Files
modelscope/tests/pipelines/test_faq_question_answering.py
tanfan.zjh 5f0e99996a 新增模型测试用例
新增模型测试用例
1. 多轮对话改写模型:damo/nlp_mt5_dialogue-rewriting_chinese-base
2. 多语言FAQ模型:damo/nlp_faq-question-answering_multilingual-base
3. fact-checking模型:damo/nlp_structbert_fact-checking_chinese-base
4. 电商领域文本相似度模型:damo/nlp_structbert_sentence-similarity_chinese-retail-base

均不涉及sdk更新,仅新增模型

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11477190
2023-01-31 10:10:59 +00:00

107 lines
4.0 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
import numpy as np
from modelscope.hub.api import HubApi
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.models.nlp import SbertForFaqQuestionAnswering
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import FaqQuestionAnsweringPipeline
from modelscope.preprocessors import \
FaqQuestionAnsweringTransformersPreprocessor
from modelscope.utils.constant import Tasks
from modelscope.utils.demo_utils import DemoCompatibilityCheck
from modelscope.utils.test_utils import test_level
class FaqQuestionAnsweringTest(unittest.TestCase, DemoCompatibilityCheck):
def setUp(self) -> None:
self.task = Tasks.faq_question_answering
self.model_id = 'damo/nlp_structbert_faq-question-answering_chinese-base'
self.model_id_multilingual = 'damo/nlp_faq-question-answering_multilingual-base'
param = {
'query_set': ['如何使用优惠券', '在哪里领券', '在哪里领券'],
'support_set': [{
'text': '卖品代金券怎么用',
'label': '6527856'
}, {
'text': '怎么使用优惠券',
'label': '6527856'
}, {
'text': '这个可以一起领吗',
'label': '1000012000'
}, {
'text': '付款时送的优惠券哪里领',
'label': '1000012000'
}, {
'text': '购物等级怎么长',
'label': '13421097'
}, {
'text': '购物等级二心',
'label': '13421097'
}]
}
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_direct_file_download(self):
cache_path = snapshot_download(self.model_id)
preprocessor = FaqQuestionAnsweringTransformersPreprocessor.from_pretrained(
cache_path)
model = SbertForFaqQuestionAnswering.from_pretrained(cache_path)
pipeline_ins = FaqQuestionAnsweringPipeline(
model, preprocessor=preprocessor)
result = pipeline_ins(self.param)
print(result)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
preprocessor = FaqQuestionAnsweringTransformersPreprocessor(
model.model_dir)
pipeline_ins = pipeline(
task=Tasks.faq_question_answering,
model=model,
preprocessor=preprocessor)
result = pipeline_ins(self.param)
print(result)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name(self):
pipeline_ins = pipeline(
task=Tasks.faq_question_answering, model=self.model_id)
result = pipeline_ins(self.param)
print(result)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_multilingual_model(self):
pipeline_ins = pipeline(
task=Tasks.faq_question_answering,
model=self.model_id_multilingual,
model_revision='v1.0.0')
result = pipeline_ins(self.param)
print(result)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_default_model(self):
pipeline_ins = pipeline(task=Tasks.faq_question_answering)
print(pipeline_ins(self.param, max_seq_length=20))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_sentence_embedding(self):
pipeline_ins = pipeline(task=Tasks.faq_question_answering)
sentence_vec = pipeline_ins.get_sentence_embedding(
['今天星期六', '明天星期几明天星期几'])
print(np.shape(sentence_vec))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_demo_compatibility(self):
self.compatibility_check()
if __name__ == '__main__':
unittest.main()