Files
modelscope/tests/pipelines/test_human_normal_estimation.py
Ranqing 543a2b32d7 upload high quality human normal estimation model (#903)
* upload human normal estimation model

* upload human normal estimation unittest

* update human normal estimation

* update test data

---------

Co-authored-by: 葭润 <ranqing.rq@alibaba-inc.com>
Co-authored-by: ranqing <ranqing@Sundays-Mac.local>
Co-authored-by: suluyana <suluyan_sly@163.com>
2024-07-31 10:19:41 +08:00

38 lines
1.2 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import os.path
import unittest
import cv2
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
class HumanNormalEstimationTest(unittest.TestCase):
def setUp(self) -> None:
self.task = 'human-normal-estimation'
self.model_id = 'Damo_XR_Lab/cv_human_monocular-normal-estimation'
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_image_normal_estimation(self):
cur_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
input_location = f'{cur_dir}/data/test/images/human_normal_estimation.png'
estimator = pipeline(
Tasks.human_normal_estimation, model=self.model_id)
result = estimator(input_location)
normals_vis = result[OutputKeys.NORMALS_COLOR]
input_img = cv2.imread(input_location)
normals_vis = cv2.resize(
normals_vis, dsize=(input_img.shape[1], input_img.shape[0]))
cv2.imwrite('result.jpg', normals_vis)
if __name__ == '__main__':
unittest.main()