Files
modelscope/tests/trainers/hooks/test_optimizer_hook.py
wenmeng.zwm 4814b198f0 [to #43112534] taskdataset refine and auto placement for data and model
* refine taskdataset interface
 * add device placement for trainer
 * add device placement for pipeline
 * add config checker and fix model placement bug
 * fix cycling import
 * refactor model init for translation_pipeline
 * cv pipelines support kwargs


Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9463076
2022-07-23 11:08:43 +08:00

179 lines
6.1 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
import json
import numpy as np
import torch
from torch import nn
from torch.optim import SGD
from torch.optim.lr_scheduler import MultiStepLR
from modelscope.trainers import build_trainer
from modelscope.utils.constant import ModelFile, TrainerStages
from modelscope.utils.test_utils import create_dummy_test_dataset
dummy_dataset = create_dummy_test_dataset(
np.random.random(size=(2, 2)), np.random.randint(0, 2, (1, )), 10)
class DummyModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 2)
self.bn = nn.BatchNorm1d(2)
def forward(self, feat, labels):
x = self.linear(feat)
x = self.bn(x)
loss = torch.sum(x)
return dict(logits=x, loss=loss)
class OptimizerHookTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
super().tearDown()
shutil.rmtree(self.tmp_dir)
def test_optimizer_hook(self):
json_cfg = {
'task': 'image_classification',
'train': {
'work_dir': self.tmp_dir,
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1
}
}
}
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
with open(config_path, 'w') as f:
json.dump(json_cfg, f)
model = DummyModel()
optimizer = SGD(model.parameters(), lr=0.01)
lr_scheduler = MultiStepLR(optimizer, milestones=[1, 2])
trainer_name = 'EpochBasedTrainer'
kwargs = dict(
cfg_file=config_path,
model=model,
train_dataset=dummy_dataset,
optimizers=(optimizer, lr_scheduler),
max_epochs=2)
trainer = build_trainer(trainer_name, kwargs)
train_dataloader = trainer._build_dataloader_with_dataset(
trainer.train_dataset, **trainer.cfg.train.get('dataloader', {}))
trainer.register_optimizers_hook()
trainer.invoke_hook(TrainerStages.before_run)
for _ in range(trainer._epoch, trainer._max_epochs):
trainer.invoke_hook(TrainerStages.before_train_epoch)
for _, data_batch in enumerate(train_dataloader):
trainer.invoke_hook(TrainerStages.before_train_iter)
trainer.train_step(trainer.model, data_batch)
trainer.invoke_hook(TrainerStages.after_train_iter)
self.assertEqual(
len(trainer.optimizer.param_groups[0]['params']), 4)
for i in range(4):
self.assertTrue(trainer.optimizer.param_groups[0]['params']
[i].requires_grad)
trainer.invoke_hook(TrainerStages.after_train_epoch)
trainer._epoch += 1
trainer.invoke_hook(TrainerStages.after_run)
class TorchAMPOptimizerHookTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
super().tearDown()
shutil.rmtree(self.tmp_dir)
@unittest.skipIf(not torch.cuda.is_available(),
'skip this test when cuda is not available')
def test_amp_optimizer_hook(self):
json_cfg = {
'task': 'image_classification',
'train': {
'work_dir': self.tmp_dir,
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1
}
}
}
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
with open(config_path, 'w') as f:
json.dump(json_cfg, f)
model = DummyModel().cuda()
optimizer = SGD(model.parameters(), lr=0.01)
lr_scheduler = MultiStepLR(optimizer, milestones=[1, 2])
trainer_name = 'EpochBasedTrainer'
kwargs = dict(
cfg_file=config_path,
model=model,
train_dataset=dummy_dataset,
optimizers=(optimizer, lr_scheduler),
max_epochs=2,
use_fp16=True)
trainer = build_trainer(trainer_name, kwargs)
train_dataloader = trainer._build_dataloader_with_dataset(
trainer.train_dataset, **trainer.cfg.train.get('dataloader', {}))
trainer.register_optimizers_hook()
trainer.invoke_hook(TrainerStages.before_run)
for _ in range(trainer._epoch, trainer._max_epochs):
trainer.invoke_hook(TrainerStages.before_train_epoch)
for _, data_batch in enumerate(train_dataloader):
for k, v in data_batch.items():
data_batch[k] = v.cuda()
trainer.invoke_hook(TrainerStages.before_train_iter)
trainer.train_step(trainer.model, data_batch)
trainer.invoke_hook(TrainerStages.after_train_iter)
self.assertEqual(trainer.train_outputs['logits'].dtype,
torch.float16)
# test if `after_train_iter`, whether the model is reset to fp32
trainer.train_step(trainer.model, data_batch)
self.assertEqual(trainer.train_outputs['logits'].dtype,
torch.float32)
self.assertEqual(
len(trainer.optimizer.param_groups[0]['params']), 4)
for i in range(4):
self.assertTrue(trainer.optimizer.param_groups[0]['params']
[i].requires_grad)
trainer.invoke_hook(TrainerStages.after_train_epoch)
trainer._epoch += 1
trainer.invoke_hook(TrainerStages.after_run)
if __name__ == '__main__':
unittest.main()