mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-18 01:07:44 +01:00
119 lines
6.2 KiB
Python
119 lines
6.2 KiB
Python
# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
|
|
import unittest
|
|
|
|
from modelscope.models import Model
|
|
from modelscope.models.cv.vision_efficient_tuning.model import \
|
|
VisionEfficientTuningModel
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class VisionEfficientTuningTest(unittest.TestCase):
|
|
|
|
def setUp(self) -> None:
|
|
self.task = Tasks.vision_efficient_tuning
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_adapter_run_pipeline(self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-adapter'
|
|
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
|
|
petl_pipeline = pipeline(self.task, model_id)
|
|
result = petl_pipeline(img_path)
|
|
print(f'Vision-efficient-tuning-adapter output: {result}.')
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_adapter_load_model_from_pretrained(self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-adapter'
|
|
model = Model.from_pretrained(model_id)
|
|
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_lora_run_pipeline(self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-lora'
|
|
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
|
|
petl_pipeline = pipeline(self.task, model_id)
|
|
result = petl_pipeline(img_path)
|
|
print(f'Vision-efficient-tuning-lora output: {result}.')
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_lora_load_model_from_pretrained(self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-lora'
|
|
model = Model.from_pretrained(model_id)
|
|
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_prefix_run_pipeline(self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prefix'
|
|
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
|
|
petl_pipeline = pipeline(self.task, model_id)
|
|
result = petl_pipeline(img_path)
|
|
print(f'Vision-efficient-tuning-prefix output: {result}.')
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_prefix_load_model_from_pretrained(self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prefix'
|
|
model = Model.from_pretrained(model_id)
|
|
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_prompt_run_pipeline(self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prompt'
|
|
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
|
|
petl_pipeline = pipeline(self.task, model_id)
|
|
result = petl_pipeline(img_path)
|
|
print(f'Vision-efficient-tuning-prompt output: {result}.')
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_prompt_load_model_from_pretrained(self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prompt'
|
|
model = Model.from_pretrained(model_id)
|
|
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_bitfit_run_pipeline(self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-bitfit'
|
|
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
|
|
petl_pipeline = pipeline(self.task, model_id)
|
|
result = petl_pipeline(img_path)
|
|
print(f'Vision-efficient-tuning-bitfit output: {result}.')
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_bitfit_load_model_from_pretrained(self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-bitfit'
|
|
model = Model.from_pretrained(model_id)
|
|
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_sidetuning_run_pipeline(self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-sidetuning'
|
|
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
|
|
petl_pipeline = pipeline(self.task, model_id)
|
|
result = petl_pipeline(img_path)
|
|
print(f'Vision-efficient-tuning-sidetuning output: {result}.')
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_sidetuning_load_model_from_pretrained(
|
|
self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-sidetuning'
|
|
model = Model.from_pretrained(model_id)
|
|
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_utuning_run_pipeline(self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-utuning'
|
|
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
|
|
petl_pipeline = pipeline(self.task, model_id)
|
|
result = petl_pipeline(img_path)
|
|
print(f'Vision-efficient-tuning-utuning output: {result}.')
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_vision_efficient_tuning_utuning_load_model_from_pretrained(self):
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-utuning'
|
|
model = Model.from_pretrained(model_id)
|
|
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|