import os import shutil import tempfile import unittest from modelscope.metainfo import Trainers from modelscope.msdatasets import MsDataset from modelscope.pipelines import pipeline from modelscope.trainers import build_trainer from modelscope.utils.constant import DownloadMode from modelscope.utils.test_utils import test_level class TestConesDiffusionTrainer(unittest.TestCase): def setUp(self): print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) self.train_dataset = MsDataset.load( 'buptwq/lora-stable-diffusion-finetune', split='train', download_mode=DownloadMode.FORCE_REDOWNLOAD) self.eval_dataset = MsDataset.load( 'buptwq/lora-stable-diffusion-finetune', split='validation', download_mode=DownloadMode.FORCE_REDOWNLOAD) self.max_epochs = 5 self.tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) def tearDown(self): shutil.rmtree(self.tmp_dir) super().tearDown() @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') def test_cones2_diffusion_train(self): model_id = 'damo/Cones2' model_revision = 'v1.0.1' def cfg_modify_fn(cfg): cfg.train.max_epochs = self.max_epochs cfg.train.lr_scheduler = { 'type': 'LambdaLR', 'lr_lambda': lambda _: 1, 'last_epoch': -1 } cfg.train.optimizer.lr = 5e-6 return cfg kwargs = dict( model=model_id, model_revision=model_revision, work_dir=self.tmp_dir, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, cfg_modify_fn=cfg_modify_fn) trainer = build_trainer( name=Trainers.cones2_inference, default_args=kwargs) trainer.train() result = trainer.evaluate() print(f'Cones-diffusion train output: {result}.') results_files = os.listdir(self.tmp_dir) self.assertIn(f'{trainer.timestamp}.log.json', results_files) pipe = pipeline( task=Tasks.text_to_image_synthesis, model=f'{self.tmp_dir}/output') output = pipe({ 'text': 'a mug and a dog on the beach', 'subject_list': [['mug', 2], ['dog', 5]], 'color_context': { '255,192,0': ['mug', 2.5], '255,0,0': ['dog', 2.5] }, 'layout': 'data/test/images/mask_example.png' }) cv2.imwrite('./cones.png', output['output_imgs'][0]) @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') def test_cones2_diffusion_eval(self): model_id = 'damo/Cones2' model_revision = 'v1.0.1' kwargs = dict( model=model_id, model_revision=model_revision, work_dir=self.tmp_dir, train_dataset=None, eval_dataset=self.eval_dataset) trainer = build_trainer( name=Trainers.cones2_inference, default_args=kwargs) result = trainer.evaluate() print(f'Cones-diffusion eval output: {result}.') if __name__ == '__main__': unittest.main()