Merge remote-tracking branch 'origin/master' into ofa/finetune

This commit is contained in:
行嗔
2022-10-23 11:21:54 +08:00
5 changed files with 12 additions and 7 deletions

View File

@@ -14,6 +14,8 @@ from modelscope.utils.constant import Tasks
@HEADS.register_module(
Tasks.token_classification, module_name=Heads.token_classification)
@HEADS.register_module(
Tasks.part_of_speech, module_name=Heads.token_classification)
class TokenClassificationHead(TorchHead):
def __init__(self, **kwargs):

View File

@@ -19,6 +19,8 @@ __all__ = ['TokenClassificationModel']
@MODELS.register_module(
Tasks.token_classification, module_name=TaskModels.token_classification)
@MODELS.register_module(
Tasks.part_of_speech, module_name=TaskModels.token_classification)
class TokenClassificationModel(SingleBackboneTaskModelBase):
def __init__(self, model_dir: str, *args, **kwargs):

View File

@@ -25,6 +25,8 @@ DEFAULT_MODEL_FOR_PIPELINE = {
Tasks.word_segmentation:
(Pipelines.word_segmentation,
'damo/nlp_structbert_word-segmentation_chinese-base'),
Tasks.part_of_speech: (Pipelines.part_of_speech,
'damo/nlp_structbert_part-of-speech_chinese-base'),
Tasks.token_classification:
(Pipelines.part_of_speech,
'damo/nlp_structbert_part-of-speech_chinese-base'),

View File

@@ -18,6 +18,8 @@ __all__ = ['TokenClassificationPipeline']
@PIPELINES.register_module(
Tasks.token_classification, module_name=Pipelines.part_of_speech)
@PIPELINES.register_module(
Tasks.part_of_speech, module_name=Pipelines.part_of_speech)
class TokenClassificationPipeline(Pipeline):
def __init__(self,

View File

@@ -13,7 +13,7 @@ from modelscope.utils.test_utils import test_level
class PartOfSpeechTest(unittest.TestCase):
model_id = 'damo/nlp_structbert_part-of-speech_chinese-base'
model_id = 'damo/nlp_structbert_part-of-speech_chinese-lite'
sentence = '今天天气不错,适合出去游玩'
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
@@ -34,20 +34,17 @@ class PartOfSpeechTest(unittest.TestCase):
model = Model.from_pretrained(self.model_id)
tokenizer = TokenClassificationPreprocessor(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.token_classification,
model=model,
preprocessor=tokenizer)
task=Tasks.part_of_speech, model=model, preprocessor=tokenizer)
print(pipeline_ins(input=self.sentence))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_model_name(self):
pipeline_ins = pipeline(
task=Tasks.token_classification, model=self.model_id)
pipeline_ins = pipeline(task=Tasks.part_of_speech, model=self.model_id)
print(pipeline_ins(input=self.sentence))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_default_model(self):
pipeline_ins = pipeline(task=Tasks.token_classification)
pipeline_ins = pipeline(task=Tasks.part_of_speech)
print(pipeline_ins(input=self.sentence))