Files
modelscope/tests/trainers/test_cones2_trainer.py
2023-08-29 21:05:23 +08:00

103 lines
3.3 KiB
Python

import os
import shutil
import tempfile
import unittest
from modelscope.metainfo import Trainers
from modelscope.msdatasets import MsDataset
from modelscope.pipelines import pipeline
from modelscope.trainers import build_trainer
from modelscope.utils.constant import DownloadMode
from modelscope.utils.test_utils import test_level
class TestConesDiffusionTrainer(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.train_dataset = MsDataset.load(
'buptwq/lora-stable-diffusion-finetune',
split='train',
download_mode=DownloadMode.FORCE_REDOWNLOAD)
self.eval_dataset = MsDataset.load(
'buptwq/lora-stable-diffusion-finetune',
split='validation',
download_mode=DownloadMode.FORCE_REDOWNLOAD)
self.max_epochs = 5
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_cones2_diffusion_train(self):
model_id = 'damo/Cones2'
model_revision = 'v1.0.1'
def cfg_modify_fn(cfg):
cfg.train.max_epochs = self.max_epochs
cfg.train.lr_scheduler = {
'type': 'LambdaLR',
'lr_lambda': lambda _: 1,
'last_epoch': -1
}
cfg.train.optimizer.lr = 5e-6
return cfg
kwargs = dict(
model=model_id,
model_revision=model_revision,
work_dir=self.tmp_dir,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
cfg_modify_fn=cfg_modify_fn)
trainer = build_trainer(
name=Trainers.cones2_inference, default_args=kwargs)
trainer.train()
result = trainer.evaluate()
print(f'Cones-diffusion train output: {result}.')
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
pipe = pipeline(
task=Tasks.text_to_image_synthesis, model=f'{self.tmp_dir}/output')
output = pipe({
'text': 'a mug and a dog on the beach',
'subject_list': [['mug', 2], ['dog', 5]],
'color_context': {
'255,192,0': ['mug', 2.5],
'255,0,0': ['dog', 2.5]
},
'layout': 'data/test/images/mask_example.png'
})
cv2.imwrite('./cones.png', output['output_imgs'][0])
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_cones2_diffusion_eval(self):
model_id = 'damo/Cones2'
model_revision = 'v1.0.1'
kwargs = dict(
model=model_id,
model_revision=model_revision,
work_dir=self.tmp_dir,
train_dataset=None,
eval_dataset=self.eval_dataset)
trainer = build_trainer(
name=Trainers.cones2_inference, default_args=kwargs)
result = trainer.evaluate()
print(f'Cones-diffusion eval output: {result}.')
if __name__ == '__main__':
unittest.main()