mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-19 01:29:24 +01:00
60 lines
2.6 KiB
Python
60 lines
2.6 KiB
Python
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||
|
|
import unittest
|
||
|
|
|
||
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
||
|
|
from modelscope.models import Model
|
||
|
|
from modelscope.models.nlp import ModelForMachineReadingComprehension
|
||
|
|
from modelscope.pipelines import pipeline
|
||
|
|
from modelscope.pipelines.nlp import MachineReadingComprehensionForNERPipeline
|
||
|
|
from modelscope.preprocessors import \
|
||
|
|
MachineReadingComprehensionForNERPreprocessor
|
||
|
|
from modelscope.utils.constant import Tasks
|
||
|
|
from modelscope.utils.test_utils import test_level
|
||
|
|
|
||
|
|
|
||
|
|
class MachineReadingComprehensionTest(unittest.TestCase):
|
||
|
|
sentence = 'Soccer - Japan get lucky win , China in surprise defeat .'
|
||
|
|
model_id = 'damo/nlp_roberta_machine-reading-comprehension_for-ner'
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
|
|
def test_run_mrc_for_ner_by_direct_model_download(self):
|
||
|
|
cache_path = snapshot_download(self.model_id)
|
||
|
|
tokenizer = MachineReadingComprehensionForNERPreprocessor(cache_path)
|
||
|
|
model = ModelForMachineReadingComprehension.from_pretrained(cache_path)
|
||
|
|
pipeline1 = MachineReadingComprehensionForNERPipeline(
|
||
|
|
model, preprocessor=tokenizer)
|
||
|
|
|
||
|
|
pipeline2 = pipeline(
|
||
|
|
Tasks.machine_reading_comprehension,
|
||
|
|
model=model,
|
||
|
|
preprocessor=tokenizer)
|
||
|
|
print(f'sentence: {self.sentence}\n'
|
||
|
|
f'pipeline1:{pipeline1(input=self.sentence)}')
|
||
|
|
print()
|
||
|
|
print(f'pipeline2: {pipeline2(input=self.sentence)}')
|
||
|
|
# {'ORG': [], 'PER': [], 'LOC': [' Japan', ' China'], 'MISC': []}
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||
|
|
def test_run_mrc_for_ner_with_model_from_modelhub(self):
|
||
|
|
model = Model.from_pretrained(self.model_id)
|
||
|
|
tokenizer = MachineReadingComprehensionForNERPreprocessor(
|
||
|
|
model.model_dir)
|
||
|
|
pipeline_ins = pipeline(
|
||
|
|
task=Tasks.machine_reading_comprehension,
|
||
|
|
model=model,
|
||
|
|
preprocessor=tokenizer)
|
||
|
|
print(f'sentence: {self.sentence}\n'
|
||
|
|
f'pipeline:{pipeline_ins(input=self.sentence)}')
|
||
|
|
# {'ORG': [], 'PER': [], 'LOC': [' Japan', ' China'], 'MISC': []}
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
|
|
def test_run_mrc_for_ner_with_model_name(self):
|
||
|
|
pipeline_ins = pipeline(
|
||
|
|
task=Tasks.machine_reading_comprehension, model=self.model_id)
|
||
|
|
print(pipeline_ins(input=self.sentence))
|
||
|
|
# {'ORG': [], 'PER': [], 'LOC': [' Japan', ' China'], 'MISC': []}
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == '__main__':
|
||
|
|
unittest.main()
|