mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 16:27:45 +01:00
38 lines
1.2 KiB
Python
38 lines
1.2 KiB
Python
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||
|
|
import os
|
||
|
|
import os.path
|
||
|
|
import unittest
|
||
|
|
|
||
|
|
import cv2
|
||
|
|
|
||
|
|
from modelscope.outputs import OutputKeys
|
||
|
|
from modelscope.pipelines import pipeline
|
||
|
|
from modelscope.utils.constant import Tasks
|
||
|
|
from modelscope.utils.test_utils import test_level
|
||
|
|
|
||
|
|
|
||
|
|
class HumanNormalEstimationTest(unittest.TestCase):
|
||
|
|
|
||
|
|
def setUp(self) -> None:
|
||
|
|
self.task = 'human-normal-estimation'
|
||
|
|
self.model_id = 'Damo_XR_Lab/cv_human_monocular-normal-estimation'
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
|
|
def test_image_normal_estimation(self):
|
||
|
|
cur_dir = os.path.dirname(
|
||
|
|
os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||
|
|
input_location = f'{cur_dir}/data/test/images/human_normal_estimation.png'
|
||
|
|
estimator = pipeline(
|
||
|
|
Tasks.human_normal_estimation, model=self.model_id)
|
||
|
|
result = estimator(input_location)
|
||
|
|
normals_vis = result[OutputKeys.NORMALS_COLOR]
|
||
|
|
|
||
|
|
input_img = cv2.imread(input_location)
|
||
|
|
normals_vis = cv2.resize(
|
||
|
|
normals_vis, dsize=(input_img.shape[1], input_img.shape[0]))
|
||
|
|
cv2.imwrite('result.jpg', normals_vis)
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == '__main__':
|
||
|
|
unittest.main()
|