# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved. import unittest from modelscope.models import Model from modelscope.models.cv.vision_efficient_tuning.model import \ VisionEfficientTuningModel from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.utils.test_utils import test_level class VisionEfficientTuningTest(unittest.TestCase): def setUp(self) -> None: self.task = Tasks.vision_efficient_tuning @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_vision_efficient_tuning_adapter_run_pipeline(self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-adapter' img_path = 'data/test/images/vision_efficient_tuning_test_1.png' petl_pipeline = pipeline(self.task, model_id) result = petl_pipeline(img_path) print(f'Vision-efficient-tuning-adapter output: {result}.') @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_vision_efficient_tuning_adapter_load_model_from_pretrained(self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-adapter' model = Model.from_pretrained(model_id) self.assertTrue(model.__class__ == VisionEfficientTuningModel) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_vision_efficient_tuning_lora_run_pipeline(self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-lora' img_path = 'data/test/images/vision_efficient_tuning_test_1.png' petl_pipeline = pipeline(self.task, model_id) result = petl_pipeline(img_path) print(f'Vision-efficient-tuning-lora output: {result}.') @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_vision_efficient_tuning_lora_load_model_from_pretrained(self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-lora' model = Model.from_pretrained(model_id) self.assertTrue(model.__class__ == VisionEfficientTuningModel) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_vision_efficient_tuning_prefix_run_pipeline(self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prefix' img_path = 'data/test/images/vision_efficient_tuning_test_1.png' petl_pipeline = pipeline(self.task, model_id) result = petl_pipeline(img_path) print(f'Vision-efficient-tuning-prefix output: {result}.') @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_vision_efficient_tuning_prefix_load_model_from_pretrained(self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prefix' model = Model.from_pretrained(model_id) self.assertTrue(model.__class__ == VisionEfficientTuningModel) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_vision_efficient_tuning_prompt_run_pipeline(self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prompt' img_path = 'data/test/images/vision_efficient_tuning_test_1.png' petl_pipeline = pipeline(self.task, model_id) result = petl_pipeline(img_path) print(f'Vision-efficient-tuning-prompt output: {result}.') @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_vision_efficient_tuning_prompt_load_model_from_pretrained(self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prompt' model = Model.from_pretrained(model_id) self.assertTrue(model.__class__ == VisionEfficientTuningModel) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_vision_efficient_tuning_bitfit_run_pipeline(self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-bitfit' img_path = 'data/test/images/vision_efficient_tuning_test_1.png' petl_pipeline = pipeline(self.task, model_id) result = petl_pipeline(img_path) print(f'Vision-efficient-tuning-bitfit output: {result}.') @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_vision_efficient_tuning_bitfit_load_model_from_pretrained(self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-bitfit' model = Model.from_pretrained(model_id) self.assertTrue(model.__class__ == VisionEfficientTuningModel) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_vision_efficient_tuning_sidetuning_run_pipeline(self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-sidetuning' img_path = 'data/test/images/vision_efficient_tuning_test_1.png' petl_pipeline = pipeline(self.task, model_id) result = petl_pipeline(img_path) print(f'Vision-efficient-tuning-sidetuning output: {result}.') @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_vision_efficient_tuning_sidetuning_load_model_from_pretrained( self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-sidetuning' model = Model.from_pretrained(model_id) self.assertTrue(model.__class__ == VisionEfficientTuningModel) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_vision_efficient_tuning_utuning_run_pipeline(self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-utuning' img_path = 'data/test/images/vision_efficient_tuning_test_1.png' petl_pipeline = pipeline(self.task, model_id) result = petl_pipeline(img_path) print(f'Vision-efficient-tuning-utuning output: {result}.') @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_vision_efficient_tuning_utuning_load_model_from_pretrained(self): model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-utuning' model = Model.from_pretrained(model_id) self.assertTrue(model.__class__ == VisionEfficientTuningModel) if __name__ == '__main__': unittest.main()