mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 16:27:45 +01:00
81 lines
3.1 KiB
Python
81 lines
3.1 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import unittest
|
|
from typing import List
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
from modelscope.models import Model
|
|
from modelscope.models.nlp import StarForTextToSql
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.pipelines.nlp import ConversationalTextToSqlPipeline
|
|
from modelscope.preprocessors import ConversationalTextToSqlPreprocessor
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.nlp.nlp_utils import text2sql_tracking_and_print_results
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class ConversationalTextToSql(unittest.TestCase):
|
|
model_id = 'damo/nlp_star_conversational-text-to-sql'
|
|
test_case = {
|
|
'database_id':
|
|
'employee_hire_evaluation',
|
|
'local_db_path':
|
|
None,
|
|
'utterance': [
|
|
"I'd like to see Shop names.", 'Which of these are hiring?',
|
|
'Which shop is hiring the highest number of employees? | do you want the name of the shop ? | Yes'
|
|
]
|
|
}
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_by_direct_model_download(self):
|
|
cache_path = snapshot_download(self.model_id)
|
|
preprocessor = ConversationalTextToSqlPreprocessor(
|
|
model_dir=cache_path,
|
|
database_id=self.test_case['database_id'],
|
|
db_content=True)
|
|
model = StarForTextToSql(
|
|
model_dir=cache_path, config=preprocessor.config)
|
|
|
|
pipelines = [
|
|
ConversationalTextToSqlPipeline(
|
|
model=model, preprocessor=preprocessor),
|
|
pipeline(
|
|
task=Tasks.conversational_text_to_sql,
|
|
model=model,
|
|
preprocessor=preprocessor)
|
|
]
|
|
text2sql_tracking_and_print_results(self.test_case, pipelines)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_with_model_from_modelhub(self):
|
|
model = Model.from_pretrained(self.model_id)
|
|
preprocessor = ConversationalTextToSqlPreprocessor(
|
|
model_dir=model.model_dir)
|
|
|
|
pipelines = [
|
|
ConversationalTextToSqlPipeline(
|
|
model=model, preprocessor=preprocessor),
|
|
pipeline(
|
|
task=Tasks.conversational_text_to_sql,
|
|
model=model,
|
|
preprocessor=preprocessor)
|
|
]
|
|
text2sql_tracking_and_print_results(self.test_case, pipelines)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_with_model_name(self):
|
|
pipelines = [
|
|
pipeline(
|
|
task=Tasks.conversational_text_to_sql, model=self.model_id)
|
|
]
|
|
text2sql_tracking_and_print_results(self.test_case, pipelines)
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_with_default_model(self):
|
|
pipelines = [pipeline(task=Tasks.conversational_text_to_sql)]
|
|
text2sql_tracking_and_print_results(self.test_case, pipelines)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|