Files
modelscope/docs/source/tutorials/pipeline.md
zhangzhicheng.zzc cf194ef6cd [to #42322933] nlp preprocessor refactor
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9269314

    * init

* token to ids

* add model

* model forward ready

* add intent

* intent preprocessor ready

* intent success

* merge master

* test with model hub

* add flake8

* update

* update

* update

* Merge branch 'master' into nlp/space/gen

* delete file about gen

* init

* fix flake8 bug

* [to #42322933] init

* bug fix

* [to #42322933] init

* update pipeline registry info

* Merge remote-tracking branch 'origin/master' into feat/nli

* [to #42322933] init

* [to #42322933] init

* modify forward

* [to #42322933] init

* generation ready

* init

* Merge branch 'master' into feat/zero_shot_classification

# Conflicts:
#	modelscope/preprocessors/__init__.py

* [to #42322933] bugfix

* [to #42322933] pre commit fix

* fill mask

* registry multi models on model and pipeline

* add tests

* test level >= 0

* local gen ready

* merge with master

* dialog modeling ready

* fix comments: rename and refactor AliceMindMLM; adjust pipeline

* space intent and modeling(generation) are ready

* bug fix

* add dep

* add dep

* support dst data processor

* merge with nlp/space/dst

* merge with master

* Merge remote-tracking branch 'origin' into feat/fill_mask

Conflicts:
	modelscope/models/nlp/__init__.py
	modelscope/pipelines/builder.py
	modelscope/pipelines/outputs.py
	modelscope/preprocessors/nlp.py
	requirements/nlp.txt

* merge with master

* merge with master 2/2

* fix comments

* fix isort for pre-commit check

* allow params pass to pipeline's __call__ method

* Merge remote-tracking branch 'origin/master' into feat/zero_shot_classification

* merge with nli task

* merge with sentiment_classification

* merge with zero_shot_classfication

* merge with fill_mask

* merge with space

* merge with master head

* Merge remote-tracking branch 'origin' into feat/fill_mask

Conflicts:
	modelscope/utils/constant.py

* fix: pipeline module_name from model_type to 'fill_mask' & fix merge bug

* unfiinished change

* fix bug

* unfinished

* unfinished

* revise modelhub dependency

* Merge branch 'feat/nlp_refactor' of http://gitlab.alibaba-inc.com/Ali-MaaS/MaaS-lib into feat/nlp_refactor

* add eval() to pipeline call

* add test level

* ut run passed

* add default args

* tmp

* merge master

* all ut passed

* remove an useless enum

* revert a mis modification

* revert a mis modification

* Merge commit 'ace8af92465f7d772f035aebe98967726655f12c' into feat/nlp

* commit 'ace8af92465f7d772f035aebe98967726655f12c':
  [to #42322933] Add cv-action-recongnition-pipeline to maas lib
  [to #42463204]  support Pil.Image for image_captioning_pipeline
  [to #42670107] restore pydataset test
  [to #42322933] add create if not exist and add(back) create model example         Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9130661
  [to #41474818]fix: fix errors in task name definition

# Conflicts:
#	modelscope/pipelines/builder.py
#	modelscope/utils/constant.py

* Merge branch 'feat/nlp' into feat/nlp_refactor

* feat/nlp:
  [to #42322933] Add cv-action-recongnition-pipeline to maas lib
  [to #42463204]  support Pil.Image for image_captioning_pipeline
  [to #42670107] restore pydataset test
  [to #42322933] add create if not exist and add(back) create model example         Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9130661
  [to #41474818]fix: fix errors in task name definition

# Conflicts:
#	modelscope/pipelines/builder.py

* fix compile bug

* refactor space

* Merge branch 'feat/nlp_refactor' of http://gitlab.alibaba-inc.com/Ali-MaaS/MaaS-lib into feat/nlp_refactor

* Merge remote-tracking branch 'origin' into feat/fill_mask

* fix

* pre-commit lint

* lint file

* lint file

* lint file

* update modelhub dependency

* lint file

* ignore dst_processor temporary

* solve comment: 1. change MaskedLMModelBase to MaskedLanguageModelBase 2. remove a useless import

* recommit

* remove MaskedLanguageModel from __all__

* Merge commit '1a0d4af55a2eee69d89633874890f50eda8f8700' into feat/nlp_refactor

* commit '1a0d4af55a2eee69d89633874890f50eda8f8700':
  [to #42322933] test level check         Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9143809
  [to #42322933] update nlp models name in metainfo         Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9134657

# Conflicts:
#	modelscope/metainfo.py

* update

* revert pipeline params update

* remove zeroshot

* update sequence classfication outpus

* merge with fill mask

* Merge remote-tracking branch 'origin' into feat/fill_mask

* fix

* fix flake8 warning of dst

* Merge remote-tracking branch 'origin/feat/fill_mask' into feat/nlp

* merge with master

* remove useless test.py

* Merge remote-tracking branch 'origin/master' into feat/nlp

* remove unformatted space trainer

* revise based on comment except chinease comment

* skip ci blocking

* translation pipeline

* csanmt model for translation pipeline

* update

* update

* update builder.py

* change Chinese notes of space3.0 into English

* translate chinese comment to english

* add space to metainfo

* update casnmt_translation

* update csanmt transformer

* merge with master

* update csanmt translation

* update lint

* update metainfo.py

* Update translation_pipeline.py

* Update builder.py

* fix: 1. make csanmt derived from Model 2. add kwargs to prevent from call error

* pre-commit check

* temp exclue flake8

* temp ignore translation files

* fix bug

* pre-commit passed

* fixbug

* fixbug

* revert pre commit ignorance

* pre-commit passed

* fix bug

* merge with master

* add missing setting

* merge with master

* add outputs

* modify test level

* modify chinese comment

* remove useless doc

* space outputs normalization

* Merge remote-tracking branch 'origin/master' into nlp/translation

* update translation_pipeline.py

* Merge remote-tracking branch 'origin/master' into feat/nlp

* Merge remote-tracking branch 'origin/master' into nlp/translation

* add new __init__ method

* add new __init__ method

* update output format

* Merge remote-tracking branch 'origin/master' into feat/nlp

* update output format

* merge with master

* merge with nlp/translate

* update the translation comment

* update the translation comment

* Merge branch 'nlp/translation' into feat/nlp

* Merge remote-tracking branch 'origin/master' into feat/nlp

* Merge remote-tracking branch 'origin/master' into feat/nlp

* nlp preprocessor refactor

* add get_model_type in util.hub

* update the default preprocessor args

* update the fill mask preprocessor

* bug typo fixed
2022-07-05 20:40:48 +08:00

62 lines
2.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Pipeline使用教程
本文简单介绍如何使用`pipeline`函数加载模型进行推理。`pipeline`函数支持按照任务类型、模型名称从模型仓库拉取模型进行进行推理,包含以下几个方面:
* 使用pipeline()函数进行推理
* 指定特定预处理、特定模型进行推理
* 不同场景推理任务示例
## 环境准备
详细步骤可以参考 [快速开始](../quick_start.md)
## Pipeline基本用法
下面以中文分词任务为例说明pipeline函数的基本用法
1. pipeline函数支持指定特定任务名称加载任务默认模型创建对应pipeline对象
执行如下python代码
```python
from modelscope.pipelines import pipeline
word_segmentation = pipeline('word-segmentation')
```
2. 输入文本
``` python
input = '今天天气不错,适合出去游玩'
print(word_segmentation(input))
{'output': '今天 天气 不错 适合 出去 游玩'}
```
3. 输入多条样本
pipeline对象也支持传入多个样本列表输入返回对应输出列表每个元素对应输入样本的返回结果
```python
inputs = ['今天天气不错,适合出去游玩','这本书很好,建议你看看']
print(word_segmentation(inputs))
[{'output': '今天 天气 不错 适合 出去 游玩'}, {'output': '这 本 书 很 好 建议 你 看看'}]
```
## 指定预处理、模型进行推理
pipeline函数支持传入实例化的预处理对象、模型对象从而支持用户在推理过程中定制化预处理、模型。
1. 首先,创建预处理方法和模型
```python
from modelscope.models import Model
from modelscope.preprocessors import TokenClassificationPreprocessor
model = Model.from_pretrained('damo/nlp_structbert_word-segmentation_chinese-base')
tokenizer = TokenClassificationPreprocessor(model.model_dir)
```
2. 使用tokenizer和模型对象创建pipeline
```python
from modelscope.pipelines import pipeline
word_seg = pipeline('word-segmentation', model=model, preprocessor=tokenizer)
input = '今天天气不错,适合出去游玩'
print(word_seg(input))
{'output': '今天 天气 不错 适合 出去 游玩'}
```
## 不同场景任务推理示例
下面以一个图像任务:人像抠图('image-matting'为例进一步说明pipeline的用法
```python
import cv2
from modelscope.pipelines import pipeline
img_matting = pipeline('image-matting')
result = img_matting('https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/image_matting.png')
cv2.imwrite('result.png', result['output_png'])
```