene(
name="Infinity Quest",
path=os.path.join(scenes_dir(), "infinity-quest", "infinity-quest.json"),
filename="infinity-quest.json",
date=datetime.datetime.now().isoformat(),
cover_image=Asset(
id="52b1388ed6f77a43981bd27e05df54f16e12ba8de1c48f4b9bbcb138fa7367df",
file_type="png",
media_type="image/png",
),
),
RecentScene(
name="Infinity Quest Dynamic Scenario",
path=os.path.join(
scenes_dir(), "infinity-quest-dynamic-scenario", "infinity-quest.json"
),
filename="infinity-quest.json",
date=datetime.datetime.now().isoformat(),
cover_image=Asset(
id="e7c712a0b276342d5767ba23806b03912d10c7c4b82dd1eec0056611e2cd5404",
file_type="png",
media_type="image/png",
),
),
]
return scenes
class RecentScenes(BaseModel):
scenes: list[RecentScene] = pydantic.Field(default_factory=list)
scenes: list[RecentScene] = pydantic.Field(default_factory=gnerate_intro_scenes)
max_entries: int = 10
def push(self, scene: "Scene"):
@@ -175,9 +253,11 @@ class RecentScenes(BaseModel):
path=scene.full_path,
filename=scene.filename,
date=now.isoformat(),
cover_image=scene.assets.assets[scene.assets.cover_image]
if scene.assets.cover_image
else None,
cover_image=(
scene.assets.assets[scene.assets.cover_image]
if scene.assets.cover_image
else None
),
),
)
@@ -192,8 +272,44 @@ class RecentScenes(BaseModel):
self.scenes = [s for s in self.scenes if os.path.exists(s.path)]
def validate_client_type(
v: Any,
handler: pydantic.ValidatorFunctionWrapHandler,
info: pydantic.ValidationInfo,
):
# clients can specify a custom config model in
# client_cls.config_cls so we need to convert the
# client config to the correct model
# v is dict
if isinstance(v, dict):
client_cls = get_client_class(v.get("type"))
if client_cls:
config_cls = getattr(client_cls, "config_cls", None)
if config_cls:
return config_cls(**v)
else:
return handler(v)
# v is Client instance
elif isinstance(v, Client):
client_cls = get_client_class(v.type)
if client_cls:
config_cls = getattr(client_cls, "config_cls", None)
if config_cls:
return config_cls(**v.model_dump())
else:
return handler(v)
AnnotatedClient = Annotated[
ClientType,
pydantic.WrapValidator(validate_client_type),
]
class Config(BaseModel):
clients: Dict[str, Client] = {}
clients: Dict[str, AnnotatedClient] = {}
game: Game
agents: Dict[str, Agent] = {}
@@ -202,6 +318,10 @@ class Config(BaseModel):
openai: OpenAIConfig = OpenAIConfig()
mistralai: MistralAIConfig = MistralAIConfig()
anthropic: AnthropicConfig = AnthropicConfig()
runpod: RunPodConfig = RunPodConfig()
chromadb: ChromaDB = ChromaDB()
@@ -240,7 +360,6 @@ def load_config(
Should cache the config and only reload if the file modification time
has changed since the last load
"""
with open(file_path, "r") as file:
config_data = yaml.safe_load(file)
@@ -279,3 +398,44 @@ def save_config(config, file_path: str = "./config.yaml"):
yaml.dump(config, file)
emit("config_saved", data=config)
def cleanup():
log.info("cleaning up config")
config = load_config(as_model=True)
cleanup_removed_clients(config)
cleanup_removed_agents(config)
save_config(config)
def cleanup_removed_clients(config: Config):
"""
Will remove any clients that are no longer present
"""
if not config:
return
for client_in_config in list(config.clients.keys()):
client_config = config.clients[client_in_config]
if not get_client_class(client_config.type):
log.info("removing client from config", client=client_in_config)
del config.clients[client_in_config]
def cleanup_removed_agents(config: Config):
"""
Will remove any agents that are no longer present
"""
if not config:
return
for agent_in_config in list(config.agents.keys()):
if not get_agent_class(agent_in_config):
log.info("removing agent from config", agent=agent_in_config)
del config.agents[agent_in_config]

View File

@@ -38,6 +38,8 @@ class Emission:
id: str = None
details: str = None
data: dict = None
websocket_passthrough: bool = False
meta: dict = dataclasses.field(default_factory=dict)
def emit(
@@ -125,8 +127,9 @@ class Receiver:
def handle(self, emission: Emission):
fn = getattr(self, f"handle_{emission.typ}", None)
if not fn:
return
return False
fn(emission)
return True
def connect(self):
for typ in handlers:

View File

@@ -34,6 +34,8 @@ MessageEdited = signal("message_edited")
ConfigSaved = signal("config_saved")
ImageGenerated = signal("image_generated")
handlers = {
"system": SystemMessage,
"narrator": NarratorMessage,
@@ -60,4 +62,5 @@ handlers = {
"audio_queue": AudioQueue,
"config_saved": ConfigSaved,
"status": StatusMessage,
"image_generated": ImageGenerated,
}

View File

@@ -29,6 +29,7 @@ class Instructions(pydantic.BaseModel):
class Ops(pydantic.BaseModel):
run_on_start: bool = False
always_direct: bool = False
class GameState(pydantic.BaseModel):
@@ -95,8 +96,8 @@ class GameState(pydantic.BaseModel):
def has_var(self, key: str) -> bool:
return key in self.variables
def get_var(self, key: str) -> Any:
return self.variables[key]
def get_var(self, key: str, default: Any = None) -> Any:
return self.variables.get(key, default)
def get_or_set_var(self, key: str, value: Any, commit: bool = False) -> Any:
if not self.has_var(key):

View File

@@ -1,6 +1,7 @@
"""
Keep track of clients and agents
"""
import asyncio
import structlog
@@ -162,14 +163,9 @@ def emit_agent_status(cls, agent=None):
data=cls.config_options(),
)
else:
emit(
"agent_status",
message=agent.verbose_name or "",
status=agent.status,
id=agent.agent_type,
details=agent.agent_details,
data=cls.config_options(agent=agent),
)
asyncio.create_task(agent.emit_status())
# loop = asyncio.get_event_loop()
# loop.run_until_complete(agent.emit_status())
def emit_agents_status(*args, **kwargs):
@@ -177,9 +173,17 @@ def emit_agents_status(*args, **kwargs):
Will emit status of all agents
"""
# log.debug("emit", type="agent status")
for typ, cls in agents.AGENT_CLASSES.items():
for typ, cls in sorted(
agents.AGENT_CLASSES.items(), key=lambda x: x[1].verbose_name
):
agent = AGENTS.get(typ)
emit_agent_status(cls, agent)
handlers["request_agent_status"].connect(emit_agents_status)
async def agent_ready_checks():
for agent in AGENTS.values():
if agent and agent.enabled:
await agent.ready_check()

View File

@@ -174,6 +174,9 @@ async def load_scene_from_data(
scene.filename = None
scene.goals = scene_data.get("goals", [])
scene.immutable_save = scene_data.get("immutable_save", False)
scene.experimental = scene_data.get("experimental", False)
scene.help = scene_data.get("help", "")
scene.restore_from = scene_data.get("restore_from", "")
# reset = True
@@ -240,9 +243,13 @@ async def load_scene_from_data(
actor = Actor(character, agent)
else:
actor = Player(character, None)
# Add the TestCharacter actor to the scene
await scene.add_actor(actor)
# if there is nio player character, add the default player character
if not scene.get_player_character():
await scene.add_actor(default_player_character())
# the scene has been saved before (since we just loaded it), so we set the saved flag to True
# as long as the scene has a memory_id.
scene.saved = "memory_id" in scene_data

View File

@@ -205,9 +205,14 @@ class LoopedPrompt:
self._current_item = None
class JoinableList(list):
def join(self, separator: str = "\n"):
return separator.join(self)
@dataclasses.dataclass
class Prompt:
"""
Base prompt class.
"""
@@ -355,6 +360,7 @@ class Prompt:
env.globals["query_scene"] = self.query_scene
env.globals["query_memory"] = self.query_memory
env.globals["query_text"] = self.query_text
env.globals["query_text_eval"] = self.query_text_eval
env.globals["instruct_text"] = self.instruct_text
env.globals["agent_action"] = self.agent_action
env.globals["retrieve_memories"] = self.retrieve_memories
@@ -364,6 +370,8 @@ class Prompt:
env.globals["len"] = lambda x: len(x)
env.globals["max"] = lambda x, y: max(x, y)
env.globals["min"] = lambda x, y: min(x, y)
env.globals["make_list"] = lambda: JoinableList()
env.globals["make_dict"] = lambda: {}
env.globals["count_tokens"] = lambda x: count_tokens(
dedupe_string(x, debug=False)
)
@@ -372,6 +380,7 @@ class Prompt:
env.globals["emit_system"] = lambda status, message: emit(
"system", status=status, message=message
)
env.globals["emit_narrator"] = lambda message: emit("system", message=message)
env.filters["condensed"] = condensed
ctx.update(self.vars)
@@ -439,10 +448,14 @@ class Prompt:
vars.update(kwargs)
return Prompt.get(uid, vars=vars)
def render_and_request(self, prompt: "Prompt", kind: str = "create") -> str:
def render_and_request(
self, prompt: "Prompt", kind: str = "create", dedupe_enabled: bool = True
) -> str:
if not self.client:
raise ValueError("Prompt has no client set.")
prompt.dedupe_enabled = dedupe_enabled
loop = asyncio.get_event_loop()
return loop.run_until_complete(prompt.send(self.client, kind=kind))
@@ -483,9 +496,15 @@ class Prompt:
]
)
def query_text(self, query: str, text: str, as_question_answer: bool = True):
def query_text(
self,
query: str,
text: str,
as_question_answer: bool = True,
short: bool = False,
):
loop = asyncio.get_event_loop()
summarizer = instance.get_agent("world_state")
world_state = instance.get_agent("world_state")
query = query.format(**self.vars)
if isinstance(text, list):
@@ -493,7 +512,7 @@ class Prompt:
if not as_question_answer:
return loop.run_until_complete(
summarizer.analyze_text_and_answer_question(text, query)
world_state.analyze_text_and_answer_question(text, query, short=short)
)
return "\n".join(
@@ -501,11 +520,18 @@ class Prompt:
f"Question: {query}",
f"Answer: "
+ loop.run_until_complete(
summarizer.analyze_text_and_answer_question(text, query)
world_state.analyze_text_and_answer_question(
text, query, short=short
)
),
]
)
def query_text_eval(self, query: str, text: str):
query = f"{query} Answer with a yes or no."
response = self.query_text(query, text, as_question_answer=False, short=True)
return response.strip().lower().startswith("y")
def query_memory(self, query: str, as_question_answer: bool = True, **kwargs):
loop = asyncio.get_event_loop()
memory = instance.get_agent("memory")
@@ -551,14 +577,17 @@ class Prompt:
world_state.analyze_text_and_extract_context("\n".join(lines), goal=goal)
)
def agent_action(self, agent_name: str, action_name: str, **kwargs):
def agent_action(self, agent_name: str, _action_name: str, **kwargs):
loop = asyncio.get_event_loop()
agent = instance.get_agent(agent_name)
action = getattr(agent, action_name)
action = getattr(agent, _action_name)
return loop.run_until_complete(action(**kwargs))
def emit_status(self, status: str, message: str):
emit("status", status=status, message=message)
def emit_status(self, status: str, message: str, **kwargs):
if kwargs:
emit("status", status=status, message=message, data=kwargs)
else:
emit("status", status=status, message=message)
def set_prepared_response(self, response: str, prepend: str = ""):
"""

View File

@@ -37,9 +37,20 @@ Based on {{ talking_character.name}}'s example dialogue style, create a continua
You may chose to have {{ talking_character.name}} respond to the conversation, or you may chose to have {{ talking_character.name}} perform a new action that is in line with {{ talking_character.name}}'s character.
{% if scene.conversation_format == "movie_script" -%}
The format is a movie script, so you should write the character's name in all caps followed by a line break and then the character's dialogue. For example:
CHARACTER NAME
I'm so glad you're here.
Emotions and actions should be written in italics. For example:
CHARACTER NAME
*smiles* I'm so glad you're here.
{% else -%}
Always contain actions in asterisks. For example, *{{ talking_character.name}} smiles*.
Always contain dialogue in quotation marks. For example, {{ talking_character.name}}: "Hello!"
{% endif -%}
{{ extra_instructions }}
{% if scene.count_character_messages(talking_character) >= 5 %}Use an informal and colloquial register with a conversational tone. Overall, {{ talking_character.name }}'s dialog is Informal, conversational, natural, and spontaneous, with a sense of immediacy.
@@ -84,19 +95,30 @@ Always contain dialogue in quotation marks. For example, {{ talking_character.na
<|SECTION:SCENE|>
{% endblock -%}
{% block scene_history -%}
{% for scene_context in scene.context_history(budget=max_tokens-200-count_tokens(self.rendered_context()), min_dialogue=15, sections=False, keep_director=talking_character.name) -%}
{{ scene_context }}
{% set scene_context = scene.context_history(budget=max_tokens-200-count_tokens(self.rendered_context()), min_dialogue=15, sections=False, keep_director=talking_character.name) -%}
{%- if talking_character.dialogue_instructions -%}
{% set _ = scene_context.insert(-3, "# Internal acting instructions for "+talking_character.name+": "+talking_character.dialogue_instructions) %}
{% endif -%}
{% for scene_line in scene_context -%}
{{ scene_line }}
{% endfor %}
{% endblock -%}
<|CLOSE_SECTION|>
{% if scene.count_character_messages(talking_character) < 5 %}Use an informal and colloquial register with a conversational tone. Overall, {{ talking_character.name }}'s dialog is Informal, conversational, natural, and spontaneous, with a sense of immediacy. Flesh out additional details by describing {{ talking_character.name }}'s actions and mannerisms within asterisks, e.g. *{{ talking_character.name }} smiles*.
{% if scene.count_character_messages(talking_character) < 5 %}(Use an informal and colloquial register with a conversational tone. Overall, {{ talking_character.name }}'s dialog is Informal, conversational, natural, and spontaneous, with a sense of immediacy.)
{% endif -%}
{% if rerun_context and rerun_context.direction -%}
{% if rerun_context.method == 'replace' -%}
Final instructions for generating the next line of dialogue: {{ rerun_context.direction }}
# Final instructions for generating the next line of dialogue: {{ rerun_context.direction }}
{% elif rerun_context.method == 'edit' and rerun_context.message -%}
Edit and respond with your changed version of the following line of dialogue: {{ rerun_context.message }}
Requested changes: {{ rerun_context.direction }}
# Edit and respond with your changed version of the following line of dialogue: {{ rerun_context.message|condensed }}
# Requested changes: {{ rerun_context.direction }}
{% endif -%}
{% endif -%}
{{ bot_token}}{{ talking_character.name }}:{{ partial_message }}
{% if scene.conversation_format == 'movie_script' -%}
{{ bot_token }}{{ talking_character.name.upper() }}{% if partial_message %}
{{ partial_message }}
{% endif %}
{% else -%}
{{ bot_token }}{{ talking_character.name }}:{{ partial_message }}
{% endif -%}

View File

@@ -0,0 +1,71 @@
{% block rendered_context %}
{% include "extra-context.jinja2" %}
{% if character %}
<|SECTION:CHARACTER|>
{% if context_typ == 'character attribute' -%}
{{ character.sheet_filtered(context_name) }}
{% else -%}
{{ character.sheet }}
{% endif -%}
<|CLOSE_SECTION|>
{% endif %}
{% endblock %}
<|SECTION:SCENE|>
{% for scene_context in scene.context_history(budget=max_tokens-1024-count_tokens(self.rendered_context())) -%}
{{ scene_context }}
{% endfor %}
<|CLOSE_SECTION|>
<|SECTION:TASK|>
{#- SET TASK ACTION -#}
{% if not generation_context.original %}
{%- set action_task = "Generate the" -%}
{% else %}
{%- set action_task = "Rewrite the existing" -%}
Original {{ context_name }}: {{ generation_context.original }}
{% endif %}
{#- CHARACTER ATTRIBUTE -#}
{% if context_typ == "character attribute" %}
{{ action_task }} "{{ context_name }}" attribute for {{ character.name }}. This must be a general description and not a continuation of the current narrative.
{#- CHARACTER DETAIL -#}
{% elif context_typ == "character detail" %}
{% if context_name.endswith("?") -%}
{{ action_task }} answer to "{{ context_name }}" for {{ character.name }}. This must be a general description and not a continuation of the current narrative.
{% else -%}
{{ action_task }} "{{ context_name }}" detail for {{ character.name }}. This must be a general description and not a continuation of the current narrative. Use paragraphs to separate different details.
{% endif -%}
Use a simple, easy to read writing format.
{#- CHARACTER EXAMPLE DIALOGUE -#}
{% elif context_typ == "character dialogue" %}
Generate a new line of example dialogue for {{ character.name }}.
Exisiting Dialogue Examples:
{% for line in character.example_dialogue %}
{{ line }}
{% endfor %}
You must only respond with the generated dialogue example.
Always contain actions in asterisks. For example, *{{ character.name}} smiles*.
Always contain dialogue in quotation marks. For example, {{ character.name}}: "Hello!"
{%- if character.dialogue_instructions -%}
Dialogue instructions for {{ character.name }}: {{ character.dialogue_instructions }}
{% endif -%}
{#- GENERAL CONTEXT -#}
{% else %}
{% if context_name.endswith("?") -%}
{{ action_task }} answer to the question "{{ context_name }}". This must be a general description and not a continuation of the current narrative.
{%- else -%}
{{ action_task }} new narrative content for {{ context_name }}
Use a simple, easy to read writing format.
{%- endif -%}
{% endif %}
{% if generation_context.instructions %}Additional instructions: {{ generation_context.instructions }}{% endif %}
<|CLOSE_SECTION|>
{{ bot_token }}
{%- if context_typ == 'character attribute' -%}
{{ character.name }}'s {{ context_name }}:
{%- elif context_typ == 'character dialogue' -%}
{{ character.name }}:
{%- else -%}
{{ context_name }}:
{%- endif -%}

View File

@@ -0,0 +1,21 @@
{% block rendered_context %}
{% include "extra-context.jinja2" %}
{% endblock %}
<|SECTION:SCENE|>
{% for scene_context in scene.context_history(budget=max_tokens-1024-count_tokens(self.rendered_context())) -%}
{{ scene_context }}
{% endfor %}
<|CLOSE_SECTION|>
<|SECTION:TASK|>
Determine character name based on the following sentence: {{ character_name }}
{% if not allowed_names -%}
If the character already has a distinct name, respond with the character's name.
If the name is currently a description, give the character a distinct name.
If we don't know the character's actual name, you must decide one.
YOU MUST ONLY RESPOND WITH THE CHARACTER NAME, NOTHING ELSE.
{% else %}
Pick the most fitting name from the following list: {{ allowed_names|join(', ') }}. If none of the names fit, respond with the most accurate name based on the sentence.
{%- endif %}
<|CLOSE_SECTION|>
{{ bot_token }}The character's name is "

View File

@@ -0,0 +1,29 @@
Scenario Premise:
{{ scene.description }}
Content Context: This is a specific scene from {{ scene.context }}
{% block rendered_context_static %}
{# GENERAL REINFORCEMENTS #}
{% set general_reinforcements = scene.world_state.filter_reinforcements(insert=['all-context']) %}
{%- for reinforce in general_reinforcements %}
{{ reinforce.as_context_line|condensed }}
{% endfor %}
{# END GENERAL REINFORCEMENTS #}
{# ACTIVE PINS #}
{%- for pin in scene.active_pins %}
{{ pin.time_aware_text|condensed }}
{% endfor %}
{# END ACTIVE PINS #}
{% endblock %}
{# MEMORY #}
{%- if memory_query %}
{%- for memory in query_memory(memory_query, as_question_answer=False, max_tokens=max_tokens-500-count_tokens(self.rendered_context_static()), iterate=10) -%}
{{ memory|condensed }}
{% endfor -%}
{% endif -%}
{# END MEMORY #}

View File

@@ -14,6 +14,8 @@ Player Character: {{ player_character.name }}
{% endfor %}
<|CLOSE_SECTION|>
<|SECTION:TASK|>
YOU MUST WRITE FROM THE PERSPECTIVE OF THE NARRATOR.
Continue the current dialogue by narrating the progression of the scene.
If the scene is over, narrate the beginning of the next scene.
@@ -28,6 +30,8 @@ Use an informal and colloquial register with a conversational tone. Overall, the
Narration style should be that of a 90s point and click adventure game. You are omniscient and can describe the scene in detail.
YOU MUST WRITE FROM THE PERSPECTIVE OF THE NARRATOR.
Only generate new narration. Avoid including any character's internal thoughts or dialogue.
{% if narrative_direction %}
@@ -36,5 +40,4 @@ Directions for new narration: {{ narrative_direction }}
Write 2 to 4 sentences. {{ extra_instructions }}
{% include "rerun-context.jinja2" -%}
<|CLOSE_SECTION|>
{{ set_prepared_response("*") }}
<|CLOSE_SECTION|>

View File

@@ -3,6 +3,11 @@
{%- with memory_query=query -%}
{% include "extra-context.jinja2" %}
{% endwith -%}
{% set related_character = scene.parse_character_from_line(query) -%}
{% if related_character -%}
<|SECTION:{{ related_character.name|upper }}|>
{{ related_character.sheet}}
{% endif %}
<|CLOSE_SECTION|>
{% endblock %}
{% set scene_history=scene.context_history(budget=max_tokens-200-count_tokens(self.rendered_context())) %}

View File

@@ -0,0 +1,20 @@
{% block rendered_context -%}
<|SECTION:CONTEXT|>
{% include "extra-context.jinja2" %}
<|CLOSE_SECTION|>
{% endblock -%}
<|SECTION:SCENE|>
{% for scene_context in scene.context_history(budget=max_tokens-300-count_tokens(self.rendered_context())) -%}
{{ scene_context }}
{% endfor %}
<|CLOSE_SECTION|>
<|SECTION:TASK|>
Paraphrase the following text to fit the narrative thus far. Keep the information and the meaning the same, but change the wording and sentence structure.
Text to paraphrase:
"{{ text }}"
{{ extra_instructions }}
{% include "rerun-context.jinja2" -%}
<|CLOSE_SECTION|>

View File

@@ -0,0 +1,29 @@
Scenario Premise:
{{ scene.description }}
Content Context: This is a specific scene from {{ scene.context }}
{% block rendered_context_static %}
{# GENERAL REINFORCEMENTS #}
{% set general_reinforcements = scene.world_state.filter_reinforcements(insert=['all-context']) %}
{%- for reinforce in general_reinforcements %}
{{ reinforce.as_context_line|condensed }}
{% endfor %}
{# END GENERAL REINFORCEMENTS #}
{# ACTIVE PINS #}
{%- for pin in scene.active_pins %}
{{ pin.time_aware_text|condensed }}
{% endfor %}
{# END ACTIVE PINS #}
{% endblock %}
{# MEMORY #}
{%- if memory_query %}
{%- for memory in query_memory(memory_query, as_question_answer=False, max_tokens=max_tokens-500-count_tokens(self.rendered_context_static()), iterate=10) -%}
{{ memory|condensed }}
{% endfor -%}
{% endif -%}
{# END MEMORY #}

View File

@@ -0,0 +1,29 @@
{{ query_scene("What is "+character.name+"'s age, race, and physical appearance?", full_context) }}
{{ query_scene("What clothes is "+character.name+" currently wearing? Provide a detailed description.", full_context) }}
{{ query_scene("What is "+character.name+"'s current scene description?", full_context) }}
{{ query_scene("Where is "+character.name+" currently at? Briefly describe the environment and provide genre context.", full_context) }}
{% set emotion = scene.world_state.character_emotion(character.name) %}
{% if emotion %}{{ character.name }}'s current emotion: {{ emotion }}{% endif %}
<|SECTION:TASK|>
{% if instructions %}Requested Image: {{ instructions }}{% endif %}
Describe the scene to the painter to ensure he will capture all the important details when drawing a dynamic and truthful image of {{ character.name }}.
Include details about the {{ character.name }}'s appearance exactly as they are, and {{ character.name }}'s current pose.
Include a description of the environment.
THE IMAGE MUST ONLY INCLUDE {{ character.name }} EXCLUDE ALL OTHER CHARACTERS.
YOU MUST ONLY DESCRIBE WHAT IS CURRENTLY VISIBLE IN THE SCENE.
Required information: name, age, race, gender, physique, expression, pose, clothes/equipment, hair style, hair color, skin color, eyes, scars, tattoos, piercings, a fitting color scheme and any other relevant details.
You must provide your answer as a comma delimited list of keywords.
Keywords should be ordered: physical appearance, emotion, action, environment, color scheme.
You must provide many keywords to describe the character and the environment in great detail.
Your answer must be suitable as a stable-diffusion image generation prompt.
You must avoid negating of keywords, omit things entirely that aren't there. For example instead of saying "no scars", just dont include the keyword scars at all.
<|CLOSE_SECTION|>
{{ set_prepared_response(character.name+",")}}

Some files were not shown because too many files have changed in this diff Show More