Files
modelscope/tests/msdatasets/test_ms_dataset.py
zhangzhicheng.zzc d721fabb34 [to #42322933]bert with sequence classification / token classification/ fill mask refactor
1.新增支持原始bert模型(非easynlp的 backbone prefix版本)
2.支持bert的在sequence classification/fill mask /token classification上的backbone head形式
3.统一了sequence classification几个任务的pipeline到一个类
4.fill mask 支持backbone head形式
5.token classification的几个子任务(ner,word seg, part of speech)的preprocessor 统一到了一起TokenClassificationPreprocessor
6. sequence classification的几个子任务(single classification, pair classification)的preprocessor 统一到了一起SequenceClassificationPreprocessor
7. 改动register中 cls的group_key 赋值位置,之前的group_key在多个decorators的情况下,会被覆盖,obj_cls的group_key信息不正确
8. 基于backbone head形式将 原本group_key和 module同名的情况尝试做调整,如下在modelscope/pipelines/nlp/sequence_classification_pipeline.py 中 
原本
 @PIPELINES.register_module(
    Tasks.sentiment_classification, module_name=Pipelines.sentiment_classification)
改成
@PIPELINES.register_module(
    Tasks.text_classification, module_name=Pipelines.sentiment_classification)
相应的configuration.json也有改动,这样的改动更符合任务和pipline(子任务)的关系。
8. 其他相应改动为支持上述功能
        Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/10041463
2022-09-27 23:08:33 +08:00

142 lines
5.2 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from modelscope.models import Model
from modelscope.msdatasets import MsDataset
from modelscope.preprocessors import SequenceClassificationPreprocessor
from modelscope.preprocessors.base import Preprocessor
from modelscope.utils.constant import DEFAULT_DATASET_NAMESPACE, DownloadMode
from modelscope.utils.test_utils import require_tf, require_torch, test_level
class ImgPreprocessor(Preprocessor):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.path_field = kwargs.pop('image_path', 'image_path')
self.width = kwargs.pop('width', 'width')
self.height = kwargs.pop('height', 'width')
def __call__(self, data):
import cv2
image_path = data.get(self.path_field)
if not image_path:
return None
img = cv2.imread(image_path)
return {
'image':
cv2.resize(img,
(data.get(self.height, 128), data.get(self.width, 128)))
}
class MsDatasetTest(unittest.TestCase):
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_movie_scene_seg_toydata(self):
ms_ds_train = MsDataset.load('movie_scene_seg_toydata', split='train')
print(ms_ds_train._hf_ds.config_kwargs)
assert next(iter(ms_ds_train.config_kwargs['split_config'].values()))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_coco(self):
ms_ds_train = MsDataset.load(
'pets_small',
namespace=DEFAULT_DATASET_NAMESPACE,
download_mode=DownloadMode.FORCE_REDOWNLOAD,
split='train')
print(ms_ds_train.config_kwargs)
assert next(iter(ms_ds_train.config_kwargs['split_config'].values()))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_ms_csv_basic(self):
ms_ds_train = MsDataset.load(
'afqmc_small', namespace='userxiaoming', split='train')
print(next(iter(ms_ds_train)))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_ds_basic(self):
ms_ds_full = MsDataset.load(
'xcopa', subset_name='translation-et', namespace='damotest')
ms_ds = MsDataset.load(
'xcopa',
subset_name='translation-et',
namespace='damotest',
split='test')
print(next(iter(ms_ds_full['test'])))
print(next(iter(ms_ds)))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
@require_torch
def test_to_torch_dataset_text(self):
model_id = 'damo/bert-base-sst2'
nlp_model = Model.from_pretrained(model_id)
preprocessor = SequenceClassificationPreprocessor(
nlp_model.model_dir,
first_sequence='premise',
second_sequence=None,
padding='max_length')
ms_ds_train = MsDataset.load(
'xcopa',
subset_name='translation-et',
namespace='damotest',
split='test')
pt_dataset = ms_ds_train.to_torch_dataset(preprocessors=preprocessor)
import torch
dataloader = torch.utils.data.DataLoader(pt_dataset, batch_size=5)
print(next(iter(dataloader)))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
@require_tf
def test_to_tf_dataset_text(self):
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
model_id = 'damo/bert-base-sst2'
nlp_model = Model.from_pretrained(model_id)
preprocessor = SequenceClassificationPreprocessor(
nlp_model.model_dir,
first_sequence='premise',
second_sequence=None)
ms_ds_train = MsDataset.load(
'xcopa',
subset_name='translation-et',
namespace='damotest',
split='test')
tf_dataset = ms_ds_train.to_tf_dataset(
batch_size=5,
shuffle=True,
preprocessors=preprocessor,
drop_remainder=True)
print(next(iter(tf_dataset)))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
@require_torch
def test_to_torch_dataset_img(self):
ms_image_train = MsDataset.load(
'fixtures_image_utils', namespace='damotest', split='test')
pt_dataset = ms_image_train.to_torch_dataset(
preprocessors=ImgPreprocessor(image_path='file'))
import torch
dataloader = torch.utils.data.DataLoader(pt_dataset, batch_size=5)
print(next(iter(dataloader)))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
@require_tf
def test_to_tf_dataset_img(self):
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
ms_image_train = MsDataset.load(
'fixtures_image_utils', namespace='damotest', split='test')
tf_dataset = ms_image_train.to_tf_dataset(
batch_size=5,
shuffle=True,
preprocessors=ImgPreprocessor(image_path='file'),
drop_remainder=True,
)
print(next(iter(tf_dataset)))
if __name__ == '__main__':
unittest.main()