Files
modelscope/docs/source/tutorials/pipeline.md
wenmeng.zwm 1f6b376599 [to #42373878] refactor maaslib to modelscope
1.  refactor maaslib to modelscope
2.  fix UT error
3.  support pipeline which does not register default model

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/8988388
2022-06-09 20:16:26 +08:00

85 lines
3.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Pipeline使用教程
本文将简单介绍如何使用`pipeline`函数加载模型进行推理。`pipeline`函数支持按照任务类型、模型名称从模型仓库
拉取模型进行进行推理,当前支持的任务有
* 人像抠图 (image-matting)
* 基于bert的语义情感分析 (bert-sentiment-analysis)
本文将从如下方面进行讲解如何使用Pipeline模块
* 使用pipeline()函数进行推理
* 指定特定预处理、特定模型进行推理
* 不同场景推理任务示例
## 环境准备
详细步骤可以参考 [快速开始](../quick_start.md)
## Pipeline基本用法
1. pipeline函数支持指定特定任务名称加载任务默认模型创建对应Pipeline对象
执行如下python代码
```python
>>> from modelscope.pipelines import pipeline
>>> img_matting = pipeline(task='image-matting', model='damo/image-matting-person')
```
2. 传入单张图像url进行处理
``` python
>>> import cv2
>>> result = img_matting('http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png')
>>> cv2.imwrite('result.png', result['output_png'])
>>> import os.path as osp
>>> print(f'result file path is {osp.abspath("result.png")}')
```
pipeline对象也支持传入一个列表输入返回对应输出列表每个元素对应输入样本的返回结果
```python
>>> results = img_matting(
[
'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png',
'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png',
'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png',
])
```
如果pipeline对应有一些后处理参数也支持通过调用时候传入.
```python
>>> pipe = pipeline(task_name)
>>> result = pipe(input, post_process_args)
```
## 指定预处理、模型进行推理
pipeline函数支持传入实例化的预处理对象、模型对象从而支持用户在推理过程中定制化预处理、模型。
下面以文本情感分类为例进行介绍。
由于demo模型为EasyNLP提供的模型首先安装EasyNLP
```shell
pip install https://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com/release/package/whl/easynlp-0.0.4-py2.py3-none-any.whl
```
下载模型文件
```shell
wget https://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com/release/easynlp_modelzoo/alibaba-pai/bert-base-sst2.zip && unzip bert-base-sst2.zip
```
创建tokenizer和模型
```python
>>> from modelscope.models import Model
>>> from modelscope.preprocessors import SequenceClassificationPreprocessor
>>> model = Model.from_pretrained('damo/bert-base-sst2')
>>> tokenizer = SequenceClassificationPreprocessor(
model.model_dir, first_sequence='sentence', second_sequence=None)
```
使用tokenizer和模型对象创建pipeline
```python
>>> from modelscope.pipelines import pipeline
>>> semantic_cls = pipeline('text-classification', model=model, preprocessor=tokenizer)
>>> semantic_cls("Hello world!")
```
## 不同场景任务推理示例
人像抠图、语义分类建上述两个例子。 其他例子未来添加。