mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-18 01:07:44 +01:00
1.add parameter model_revision in training_args.py. 2.add parameter model_revision in kwargs for finetune_text_classification.py and finetune_text_generation.py. 3.modify dataset loading in finetune_text_classification.py for flex training. Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/12869552 * add model revision in training_args and modify dataset loading in finetune text classification
125 lines
3.3 KiB
Python
125 lines
3.3 KiB
Python
from dataclasses import dataclass, field
|
|
|
|
from modelscope import (EpochBasedTrainer, MsDataset, TrainingArgs,
|
|
build_dataset_from_file)
|
|
from modelscope.metainfo import Trainers
|
|
from modelscope.trainers import build_trainer
|
|
|
|
|
|
@dataclass(init=False)
|
|
class TextGenerationArguments(TrainingArgs):
|
|
|
|
trainer: str = field(
|
|
default=Trainers.default, metadata={
|
|
'help': 'The trainer used',
|
|
})
|
|
|
|
work_dir: str = field(
|
|
default='./tmp',
|
|
metadata={
|
|
'help': 'The working path for saving checkpoint',
|
|
})
|
|
|
|
src_txt: str = field(
|
|
default=None,
|
|
metadata={
|
|
'help': 'The source text key of preprocessor',
|
|
'cfg_node': 'preprocessor.src_txt'
|
|
})
|
|
|
|
tgt_txt: str = field(
|
|
default=None,
|
|
metadata={
|
|
'help': 'The target text key of preprocessor',
|
|
'cfg_node': 'preprocessor.tgt_txt'
|
|
})
|
|
|
|
preprocessor: str = field(
|
|
default=None,
|
|
metadata={
|
|
'help': 'The preprocessor type',
|
|
'cfg_node': 'preprocessor.type'
|
|
})
|
|
|
|
lr_scheduler: str = field(
|
|
default=None,
|
|
metadata={
|
|
'help': 'The lr scheduler type',
|
|
'cfg_node': 'train.lr_scheduler.type'
|
|
})
|
|
|
|
world_size: int = field(
|
|
default=None,
|
|
metadata={
|
|
'help': 'The parallel world size',
|
|
'cfg_node': 'megatron.world_size'
|
|
})
|
|
|
|
tensor_model_parallel_size: int = field(
|
|
default=None,
|
|
metadata={
|
|
'help': 'The tensor model parallel size',
|
|
'cfg_node': 'megatron.tensor_model_parallel_size'
|
|
})
|
|
|
|
use_megatron: bool = field(
|
|
default=None, metadata={
|
|
'help': 'Whether to use MegatronHook',
|
|
})
|
|
|
|
|
|
def noam_lambda(current_step: int):
|
|
current_step += 1
|
|
return min(current_step**(-0.5), current_step * 100**(-1.5))
|
|
|
|
|
|
config, args = TextGenerationArguments().parse_cli().to_config()
|
|
print(config, args)
|
|
|
|
|
|
def cfg_modify_fn(cfg):
|
|
if args.use_model_config:
|
|
cfg.merge_from_dict(config)
|
|
else:
|
|
cfg = config
|
|
if cfg.train.lr_scheduler.type == 'noam':
|
|
cfg.train.lr_scheduler = {
|
|
'type': 'LambdaLR',
|
|
'lr_lambda': noam_lambda,
|
|
'options': {
|
|
'by_epoch': False
|
|
}
|
|
}
|
|
if args.use_megatron:
|
|
cfg.train.hooks.append({'type': 'MegatronHook'})
|
|
return cfg
|
|
|
|
|
|
if args.dataset_json_file is None:
|
|
train_dataset = MsDataset.load(
|
|
args.train_dataset_name,
|
|
subset_name=args.train_subset_name,
|
|
split=args.train_split,
|
|
namespace=args.train_dataset_namespace)
|
|
validation_dataset = MsDataset.load(
|
|
args.val_dataset_name,
|
|
subset_name=args.val_subset_name,
|
|
split=args.val_split,
|
|
namespace=args.val_dataset_namespace)
|
|
else:
|
|
train_dataset, validation_dataset = build_dataset_from_file(
|
|
args.dataset_json_file)
|
|
|
|
kwargs = dict(
|
|
model=args.model,
|
|
model_revision=args.model_revision,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=validation_dataset,
|
|
seed=args.seed,
|
|
work_dir=args.work_dir,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
|
|
trainer: EpochBasedTrainer = build_trainer(
|
|
name=args.trainer, default_args=kwargs)
|
|
trainer.train()
|