mirror of
https://github.com/open-webui/open-webui.git
synced 2025-12-29 00:24:39 +01:00
openWebUI supports openGauss vector store (#20179)
This commit is contained in:
@@ -2342,6 +2342,51 @@ else:
|
||||
except Exception:
|
||||
PGVECTOR_IVFFLAT_LISTS = 100
|
||||
|
||||
# openGauss
|
||||
OPENGAUSS_DB_URL = os.environ.get("OPENGAUSS_DB_URL", DATABASE_URL)
|
||||
|
||||
OPENGAUSS_INITIALIZE_MAX_VECTOR_LENGTH = int(
|
||||
os.environ.get("OPENGAUSS_INITIALIZE_MAX_VECTOR_LENGTH", "1536")
|
||||
)
|
||||
|
||||
OPENGAUSS_POOL_SIZE = os.environ.get("OPENGAUSS_POOL_SIZE", None)
|
||||
|
||||
if OPENGAUSS_POOL_SIZE != None:
|
||||
try:
|
||||
OPENGAUSS_POOL_SIZE = int(OPENGAUSS_POOL_SIZE)
|
||||
except Exception:
|
||||
OPENGAUSS_POOL_SIZE = None
|
||||
|
||||
OPENGAUSS_POOL_MAX_OVERFLOW = os.environ.get("OPENGAUSS_POOL_MAX_OVERFLOW", 0)
|
||||
|
||||
if OPENGAUSS_POOL_MAX_OVERFLOW == "":
|
||||
OPENGAUSS_POOL_MAX_OVERFLOW = 0
|
||||
else:
|
||||
try:
|
||||
OPENGAUSS_POOL_MAX_OVERFLOW = int(OPENGAUSS_POOL_MAX_OVERFLOW)
|
||||
except Exception:
|
||||
OPENGAUSS_POOL_MAX_OVERFLOW = 0
|
||||
|
||||
OPENGAUSS_POOL_TIMEOUT = os.environ.get("OPENGAUSS_POOL_TIMEOUT", 30)
|
||||
|
||||
if OPENGAUSS_POOL_TIMEOUT == "":
|
||||
OPENGAUSS_POOL_TIMEOUT = 30
|
||||
else:
|
||||
try:
|
||||
OPENGAUSS_POOL_TIMEOUT = int(OPENGAUSS_POOL_TIMEOUT)
|
||||
except Exception:
|
||||
OPENGAUSS_POOL_TIMEOUT = 30
|
||||
|
||||
OPENGAUSS_POOL_RECYCLE = os.environ.get("OPENGAUSS_POOL_RECYCLE", 3600)
|
||||
|
||||
if OPENGAUSS_POOL_RECYCLE == "":
|
||||
OPENGAUSS_POOL_RECYCLE = 3600
|
||||
else:
|
||||
try:
|
||||
OPENGAUSS_POOL_RECYCLE = int(OPENGAUSS_POOL_RECYCLE)
|
||||
except Exception:
|
||||
OPENGAUSS_POOL_RECYCLE = 3600
|
||||
|
||||
# Pinecone
|
||||
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY", None)
|
||||
PINECONE_ENVIRONMENT = os.environ.get("PINECONE_ENVIRONMENT", None)
|
||||
|
||||
409
backend/open_webui/retrieval/vector/dbs/opengauss.py
Normal file
409
backend/open_webui/retrieval/vector/dbs/opengauss.py
Normal file
@@ -0,0 +1,409 @@
|
||||
from typing import Optional, List, Dict, Any
|
||||
import logging
|
||||
import re
|
||||
import json
|
||||
from sqlalchemy import (
|
||||
func,
|
||||
literal,
|
||||
cast,
|
||||
column,
|
||||
create_engine,
|
||||
Column,
|
||||
Integer,
|
||||
MetaData,
|
||||
LargeBinary,
|
||||
select,
|
||||
text,
|
||||
Text,
|
||||
Table,
|
||||
values,
|
||||
)
|
||||
from sqlalchemy.sql import true
|
||||
from sqlalchemy.pool import NullPool, QueuePool
|
||||
|
||||
from sqlalchemy.orm import declarative_base, scoped_session, sessionmaker
|
||||
from sqlalchemy.dialects.postgresql import JSONB, array
|
||||
from pgvector.sqlalchemy import Vector
|
||||
from sqlalchemy.ext.mutable import MutableDict
|
||||
from sqlalchemy.exc import NoSuchTableError
|
||||
|
||||
from sqlalchemy.dialects.postgresql.psycopg2 import PGDialect_psycopg2
|
||||
from sqlalchemy.dialects import registry
|
||||
|
||||
class OpenGaussDialect(PGDialect_psycopg2):
|
||||
name = "opengauss"
|
||||
|
||||
def _get_server_version_info(self, connection):
|
||||
try:
|
||||
version = connection.exec_driver_sql("SELECT version()").scalar()
|
||||
if not version:
|
||||
return (9, 0, 0)
|
||||
|
||||
match = re.search(
|
||||
r"openGauss\s+(\d+)\.(\d+)\.(\d+)(?:-\w+)?",
|
||||
version,
|
||||
re.IGNORECASE
|
||||
)
|
||||
if match:
|
||||
return (int(match.group(1)), int(match.group(2)), int(match.group(3)))
|
||||
|
||||
return super()._get_server_version_info(connection)
|
||||
except Exception:
|
||||
return (9, 0, 0)
|
||||
|
||||
# Register dialect
|
||||
registry.register("opengauss", __name__, "OpenGaussDialect")
|
||||
|
||||
from open_webui.retrieval.vector.utils import process_metadata
|
||||
from open_webui.retrieval.vector.main import (
|
||||
VectorDBBase,
|
||||
VectorItem,
|
||||
SearchResult,
|
||||
GetResult,
|
||||
)
|
||||
from open_webui.config import (
|
||||
OPENGAUSS_DB_URL,
|
||||
OPENGAUSS_INITIALIZE_MAX_VECTOR_LENGTH,
|
||||
OPENGAUSS_POOL_SIZE,
|
||||
OPENGAUSS_POOL_MAX_OVERFLOW,
|
||||
OPENGAUSS_POOL_TIMEOUT,
|
||||
OPENGAUSS_POOL_RECYCLE,
|
||||
)
|
||||
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
|
||||
VECTOR_LENGTH = OPENGAUSS_INITIALIZE_MAX_VECTOR_LENGTH
|
||||
Base = declarative_base()
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
||||
|
||||
class DocumentChunk(Base):
|
||||
__tablename__ = "document_chunk"
|
||||
|
||||
id = Column(Text, primary_key=True)
|
||||
vector = Column(Vector(dim=VECTOR_LENGTH), nullable=True)
|
||||
collection_name = Column(Text, nullable=False)
|
||||
text = Column(Text, nullable=True)
|
||||
vmetadata = Column(MutableDict.as_mutable(JSONB), nullable=True)
|
||||
|
||||
class OpenGaussClient(VectorDBBase):
|
||||
def __init__(self) -> None:
|
||||
if not OPENGAUSS_DB_URL:
|
||||
from open_webui.internal.db import Session
|
||||
self.session = Session
|
||||
else:
|
||||
engine_kwargs = {
|
||||
"pool_pre_ping": True,
|
||||
"dialect": OpenGaussDialect()
|
||||
}
|
||||
|
||||
if isinstance(OPENGAUSS_POOL_SIZE, int) and OPENGAUSS_POOL_SIZE > 0:
|
||||
engine_kwargs.update({
|
||||
"pool_size": OPENGAUSS_POOL_SIZE,
|
||||
"max_overflow": OPENGAUSS_POOL_MAX_OVERFLOW,
|
||||
"pool_timeout": OPENGAUSS_POOL_TIMEOUT,
|
||||
"pool_recycle": OPENGAUSS_POOL_RECYCLE,
|
||||
"poolclass": QueuePool
|
||||
})
|
||||
else:
|
||||
engine_kwargs["poolclass"] = NullPool
|
||||
|
||||
engine = create_engine(OPENGAUSS_DB_URL,** engine_kwargs)
|
||||
|
||||
SessionLocal = sessionmaker(
|
||||
autocommit=False, autoflush=False, bind=engine, expire_on_commit=False
|
||||
)
|
||||
self.session = scoped_session(SessionLocal)
|
||||
|
||||
try:
|
||||
connection = self.session.connection()
|
||||
Base.metadata.create_all(bind=connection)
|
||||
|
||||
self.session.execute(
|
||||
text(
|
||||
"CREATE INDEX IF NOT EXISTS idx_document_chunk_vector "
|
||||
"ON document_chunk USING ivfflat (vector vector_cosine_ops) WITH (lists = 100);"
|
||||
)
|
||||
)
|
||||
self.session.execute(
|
||||
text(
|
||||
"CREATE INDEX IF NOT EXISTS idx_document_chunk_collection_name "
|
||||
"ON document_chunk (collection_name);"
|
||||
)
|
||||
)
|
||||
self.session.commit()
|
||||
log.info("OpenGauss vector database initialization completed.")
|
||||
except Exception as e:
|
||||
self.session.rollback()
|
||||
log.exception(f"OpenGauss Initialization failed.: {e}")
|
||||
raise
|
||||
|
||||
def check_vector_length(self) -> None:
|
||||
metadata = MetaData()
|
||||
try:
|
||||
document_chunk_table = Table(
|
||||
"document_chunk", metadata, autoload_with=self.session.bind
|
||||
)
|
||||
except NoSuchTableError:
|
||||
return
|
||||
|
||||
if "vector" in document_chunk_table.columns:
|
||||
vector_column = document_chunk_table.columns["vector"]
|
||||
vector_type = vector_column.type
|
||||
if isinstance(vector_type, Vector):
|
||||
db_vector_length = vector_type.dim
|
||||
if db_vector_length != VECTOR_LENGTH:
|
||||
raise Exception(
|
||||
f"Vector dimension mismatch: configured {VECTOR_LENGTH} vs. {db_vector_length} in the database."
|
||||
)
|
||||
else:
|
||||
raise Exception("The 'vector' column type is not Vector.")
|
||||
else:
|
||||
raise Exception("The 'vector' column does not exist in the 'document_chunk' table.")
|
||||
|
||||
def adjust_vector_length(self, vector: List[float]) -> List[float]:
|
||||
current_length = len(vector)
|
||||
if current_length < VECTOR_LENGTH:
|
||||
vector += [0.0] * (VECTOR_LENGTH - current_length)
|
||||
elif current_length > VECTOR_LENGTH:
|
||||
vector = vector[:VECTOR_LENGTH]
|
||||
return vector
|
||||
|
||||
def insert(self, collection_name: str, items: List[VectorItem]) -> None:
|
||||
try:
|
||||
new_items = []
|
||||
for item in items:
|
||||
vector = self.adjust_vector_length(item["vector"])
|
||||
new_chunk = DocumentChunk(
|
||||
id=item["id"],
|
||||
vector=vector,
|
||||
collection_name=collection_name,
|
||||
text=item["text"],
|
||||
vmetadata=process_metadata(item["metadata"]),
|
||||
)
|
||||
new_items.append(new_chunk)
|
||||
self.session.bulk_save_objects(new_items)
|
||||
self.session.commit()
|
||||
log.info(f"Inserting {len(new_items)} items into collection '{collection_name}'.")
|
||||
except Exception as e:
|
||||
self.session.rollback()
|
||||
log.exception(f"Failed to insert data: {e}")
|
||||
raise
|
||||
|
||||
def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
|
||||
try:
|
||||
for item in items:
|
||||
vector = self.adjust_vector_length(item["vector"])
|
||||
existing = (
|
||||
self.session.query(DocumentChunk)
|
||||
.filter(DocumentChunk.id == item["id"])
|
||||
.first()
|
||||
)
|
||||
if existing:
|
||||
existing.vector = vector
|
||||
existing.text = item["text"]
|
||||
existing.vmetadata = process_metadata(item["metadata"])
|
||||
existing.collection_name = collection_name
|
||||
else:
|
||||
new_chunk = DocumentChunk(
|
||||
id=item["id"],
|
||||
vector=vector,
|
||||
collection_name=collection_name,
|
||||
text=item["text"],
|
||||
vmetadata=process_metadata(item["metadata"]),
|
||||
)
|
||||
self.session.add(new_chunk)
|
||||
self.session.commit()
|
||||
log.info(f"Inserting/updating {len(items)} items in collection '{collection_name}'.")
|
||||
except Exception as e:
|
||||
self.session.rollback()
|
||||
log.exception(f"Failed to insert or update data.: {e}")
|
||||
raise
|
||||
|
||||
def search(
|
||||
self,
|
||||
collection_name: str,
|
||||
vectors: List[List[float]],
|
||||
limit: Optional[int] = None,
|
||||
) -> Optional[SearchResult]:
|
||||
try:
|
||||
if not vectors:
|
||||
return None
|
||||
|
||||
vectors = [self.adjust_vector_length(vector) for vector in vectors]
|
||||
num_queries = len(vectors)
|
||||
|
||||
def vector_expr(vector):
|
||||
return cast(array(vector), Vector(VECTOR_LENGTH))
|
||||
|
||||
qid_col = column("qid", Integer)
|
||||
q_vector_col = column("q_vector", Vector(VECTOR_LENGTH))
|
||||
query_vectors = (
|
||||
values(qid_col, q_vector_col)
|
||||
.data([(idx, vector_expr(vector)) for idx, vector in enumerate(vectors)])
|
||||
.alias("query_vectors")
|
||||
)
|
||||
|
||||
result_fields = [
|
||||
DocumentChunk.id,
|
||||
DocumentChunk.text,
|
||||
DocumentChunk.vmetadata,
|
||||
(DocumentChunk.vector.cosine_distance(query_vectors.c.q_vector)).label("distance"),
|
||||
]
|
||||
|
||||
subq = (
|
||||
select(*result_fields)
|
||||
.where(DocumentChunk.collection_name == collection_name)
|
||||
.order_by(DocumentChunk.vector.cosine_distance(query_vectors.c.q_vector))
|
||||
)
|
||||
if limit is not None:
|
||||
subq = subq.limit(limit)
|
||||
subq = subq.lateral("result")
|
||||
|
||||
stmt = (
|
||||
select(
|
||||
query_vectors.c.qid,
|
||||
subq.c.id,
|
||||
subq.c.text,
|
||||
subq.c.vmetadata,
|
||||
subq.c.distance,
|
||||
)
|
||||
.select_from(query_vectors)
|
||||
.join(subq, true())
|
||||
.order_by(query_vectors.c.qid, subq.c.distance)
|
||||
)
|
||||
|
||||
result_proxy = self.session.execute(stmt)
|
||||
results = result_proxy.all()
|
||||
|
||||
ids = [[] for _ in range(num_queries)]
|
||||
distances = [[] for _ in range(num_queries)]
|
||||
documents = [[] for _ in range(num_queries)]
|
||||
metadatas = [[] for _ in range(num_queries)]
|
||||
|
||||
for row in results:
|
||||
qid = int(row.qid)
|
||||
ids[qid].append(row.id)
|
||||
distances[qid].append((2.0 - row.distance) / 2.0)
|
||||
documents[qid].append(row.text)
|
||||
metadatas[qid].append(row.vmetadata)
|
||||
|
||||
self.session.rollback()
|
||||
return SearchResult(
|
||||
ids=ids, distances=distances, documents=documents, metadatas=metadatas
|
||||
)
|
||||
except Exception as e:
|
||||
self.session.rollback()
|
||||
log.exception(f"Vector search failed: {e}")
|
||||
return None
|
||||
|
||||
def query(
|
||||
self, collection_name: str, filter: Dict[str, Any], limit: Optional[int] = None
|
||||
) -> Optional[GetResult]:
|
||||
try:
|
||||
query = self.session.query(DocumentChunk).filter(
|
||||
DocumentChunk.collection_name == collection_name
|
||||
)
|
||||
|
||||
for key, value in filter.items():
|
||||
query = query.filter(DocumentChunk.vmetadata[key].astext == str(value))
|
||||
|
||||
if limit is not None:
|
||||
query = query.limit(limit)
|
||||
|
||||
results = query.all()
|
||||
|
||||
if not results:
|
||||
return None
|
||||
|
||||
ids = [[result.id for result in results]]
|
||||
documents = [[result.text for result in results]]
|
||||
metadatas = [[result.vmetadata for result in results]]
|
||||
|
||||
self.session.rollback()
|
||||
return GetResult(ids=ids, documents=documents, metadatas=metadatas)
|
||||
except Exception as e:
|
||||
self.session.rollback()
|
||||
log.exception(f"Conditional query failed: {e}")
|
||||
return None
|
||||
|
||||
def get(
|
||||
self, collection_name: str, limit: Optional[int] = None
|
||||
) -> Optional[GetResult]:
|
||||
try:
|
||||
query = self.session.query(DocumentChunk).filter(
|
||||
DocumentChunk.collection_name == collection_name
|
||||
)
|
||||
if limit is not None:
|
||||
query = query.limit(limit)
|
||||
|
||||
results = query.all()
|
||||
|
||||
if not results:
|
||||
return None
|
||||
|
||||
ids = [[result.id for result in results]]
|
||||
documents = [[result.text for result in results]]
|
||||
metadatas = [[result.vmetadata for result in results]]
|
||||
|
||||
self.session.rollback()
|
||||
return GetResult(ids=ids, documents=documents, metadatas=metadatas)
|
||||
except Exception as e:
|
||||
self.session.rollback()
|
||||
log.exception(f"Failed to retrieve data: {e}")
|
||||
return None
|
||||
|
||||
def delete(
|
||||
self,
|
||||
collection_name: str,
|
||||
ids: Optional[List[str]] = None,
|
||||
filter: Optional[Dict[str, Any]] = None,
|
||||
) -> None:
|
||||
try:
|
||||
query = self.session.query(DocumentChunk).filter(
|
||||
DocumentChunk.collection_name == collection_name
|
||||
)
|
||||
if ids:
|
||||
query = query.filter(DocumentChunk.id.in_(ids))
|
||||
if filter:
|
||||
for key, value in filter.items():
|
||||
query = query.filter(DocumentChunk.vmetadata[key].astext == str(value))
|
||||
deleted = query.delete(synchronize_session=False)
|
||||
self.session.commit()
|
||||
log.info(f"Deleted {deleted} items from collection '{collection_name}'")
|
||||
except Exception as e:
|
||||
self.session.rollback()
|
||||
log.exception(f"Failed to delete data: {e}")
|
||||
raise
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
deleted = self.session.query(DocumentChunk).delete()
|
||||
self.session.commit()
|
||||
log.info(f"Reset completed. Deleted {deleted} items")
|
||||
except Exception as e:
|
||||
self.session.rollback()
|
||||
log.exception(f"Reset failed: {e}")
|
||||
raise
|
||||
|
||||
def close(self) -> None:
|
||||
pass
|
||||
|
||||
def has_collection(self, collection_name: str) -> bool:
|
||||
try:
|
||||
exists = (
|
||||
self.session.query(DocumentChunk)
|
||||
.filter(DocumentChunk.collection_name == collection_name)
|
||||
.first() is not None
|
||||
)
|
||||
self.session.rollback()
|
||||
return exists
|
||||
except Exception as e:
|
||||
self.session.rollback()
|
||||
log.exception(f"Failed to check collection existence: {e}")
|
||||
return False
|
||||
|
||||
def delete_collection(self, collection_name: str) -> None:
|
||||
self.delete(collection_name)
|
||||
log.info(f"Collection '{collection_name}' has been deleted")
|
||||
@@ -53,6 +53,10 @@ class Vector:
|
||||
from open_webui.retrieval.vector.dbs.pgvector import PgvectorClient
|
||||
|
||||
return PgvectorClient()
|
||||
case VectorType.OPENGAUSS:
|
||||
from open_webui.retrieval.vector.dbs.opengauss import OpenGaussClient
|
||||
|
||||
return OpenGaussClient()
|
||||
case VectorType.ELASTICSEARCH:
|
||||
from open_webui.retrieval.vector.dbs.elasticsearch import (
|
||||
ElasticsearchClient,
|
||||
|
||||
@@ -12,3 +12,4 @@ class VectorType(StrEnum):
|
||||
ORACLE23AI = "oracle23ai"
|
||||
S3VECTOR = "s3vector"
|
||||
WEAVIATE = "weaviate"
|
||||
OPENGAUSS = "opengauss"
|
||||
|
||||
Reference in New Issue
Block a user