mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 16:27:45 +01:00
[to #42322933]move postprocess helper into utilities
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9856286
This commit is contained in:
@@ -238,24 +238,3 @@ def check_box(box: list, image_height, image_width) -> bool:
|
||||
if box[3] < 0 or box[3] >= image_height:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def show_tracking_result(video_in_path, bboxes, video_save_path):
|
||||
cap = cv2.VideoCapture(video_in_path)
|
||||
for i in range(len(bboxes)):
|
||||
box = bboxes[i]
|
||||
success, frame = cap.read()
|
||||
if success is False:
|
||||
raise Exception(video_in_path,
|
||||
' can not be correctly decoded by OpenCV.')
|
||||
if i == 0:
|
||||
size = (frame.shape[1], frame.shape[0])
|
||||
fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')
|
||||
video_writer = cv2.VideoWriter(video_save_path, fourcc,
|
||||
cap.get(cv2.CAP_PROP_FPS), size,
|
||||
True)
|
||||
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0),
|
||||
5)
|
||||
video_writer.write(frame)
|
||||
video_writer.release
|
||||
cap.release()
|
||||
|
||||
@@ -1,18 +0,0 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
def numpy_to_cv2img(vis_img):
|
||||
"""to convert a np.array Hotmap with shape(h, w) to cv2 img
|
||||
|
||||
Args:
|
||||
vis_img (np.array): input data
|
||||
|
||||
Returns:
|
||||
cv2 img
|
||||
"""
|
||||
vis_img = (vis_img - vis_img.min()) / (
|
||||
vis_img.max() - vis_img.min() + 1e-5)
|
||||
vis_img = (vis_img * 255).astype(np.uint8)
|
||||
vis_img = cv2.applyColorMap(vis_img, cv2.COLORMAP_JET)
|
||||
return vis_img
|
||||
136
modelscope/utils/cv/image_utils.py
Normal file
136
modelscope/utils/cv/image_utils.py
Normal file
@@ -0,0 +1,136 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from modelscope.outputs import OutputKeys
|
||||
from modelscope.preprocessors.image import load_image
|
||||
|
||||
|
||||
def numpy_to_cv2img(img_array):
|
||||
"""to convert a np.array with shape(h, w) to cv2 img
|
||||
|
||||
Args:
|
||||
img_array (np.array): input data
|
||||
|
||||
Returns:
|
||||
cv2 img
|
||||
"""
|
||||
img_array = (img_array - img_array.min()) / (
|
||||
img_array.max() - img_array.min() + 1e-5)
|
||||
img_array = (img_array * 255).astype(np.uint8)
|
||||
img_array = cv2.applyColorMap(img_array, cv2.COLORMAP_JET)
|
||||
return img_array
|
||||
|
||||
|
||||
def draw_joints(image, np_kps, score, threshold=0.2):
|
||||
lst_parent_ids_17 = [0, 0, 0, 1, 2, 0, 0, 5, 6, 7, 8, 5, 6, 11, 12, 13, 14]
|
||||
lst_left_ids_17 = [1, 3, 5, 7, 9, 11, 13, 15]
|
||||
lst_right_ids_17 = [2, 4, 6, 8, 10, 12, 14, 16]
|
||||
|
||||
lst_parent_ids_15 = [0, 0, 1, 2, 3, 1, 5, 6, 14, 8, 9, 14, 11, 12, 1]
|
||||
lst_left_ids_15 = [2, 3, 4, 8, 9, 10]
|
||||
lst_right_ids_15 = [5, 6, 7, 11, 12, 13]
|
||||
|
||||
if np_kps.shape[0] == 17:
|
||||
lst_parent_ids = lst_parent_ids_17
|
||||
lst_left_ids = lst_left_ids_17
|
||||
lst_right_ids = lst_right_ids_17
|
||||
|
||||
elif np_kps.shape[0] == 15:
|
||||
lst_parent_ids = lst_parent_ids_15
|
||||
lst_left_ids = lst_left_ids_15
|
||||
lst_right_ids = lst_right_ids_15
|
||||
|
||||
for i in range(len(lst_parent_ids)):
|
||||
pid = lst_parent_ids[i]
|
||||
if i == pid:
|
||||
continue
|
||||
|
||||
if (score[i] < threshold or score[1] < threshold):
|
||||
continue
|
||||
|
||||
if i in lst_left_ids and pid in lst_left_ids:
|
||||
color = (0, 255, 0)
|
||||
elif i in lst_right_ids and pid in lst_right_ids:
|
||||
color = (255, 0, 0)
|
||||
else:
|
||||
color = (0, 255, 255)
|
||||
|
||||
cv2.line(image, (int(np_kps[i, 0]), int(np_kps[i, 1])),
|
||||
(int(np_kps[pid][0]), int(np_kps[pid, 1])), color, 3)
|
||||
|
||||
for i in range(np_kps.shape[0]):
|
||||
if score[i] < threshold:
|
||||
continue
|
||||
cv2.circle(image, (int(np_kps[i, 0]), int(np_kps[i, 1])), 5,
|
||||
(0, 0, 255), -1)
|
||||
|
||||
|
||||
def draw_box(image, box):
|
||||
cv2.rectangle(image, (int(box[0][0]), int(box[0][1])),
|
||||
(int(box[1][0]), int(box[1][1])), (0, 0, 255), 2)
|
||||
|
||||
|
||||
def draw_keypoints(output, original_image):
|
||||
poses = np.array(output[OutputKeys.POSES])
|
||||
scores = np.array(output[OutputKeys.SCORES])
|
||||
boxes = np.array(output[OutputKeys.BOXES])
|
||||
assert len(poses) == len(scores) and len(poses) == len(boxes)
|
||||
image = cv2.imread(original_image, -1)
|
||||
for i in range(len(poses)):
|
||||
draw_box(image, np.array(boxes[i]))
|
||||
draw_joints(image, np.array(poses[i]), np.array(scores[i]))
|
||||
return image
|
||||
|
||||
|
||||
def draw_face_detection_result(img_path, detection_result):
|
||||
bboxes = np.array(detection_result[OutputKeys.BOXES])
|
||||
kpss = np.array(detection_result[OutputKeys.KEYPOINTS])
|
||||
scores = np.array(detection_result[OutputKeys.SCORES])
|
||||
img = cv2.imread(img_path)
|
||||
assert img is not None, f"Can't read img: {img_path}"
|
||||
for i in range(len(scores)):
|
||||
bbox = bboxes[i].astype(np.int32)
|
||||
kps = kpss[i].reshape(-1, 2).astype(np.int32)
|
||||
score = scores[i]
|
||||
x1, y1, x2, y2 = bbox
|
||||
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
||||
for kp in kps:
|
||||
cv2.circle(img, tuple(kp), 1, (0, 0, 255), 1)
|
||||
cv2.putText(
|
||||
img,
|
||||
f'{score:.2f}', (x1, y2),
|
||||
1,
|
||||
1.0, (0, 255, 0),
|
||||
thickness=1,
|
||||
lineType=8)
|
||||
print(f'Found {len(scores)} faces')
|
||||
return img
|
||||
|
||||
|
||||
def created_boxed_image(image_in, box):
|
||||
image = load_image(image_in)
|
||||
img = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
|
||||
cv2.rectangle(img, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),
|
||||
(0, 255, 0), 3)
|
||||
return img
|
||||
|
||||
|
||||
def show_video_tracking_result(video_in_path, bboxes, video_save_path):
|
||||
cap = cv2.VideoCapture(video_in_path)
|
||||
for i in range(len(bboxes)):
|
||||
box = bboxes[i]
|
||||
success, frame = cap.read()
|
||||
if success is False:
|
||||
raise Exception(video_in_path,
|
||||
' can not be correctly decoded by OpenCV.')
|
||||
if i == 0:
|
||||
size = (frame.shape[1], frame.shape[0])
|
||||
fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')
|
||||
video_writer = cv2.VideoWriter(video_save_path, fourcc,
|
||||
cap.get(cv2.CAP_PROP_FPS), size,
|
||||
True)
|
||||
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0),
|
||||
5)
|
||||
video_writer.write(frame)
|
||||
video_writer.release
|
||||
cap.release()
|
||||
43
modelscope/utils/nlp/nlp_utils.py
Normal file
43
modelscope/utils/nlp/nlp_utils.py
Normal file
@@ -0,0 +1,43 @@
|
||||
from typing import List
|
||||
|
||||
from modelscope.outputs import OutputKeys
|
||||
from modelscope.pipelines.nlp import (ConversationalTextToSqlPipeline,
|
||||
DialogStateTrackingPipeline)
|
||||
|
||||
|
||||
def text2sql_tracking_and_print_results(
|
||||
test_case, pipelines: List[ConversationalTextToSqlPipeline]):
|
||||
for p in pipelines:
|
||||
last_sql, history = '', []
|
||||
for item in test_case['utterance']:
|
||||
case = {
|
||||
'utterance': item,
|
||||
'history': history,
|
||||
'last_sql': last_sql,
|
||||
'database_id': test_case['database_id'],
|
||||
'local_db_path': test_case['local_db_path']
|
||||
}
|
||||
results = p(case)
|
||||
print({'question': item})
|
||||
print(results)
|
||||
last_sql = results['text']
|
||||
history.append(item)
|
||||
|
||||
|
||||
def tracking_and_print_dialog_states(
|
||||
test_case, pipelines: List[DialogStateTrackingPipeline]):
|
||||
import json
|
||||
pipelines_len = len(pipelines)
|
||||
history_states = [{}]
|
||||
utter = {}
|
||||
for step, item in enumerate(test_case):
|
||||
utter.update(item)
|
||||
result = pipelines[step % pipelines_len]({
|
||||
'utter':
|
||||
utter,
|
||||
'history_states':
|
||||
history_states
|
||||
})
|
||||
print(json.dumps(result))
|
||||
|
||||
history_states.extend([result[OutputKeys.OUTPUT], {}])
|
||||
@@ -15,23 +15,6 @@ class ActionRecognitionTest(unittest.TestCase):
|
||||
def setUp(self) -> None:
|
||||
self.model_id = 'damo/cv_TAdaConv_action-recognition'
|
||||
|
||||
@unittest.skip('deprecated, download model from model hub instead')
|
||||
def test_run_with_direct_file_download(self):
|
||||
model_path = 'https://aquila2-online-models.oss-cn-shanghai.aliyuncs.com/maas_test/pytorch_model.pt'
|
||||
config_path = 'https://aquila2-online-models.oss-cn-shanghai.aliyuncs.com/maas_test/configuration.json'
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
model_file = osp.join(tmp_dir, ModelFile.TORCH_MODEL_FILE)
|
||||
with open(model_file, 'wb') as ofile1:
|
||||
ofile1.write(File.read(model_path))
|
||||
config_file = osp.join(tmp_dir, ModelFile.CONFIGURATION)
|
||||
with open(config_file, 'wb') as ofile2:
|
||||
ofile2.write(File.read(config_path))
|
||||
recognition_pipeline = pipeline(
|
||||
Tasks.action_recognition, model=tmp_dir)
|
||||
result = recognition_pipeline(
|
||||
'data/test/videos/action_recognition_test_video.mp4')
|
||||
print(f'recognition output: {result}.')
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_modelhub(self):
|
||||
recognition_pipeline = pipeline(
|
||||
|
||||
@@ -9,59 +9,9 @@ from modelscope.outputs import OutputKeys
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.pipelines.base import Pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.cv.image_utils import draw_keypoints
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
lst_parent_ids_17 = [0, 0, 0, 1, 2, 0, 0, 5, 6, 7, 8, 5, 6, 11, 12, 13, 14]
|
||||
lst_left_ids_17 = [1, 3, 5, 7, 9, 11, 13, 15]
|
||||
lst_right_ids_17 = [2, 4, 6, 8, 10, 12, 14, 16]
|
||||
lst_spine_ids_17 = [0]
|
||||
|
||||
lst_parent_ids_15 = [0, 0, 1, 2, 3, 1, 5, 6, 14, 8, 9, 14, 11, 12, 1]
|
||||
lst_left_ids_15 = [2, 3, 4, 8, 9, 10]
|
||||
lst_right_ids_15 = [5, 6, 7, 11, 12, 13]
|
||||
lst_spine_ids_15 = [0, 1, 14]
|
||||
|
||||
|
||||
def draw_joints(image, np_kps, score, threshold=0.2):
|
||||
if np_kps.shape[0] == 17:
|
||||
lst_parent_ids = lst_parent_ids_17
|
||||
lst_left_ids = lst_left_ids_17
|
||||
lst_right_ids = lst_right_ids_17
|
||||
|
||||
elif np_kps.shape[0] == 15:
|
||||
lst_parent_ids = lst_parent_ids_15
|
||||
lst_left_ids = lst_left_ids_15
|
||||
lst_right_ids = lst_right_ids_15
|
||||
|
||||
for i in range(len(lst_parent_ids)):
|
||||
pid = lst_parent_ids[i]
|
||||
if i == pid:
|
||||
continue
|
||||
|
||||
if (score[i] < threshold or score[1] < threshold):
|
||||
continue
|
||||
|
||||
if i in lst_left_ids and pid in lst_left_ids:
|
||||
color = (0, 255, 0)
|
||||
elif i in lst_right_ids and pid in lst_right_ids:
|
||||
color = (255, 0, 0)
|
||||
else:
|
||||
color = (0, 255, 255)
|
||||
|
||||
cv2.line(image, (int(np_kps[i, 0]), int(np_kps[i, 1])),
|
||||
(int(np_kps[pid][0]), int(np_kps[pid, 1])), color, 3)
|
||||
|
||||
for i in range(np_kps.shape[0]):
|
||||
if score[i] < threshold:
|
||||
continue
|
||||
cv2.circle(image, (int(np_kps[i, 0]), int(np_kps[i, 1])), 5,
|
||||
(0, 0, 255), -1)
|
||||
|
||||
|
||||
def draw_box(image, box):
|
||||
cv2.rectangle(image, (int(box[0][0]), int(box[0][1])),
|
||||
(int(box[1][0]), int(box[1][1])), (0, 0, 255), 2)
|
||||
|
||||
|
||||
class Body2DKeypointsTest(unittest.TestCase):
|
||||
|
||||
@@ -71,14 +21,7 @@ class Body2DKeypointsTest(unittest.TestCase):
|
||||
|
||||
def pipeline_inference(self, pipeline: Pipeline, pipeline_input):
|
||||
output = pipeline(pipeline_input)
|
||||
poses = np.array(output[OutputKeys.POSES])
|
||||
scores = np.array(output[OutputKeys.SCORES])
|
||||
boxes = np.array(output[OutputKeys.BOXES])
|
||||
assert len(poses) == len(scores) and len(poses) == len(boxes)
|
||||
image = cv2.imread(self.test_image, -1)
|
||||
for i in range(len(poses)):
|
||||
draw_box(image, np.array(boxes[i]))
|
||||
draw_joints(image, np.array(poses[i]), np.array(scores[i]))
|
||||
image = draw_keypoints(output, self.test_image)
|
||||
cv2.imwrite('pose_keypoint.jpg', image)
|
||||
|
||||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||||
|
||||
@@ -9,6 +9,7 @@ from modelscope.pipelines import pipeline
|
||||
from modelscope.pipelines.nlp import ConversationalTextToSqlPipeline
|
||||
from modelscope.preprocessors import ConversationalTextToSqlPreprocessor
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.nlp.nlp_utils import text2sql_tracking_and_print_results
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
@@ -25,24 +26,6 @@ class ConversationalTextToSql(unittest.TestCase):
|
||||
]
|
||||
}
|
||||
|
||||
def tracking_and_print_results(
|
||||
self, pipelines: List[ConversationalTextToSqlPipeline]):
|
||||
for my_pipeline in pipelines:
|
||||
last_sql, history = '', []
|
||||
for item in self.test_case['utterance']:
|
||||
case = {
|
||||
'utterance': item,
|
||||
'history': history,
|
||||
'last_sql': last_sql,
|
||||
'database_id': self.test_case['database_id'],
|
||||
'local_db_path': self.test_case['local_db_path']
|
||||
}
|
||||
results = my_pipeline(case)
|
||||
print({'question': item})
|
||||
print(results)
|
||||
last_sql = results['text']
|
||||
history.append(item)
|
||||
|
||||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||||
def test_run_by_direct_model_download(self):
|
||||
cache_path = snapshot_download(self.model_id)
|
||||
@@ -61,7 +44,7 @@ class ConversationalTextToSql(unittest.TestCase):
|
||||
model=model,
|
||||
preprocessor=preprocessor)
|
||||
]
|
||||
self.tracking_and_print_results(pipelines)
|
||||
text2sql_tracking_and_print_results(self.test_case, pipelines)
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_with_model_from_modelhub(self):
|
||||
@@ -77,7 +60,7 @@ class ConversationalTextToSql(unittest.TestCase):
|
||||
model=model,
|
||||
preprocessor=preprocessor)
|
||||
]
|
||||
self.tracking_and_print_results(pipelines)
|
||||
text2sql_tracking_and_print_results(self.test_case, pipelines)
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_with_model_name(self):
|
||||
@@ -85,12 +68,12 @@ class ConversationalTextToSql(unittest.TestCase):
|
||||
pipeline(
|
||||
task=Tasks.conversational_text_to_sql, model=self.model_id)
|
||||
]
|
||||
self.tracking_and_print_results(pipelines)
|
||||
text2sql_tracking_and_print_results(self.test_case, pipelines)
|
||||
|
||||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||||
def test_run_with_default_model(self):
|
||||
pipelines = [pipeline(task=Tasks.conversational_text_to_sql)]
|
||||
self.tracking_and_print_results(pipelines)
|
||||
text2sql_tracking_and_print_results(self.test_case, pipelines)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
@@ -2,13 +2,12 @@
|
||||
import unittest
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from modelscope.outputs import OutputKeys
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.cv.heatmap import numpy_to_cv2img
|
||||
from modelscope.utils.cv.image_utils import numpy_to_cv2img
|
||||
from modelscope.utils.logger import get_logger
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
@@ -1,15 +1,14 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
import unittest
|
||||
from typing import List
|
||||
|
||||
from modelscope.hub.snapshot_download import snapshot_download
|
||||
from modelscope.models import Model
|
||||
from modelscope.models.nlp import SpaceForDialogStateTracking
|
||||
from modelscope.outputs import OutputKeys
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.pipelines.nlp import DialogStateTrackingPipeline
|
||||
from modelscope.preprocessors import DialogStateTrackingPreprocessor
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.nlp.nlp_utils import tracking_and_print_dialog_states
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
@@ -79,24 +78,6 @@ class DialogStateTrackingTest(unittest.TestCase):
|
||||
'User-8': 'Thank you, goodbye',
|
||||
}]
|
||||
|
||||
def tracking_and_print_dialog_states(
|
||||
self, pipelines: List[DialogStateTrackingPipeline]):
|
||||
import json
|
||||
pipelines_len = len(pipelines)
|
||||
history_states = [{}]
|
||||
utter = {}
|
||||
for step, item in enumerate(self.test_case):
|
||||
utter.update(item)
|
||||
result = pipelines[step % pipelines_len]({
|
||||
'utter':
|
||||
utter,
|
||||
'history_states':
|
||||
history_states
|
||||
})
|
||||
print(json.dumps(result))
|
||||
|
||||
history_states.extend([result[OutputKeys.OUTPUT], {}])
|
||||
|
||||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||||
def test_run_by_direct_model_download(self):
|
||||
cache_path = snapshot_download(self.model_id, revision='update')
|
||||
@@ -111,7 +92,7 @@ class DialogStateTrackingTest(unittest.TestCase):
|
||||
model=model,
|
||||
preprocessor=preprocessor)
|
||||
]
|
||||
self.tracking_and_print_dialog_states(pipelines)
|
||||
tracking_and_print_dialog_states(self.test_case, pipelines)
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_with_model_from_modelhub(self):
|
||||
@@ -128,7 +109,7 @@ class DialogStateTrackingTest(unittest.TestCase):
|
||||
preprocessor=preprocessor)
|
||||
]
|
||||
|
||||
self.tracking_and_print_dialog_states(pipelines)
|
||||
tracking_and_print_dialog_states(self.test_case, pipelines)
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_with_model_name(self):
|
||||
@@ -138,7 +119,7 @@ class DialogStateTrackingTest(unittest.TestCase):
|
||||
model=self.model_id,
|
||||
model_revision='update')
|
||||
]
|
||||
self.tracking_and_print_dialog_states(pipelines)
|
||||
tracking_and_print_dialog_states(self.test_case, pipelines)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
@@ -9,6 +9,7 @@ from modelscope.msdatasets import MsDataset
|
||||
from modelscope.outputs import OutputKeys
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.cv.image_utils import draw_face_detection_result
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
@@ -17,46 +18,21 @@ class FaceDetectionTest(unittest.TestCase):
|
||||
def setUp(self) -> None:
|
||||
self.model_id = 'damo/cv_resnet_facedetection_scrfd10gkps'
|
||||
|
||||
def show_result(self, img_path, bboxes, kpss, scores):
|
||||
bboxes = np.array(bboxes)
|
||||
kpss = np.array(kpss)
|
||||
scores = np.array(scores)
|
||||
img = cv2.imread(img_path)
|
||||
assert img is not None, f"Can't read img: {img_path}"
|
||||
for i in range(len(scores)):
|
||||
bbox = bboxes[i].astype(np.int32)
|
||||
kps = kpss[i].reshape(-1, 2).astype(np.int32)
|
||||
score = scores[i]
|
||||
x1, y1, x2, y2 = bbox
|
||||
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
||||
for kp in kps:
|
||||
cv2.circle(img, tuple(kp), 1, (0, 0, 255), 1)
|
||||
cv2.putText(
|
||||
img,
|
||||
f'{score:.2f}', (x1, y2),
|
||||
1,
|
||||
1.0, (0, 255, 0),
|
||||
thickness=1,
|
||||
lineType=8)
|
||||
def show_result(self, img_path, detection_result):
|
||||
img = draw_face_detection_result(img_path, detection_result)
|
||||
cv2.imwrite('result.png', img)
|
||||
print(
|
||||
f'Found {len(scores)} faces, output written to {osp.abspath("result.png")}'
|
||||
)
|
||||
print(f'output written to {osp.abspath("result.png")}')
|
||||
|
||||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||||
def test_run_with_dataset(self):
|
||||
input_location = ['data/test/images/face_detection.png']
|
||||
# alternatively:
|
||||
# input_location = '/dir/to/images'
|
||||
|
||||
dataset = MsDataset.load(input_location, target='image')
|
||||
face_detection = pipeline(Tasks.face_detection, model=self.model_id)
|
||||
# note that for dataset output, the inference-output is a Generator that can be iterated.
|
||||
result = face_detection(dataset)
|
||||
result = next(result)
|
||||
self.show_result(input_location[0], result[OutputKeys.BOXES],
|
||||
result[OutputKeys.KEYPOINTS],
|
||||
result[OutputKeys.SCORES])
|
||||
self.show_result(input_location[0], result)
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_modelhub(self):
|
||||
@@ -64,18 +40,14 @@ class FaceDetectionTest(unittest.TestCase):
|
||||
img_path = 'data/test/images/face_detection.png'
|
||||
|
||||
result = face_detection(img_path)
|
||||
self.show_result(img_path, result[OutputKeys.BOXES],
|
||||
result[OutputKeys.KEYPOINTS],
|
||||
result[OutputKeys.SCORES])
|
||||
self.show_result(img_path, result)
|
||||
|
||||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||||
def test_run_modelhub_default_model(self):
|
||||
face_detection = pipeline(Tasks.face_detection)
|
||||
img_path = 'data/test/images/face_detection.png'
|
||||
result = face_detection(img_path)
|
||||
self.show_result(img_path, result[OutputKeys.BOXES],
|
||||
result[OutputKeys.KEYPOINTS],
|
||||
result[OutputKeys.SCORES])
|
||||
self.show_result(img_path, result)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
import os
|
||||
import os.path as osp
|
||||
import unittest
|
||||
|
||||
|
||||
@@ -21,7 +21,6 @@ class FaceRecognitionTest(unittest.TestCase):
|
||||
|
||||
face_recognition = pipeline(
|
||||
Tasks.face_recognition, model=self.model_id)
|
||||
# note that for dataset output, the inference-output is a Generator that can be iterated.
|
||||
emb1 = face_recognition(img1)[OutputKeys.IMG_EMBEDDING]
|
||||
emb2 = face_recognition(img2)[OutputKeys.IMG_EMBEDDING]
|
||||
sim = np.dot(emb1[0], emb2[0])
|
||||
|
||||
@@ -3,6 +3,7 @@ import unittest
|
||||
|
||||
from torchvision.utils import save_image
|
||||
|
||||
from modelscope.outputs import OutputKeys
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.test_utils import test_level
|
||||
@@ -27,13 +28,13 @@ class Image2ImageGenerationTest(unittest.TestCase):
|
||||
result2 = img2img_gen_pipeline(('data/test/images/img2img_input.jpg',
|
||||
'data/test/images/img2img_style.jpg'))
|
||||
save_image(
|
||||
result1['output_img'].clamp(-1, 1),
|
||||
result1[OutputKeys.OUTPUT_IMG].clamp(-1, 1),
|
||||
'result1.jpg',
|
||||
range=(-1, 1),
|
||||
normalize=True,
|
||||
nrow=4)
|
||||
save_image(
|
||||
result2['output_img'].clamp(-1, 1),
|
||||
result2[OutputKeys.OUTPUT_IMG].clamp(-1, 1),
|
||||
'result2.jpg',
|
||||
range=(-1, 1),
|
||||
normalize=True,
|
||||
|
||||
@@ -18,19 +18,6 @@ class ImageMattingTest(unittest.TestCase):
|
||||
def setUp(self) -> None:
|
||||
self.model_id = 'damo/cv_unet_image-matting'
|
||||
|
||||
@unittest.skip('deprecated, download model from model hub instead')
|
||||
def test_run_with_direct_file_download(self):
|
||||
model_path = 'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs' \
|
||||
'.com/data/test/maas/image_matting/matting_person.pb'
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
model_file = osp.join(tmp_dir, ModelFile.TF_GRAPH_FILE)
|
||||
with open(model_file, 'wb') as ofile:
|
||||
ofile.write(File.read(model_path))
|
||||
img_matting = pipeline(Tasks.portrait_matting, model=tmp_dir)
|
||||
|
||||
result = img_matting('data/test/images/image_matting.png')
|
||||
cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])
|
||||
|
||||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||||
def test_run_with_dataset(self):
|
||||
input_location = ['data/test/images/image_matting.png']
|
||||
|
||||
@@ -15,7 +15,7 @@ class ImageStyleTransferTest(unittest.TestCase):
|
||||
def setUp(self) -> None:
|
||||
self.model_id = 'damo/cv_aams_style-transfer_damo'
|
||||
|
||||
@unittest.skip('deprecated, download model from model hub instead')
|
||||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||||
def test_run_by_direct_model_download(self):
|
||||
snapshot_path = snapshot_download(self.model_id)
|
||||
print('snapshot_path: {}'.format(snapshot_path))
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import os.path
|
||||
import unittest
|
||||
|
||||
from modelscope.fileio import File
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
@@ -4,14 +4,13 @@ import unittest
|
||||
from os import path as osp
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from modelscope.models import Model
|
||||
from modelscope.outputs import OutputKeys
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.preprocessors.image import load_image
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.cv.image_utils import created_boxed_image
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
@@ -22,11 +21,9 @@ class OfaTasksTest(unittest.TestCase):
|
||||
os.makedirs(self.output_dir, exist_ok=True)
|
||||
|
||||
def save_img(self, image_in, box, image_out):
|
||||
image = load_image(image_in)
|
||||
img = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
|
||||
cv2.rectangle(img, (int(box[0]), int(box[1])),
|
||||
(int(box[2]), int(box[3])), (0, 255, 0), 3)
|
||||
cv2.imwrite(osp.join(self.output_dir, image_out), img)
|
||||
cv2.imwrite(
|
||||
osp.join(self.output_dir, image_out),
|
||||
created_boxed_image(image_in, box))
|
||||
|
||||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||||
def test_run_with_image_captioning_with_model(self):
|
||||
|
||||
@@ -24,19 +24,6 @@ class ImageCartoonTest(unittest.TestCase):
|
||||
cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])
|
||||
print(f'Output written to {osp.abspath("result.png")}')
|
||||
|
||||
@unittest.skip('deprecated, download model from model hub instead')
|
||||
def test_run_by_direct_model_download(self):
|
||||
model_dir = './assets'
|
||||
if not os.path.exists(model_dir):
|
||||
os.system(
|
||||
'wget https://invi-label.oss-cn-shanghai.aliyuncs.com/label/model/cartoon/assets.zip'
|
||||
)
|
||||
os.system('unzip assets.zip')
|
||||
|
||||
img_cartoon = pipeline(
|
||||
Tasks.image_portrait_stylization, model=model_dir)
|
||||
self.pipeline_inference(img_cartoon, self.test_image)
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_modelhub(self):
|
||||
img_cartoon = pipeline(
|
||||
|
||||
@@ -23,10 +23,9 @@ class SkinRetouchingTest(unittest.TestCase):
|
||||
cv2.imwrite('result_skinretouching.png', result[OutputKeys.OUTPUT_IMG])
|
||||
print(f'Output written to {osp.abspath("result_skinretouching.png")}')
|
||||
|
||||
@unittest.skip('deprecated, download model from model hub instead')
|
||||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||||
def test_run_by_direct_model_download(self):
|
||||
model_dir = snapshot_download(self.model_id)
|
||||
|
||||
skin_retouching = pipeline(Tasks.skin_retouching, model=model_dir)
|
||||
self.pipeline_inference(skin_retouching, self.test_image)
|
||||
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
import unittest
|
||||
|
||||
from modelscope.models.cv.video_single_object_tracking.utils.utils import \
|
||||
show_tracking_result
|
||||
from modelscope.outputs import OutputKeys
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.cv.image_utils import show_video_tracking_result
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
@@ -22,8 +21,8 @@ class SingleObjectTracking(unittest.TestCase):
|
||||
init_bbox = [414, 343, 514, 449] # [x1, y1, x2, y2]
|
||||
result = video_single_object_tracking((video_path, init_bbox))
|
||||
print('result is : ', result[OutputKeys.BOXES])
|
||||
show_tracking_result(video_path, result[OutputKeys.BOXES],
|
||||
'./tracking_result.avi')
|
||||
show_video_tracking_result(video_path, result[OutputKeys.BOXES],
|
||||
'./tracking_result.avi')
|
||||
|
||||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||||
def test_run_modelhub_default_model(self):
|
||||
|
||||
Reference in New Issue
Block a user