This commit is contained in:
Timothy Jaeryang Baek
2025-12-27 01:06:21 +04:00
parent 3b0d25ad2b
commit ac0ae2ae20

View File

@@ -1,7 +1,7 @@
import json
import logging
from typing import Optional
import asyncio
from open_webui.utils.misc import get_message_list
from open_webui.socket.main import get_event_emitter
@@ -209,8 +209,161 @@ class ChatStatsExportList(BaseModel):
page: int
def calculate_chat_stats(user_id, skip=0, limit=10, filter=None):
if filter is None:
filter = {}
result = Chats.get_chats_by_user_id(
user_id,
skip=skip,
limit=limit,
filter=filter,
)
chat_stats_export_list = []
for chat in result.items:
try:
messages_map = chat.chat.get("history", {}).get("messages", {})
message_id = chat.chat.get("history", {}).get("currentId")
history_models = {}
history_message_count = len(messages_map)
history_user_messages = []
history_assistant_messages = []
export_messages = {}
for key, message in messages_map.items():
try:
content = message.get("content", "")
if isinstance(content, str):
content_length = len(content)
else:
content_length = (
0 # Handle cases where content might be None or not string
)
# Extract rating safely
rating = message.get("annotation", {}).get("rating")
tags = message.get("annotation", {}).get("tags")
message_stat = MessageStats(
id=message.get("id"),
role=message.get("role"),
model=message.get("model"),
timestamp=message.get("timestamp"),
content_length=content_length,
token_count=None, # Populate if available, e.g. message.get("info", {}).get("token_count")
rating=rating,
tags=tags,
)
export_messages[key] = message_stat
# --- Aggregation Logic (copied/adapted from usage stats) ---
role = message.get("role", "")
if role == "user":
history_user_messages.append(message)
elif role == "assistant":
history_assistant_messages.append(message)
model = message.get("model")
if model:
if model not in history_models:
history_models[model] = 0
history_models[model] += 1
except Exception as e:
log.debug(f"Error processing message {key}: {e}")
continue
# Calculate Averages
average_user_message_content_length = (
sum(
len(m.get("content", ""))
for m in history_user_messages
if isinstance(m.get("content"), str)
)
/ len(history_user_messages)
if history_user_messages
else 0
)
average_assistant_message_content_length = (
sum(
len(m.get("content", ""))
for m in history_assistant_messages
if isinstance(m.get("content"), str)
)
/ len(history_assistant_messages)
if history_assistant_messages
else 0
)
# Response Times
response_times = []
for message in history_assistant_messages:
user_message_id = message.get("parentId", None)
if user_message_id and user_message_id in messages_map:
user_message = messages_map[user_message_id]
# Ensure timestamps exist
t1 = message.get("timestamp")
t0 = user_message.get("timestamp")
if t1 and t0:
response_times.append(t1 - t0)
average_response_time = (
sum(response_times) / len(response_times) if response_times else 0
)
# Current Message List Logic (Main path)
message_list = get_message_list(messages_map, message_id)
message_count = len(message_list)
models = {}
for message in reversed(message_list):
if message.get("role") == "assistant":
model = message.get("model")
if model:
if model not in models:
models[model] = 0
models[model] += 1
# Construct Aggregate Stats
stats = AggregateChatStats(
average_response_time=average_response_time,
average_user_message_content_length=average_user_message_content_length,
average_assistant_message_content_length=average_assistant_message_content_length,
models=models,
message_count=message_count,
history_models=history_models,
history_message_count=history_message_count,
history_user_message_count=len(history_user_messages),
history_assistant_message_count=len(history_assistant_messages),
)
# Construct Chat Body
chat_body = ChatBody(
history=ChatHistoryStats(messages=export_messages, currentId=message_id)
)
chat_stat = ChatStatsExport(
id=chat.id,
user_id=chat.user_id,
created_at=chat.created_at,
updated_at=chat.updated_at,
tags=chat.meta.get("tags", []),
stats=stats,
chat=chat_body,
)
chat_stats_export_list.append(chat_stat)
except Exception as e:
log.debug(f"Error exporting stats for chat {chat.id}: {e}")
continue
return chat_stats_export_list, result.total
@router.get("/stats/export", response_model=ChatStatsExportList)
def export_chat_stats(
async def export_chat_stats(
request: Request,
chat_id: Optional[str] = None,
start_time: Optional[int] = None,
@@ -244,155 +397,11 @@ def export_chat_stats(
if end_time:
filter["end_time"] = end_time
result = Chats.get_chats_by_user_id(
user.id,
skip=skip,
limit=limit,
filter=filter,
chat_stats_export_list, total = await asyncio.to_thread(
calculate_chat_stats, user.id, skip, limit, filter
)
chat_stats_export_list = []
for chat in result.items:
try:
messages_map = chat.chat.get("history", {}).get("messages", {})
message_id = chat.chat.get("history", {}).get("currentId")
history_models = {}
history_message_count = len(messages_map)
history_user_messages = []
history_assistant_messages = []
export_messages = {}
for key, message in messages_map.items():
try:
content = message.get("content", "")
if isinstance(content, str):
content_length = len(content)
else:
content_length = 0 # Handle cases where content might be None or not string
# Extract rating safely
rating = message.get("annotation", {}).get("rating")
tags = message.get("annotation", {}).get("tags")
message_stat = MessageStats(
id=message.get("id"),
role=message.get("role"),
model=message.get("model"),
timestamp=message.get("timestamp"),
content_length=content_length,
token_count=None, # Populate if available, e.g. message.get("info", {}).get("token_count")
rating=rating,
tags=tags,
)
export_messages[key] = message_stat
# --- Aggregation Logic (copied/adapted from usage stats) ---
role = message.get("role", "")
if role == "user":
history_user_messages.append(message)
elif role == "assistant":
history_assistant_messages.append(message)
model = message.get("model")
if model:
if model not in history_models:
history_models[model] = 0
history_models[model] += 1
except Exception as e:
log.debug(f"Error processing message {key}: {e}")
continue
# Calculate Averages
average_user_message_content_length = (
sum(
len(m.get("content", ""))
for m in history_user_messages
if isinstance(m.get("content"), str)
)
/ len(history_user_messages)
if history_user_messages
else 0
)
average_assistant_message_content_length = (
sum(
len(m.get("content", ""))
for m in history_assistant_messages
if isinstance(m.get("content"), str)
)
/ len(history_assistant_messages)
if history_assistant_messages
else 0
)
# Response Times
response_times = []
for message in history_assistant_messages:
user_message_id = message.get("parentId", None)
if user_message_id and user_message_id in messages_map:
user_message = messages_map[user_message_id]
# Ensure timestamps exist
t1 = message.get("timestamp")
t0 = user_message.get("timestamp")
if t1 and t0:
response_times.append(t1 - t0)
average_response_time = (
sum(response_times) / len(response_times) if response_times else 0
)
# Current Message List Logic (Main path)
message_list = get_message_list(messages_map, message_id)
message_count = len(message_list)
models = {}
for message in reversed(message_list):
if message.get("role") == "assistant":
model = message.get("model")
if model:
if model not in models:
models[model] = 0
models[model] += 1
# Construct Aggregate Stats
stats = AggregateChatStats(
average_response_time=average_response_time,
average_user_message_content_length=average_user_message_content_length,
average_assistant_message_content_length=average_assistant_message_content_length,
models=models,
message_count=message_count,
history_models=history_models,
history_message_count=history_message_count,
history_user_message_count=len(history_user_messages),
history_assistant_message_count=len(history_assistant_messages),
)
# Construct Chat Body
chat_body = ChatBody(
history=ChatHistoryStats(
messages=export_messages, currentId=message_id
)
)
chat_stat = ChatStatsExport(
id=chat.id,
user_id=chat.user_id,
created_at=chat.created_at,
updated_at=chat.updated_at,
tags=chat.meta.get("tags", []),
stats=stats,
chat=chat_body,
)
chat_stats_export_list.append(chat_stat)
except Exception as e:
log.debug(f"Error exporting stats for chat {chat.id}: {e}")
continue
return ChatStatsExportList(
items=chat_stats_export_list, total=result.total, page=page
)
return ChatStatsExportList(items=chat_stats_export_list, total=total, page=page)
except Exception as e:
log.debug(f"Error exporting chat stats: {e}")