from dataclasses import dataclass, field from modelscope import (EpochBasedTrainer, MsDataset, TrainingArgs, build_dataset_from_file) from modelscope.metainfo import Trainers from modelscope.trainers import build_trainer @dataclass(init=False) class TextGenerationArguments(TrainingArgs): trainer: str = field( default=Trainers.default, metadata={ 'help': 'The trainer used', }) work_dir: str = field( default='./tmp', metadata={ 'help': 'The working path for saving checkpoint', }) src_txt: str = field( default=None, metadata={ 'help': 'The source text key of preprocessor', 'cfg_node': 'preprocessor.src_txt' }) tgt_txt: str = field( default=None, metadata={ 'help': 'The target text key of preprocessor', 'cfg_node': 'preprocessor.tgt_txt' }) preprocessor: str = field( default=None, metadata={ 'help': 'The preprocessor type', 'cfg_node': 'preprocessor.type' }) lr_scheduler: str = field( default=None, metadata={ 'help': 'The lr scheduler type', 'cfg_node': 'train.lr_scheduler.type' }) world_size: int = field( default=None, metadata={ 'help': 'The parallel world size', 'cfg_node': 'megatron.world_size' }) tensor_model_parallel_size: int = field( default=None, metadata={ 'help': 'The tensor model parallel size', 'cfg_node': 'megatron.tensor_model_parallel_size' }) use_megatron: bool = field( default=None, metadata={ 'help': 'Whether to use MegatronHook', }) def noam_lambda(current_step: int): current_step += 1 return min(current_step**(-0.5), current_step * 100**(-1.5)) config, args = TextGenerationArguments().parse_cli().to_config() print(config, args) def cfg_modify_fn(cfg): if args.use_model_config: cfg.merge_from_dict(config) else: cfg = config if cfg.train.lr_scheduler.type == 'noam': cfg.train.lr_scheduler = { 'type': 'LambdaLR', 'lr_lambda': noam_lambda, 'options': { 'by_epoch': False } } if args.use_megatron: cfg.train.hooks.append({'type': 'MegatronHook'}) return cfg if args.dataset_json_file is None: train_dataset = MsDataset.load( args.train_dataset_name, subset_name=args.train_subset_name, split=args.train_split, namespace=args.train_dataset_namespace) validation_dataset = MsDataset.load( args.val_dataset_name, subset_name=args.val_subset_name, split=args.val_split, namespace=args.val_dataset_namespace) else: train_dataset, validation_dataset = build_dataset_from_file( args.dataset_json_file) kwargs = dict( model=args.model, model_revision=args.model_revision, train_dataset=train_dataset, eval_dataset=validation_dataset, seed=args.seed, work_dir=args.work_dir, cfg_modify_fn=cfg_modify_fn) trainer: EpochBasedTrainer = build_trainer( name=args.trainer, default_args=kwargs) trainer.train()