Files
modelscope/tests/pipelines/test_machine_reading_comprehension.py
Ran Zhou 026a9ef227 Add machine reading comprehension model, preprocessor and pipeline (#451)
* Add machine reading comprehension model, preprocessor and pipeline

* fix precommit errors

* Optimize mrc preprocessor, add mrc input output definition, add mrc pipeline docstr

---------

Co-authored-by: seadamo <ran.zhou@alibaba-inc.com>
2023-08-11 13:47:26 +08:00

60 lines
2.6 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.models.nlp import ModelForMachineReadingComprehension
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import MachineReadingComprehensionForNERPipeline
from modelscope.preprocessors import \
MachineReadingComprehensionForNERPreprocessor
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
class MachineReadingComprehensionTest(unittest.TestCase):
sentence = 'Soccer - Japan get lucky win , China in surprise defeat .'
model_id = 'damo/nlp_roberta_machine-reading-comprehension_for-ner'
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_mrc_for_ner_by_direct_model_download(self):
cache_path = snapshot_download(self.model_id)
tokenizer = MachineReadingComprehensionForNERPreprocessor(cache_path)
model = ModelForMachineReadingComprehension.from_pretrained(cache_path)
pipeline1 = MachineReadingComprehensionForNERPipeline(
model, preprocessor=tokenizer)
pipeline2 = pipeline(
Tasks.machine_reading_comprehension,
model=model,
preprocessor=tokenizer)
print(f'sentence: {self.sentence}\n'
f'pipeline1:{pipeline1(input=self.sentence)}')
print()
print(f'pipeline2: {pipeline2(input=self.sentence)}')
# {'ORG': [], 'PER': [], 'LOC': [' Japan', ' China'], 'MISC': []}
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_mrc_for_ner_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
tokenizer = MachineReadingComprehensionForNERPreprocessor(
model.model_dir)
pipeline_ins = pipeline(
task=Tasks.machine_reading_comprehension,
model=model,
preprocessor=tokenizer)
print(f'sentence: {self.sentence}\n'
f'pipeline:{pipeline_ins(input=self.sentence)}')
# {'ORG': [], 'PER': [], 'LOC': [' Japan', ' China'], 'MISC': []}
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_mrc_for_ner_with_model_name(self):
pipeline_ins = pipeline(
task=Tasks.machine_reading_comprehension, model=self.model_id)
print(pipeline_ins(input=self.sentence))
# {'ORG': [], 'PER': [], 'LOC': [' Japan', ' China'], 'MISC': []}
if __name__ == '__main__':
unittest.main()