mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-25 12:39:25 +01:00
fix style issues
This commit is contained in:
@@ -2,10 +2,11 @@
|
||||
|
||||
import hashlib
|
||||
import os
|
||||
import requests
|
||||
from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
import requests
|
||||
|
||||
from modelscope.hub.api import ModelScopeConfig
|
||||
from modelscope.hub.constants import (DEFAULT_MODELSCOPE_DOMAIN,
|
||||
DEFAULT_MODELSCOPE_GROUP,
|
||||
|
||||
@@ -10,6 +10,7 @@ from typing import Any, Dict, Generator, List, Mapping, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from modelscope.hub.utils.utils import create_library_statistics
|
||||
from modelscope.models.base import Model
|
||||
from modelscope.msdatasets import MsDataset
|
||||
from modelscope.outputs import TASK_OUTPUTS
|
||||
@@ -23,7 +24,6 @@ from modelscope.utils.hub import read_config, snapshot_download
|
||||
from modelscope.utils.import_utils import is_tf_available, is_torch_available
|
||||
from modelscope.utils.logger import get_logger
|
||||
from modelscope.utils.torch_utils import _find_free_port, _is_free_port
|
||||
from modelscope.hub.utils.utils import create_library_statistics
|
||||
from .util import is_model, is_official_hub_path
|
||||
|
||||
if is_torch_available():
|
||||
@@ -154,7 +154,7 @@ class Pipeline(ABC):
|
||||
# modelscope library developer will handle this function
|
||||
for single_model in self.models:
|
||||
if hasattr(single_model, 'name'):
|
||||
create_library_statistics("pipeline", single_model.name, None)
|
||||
create_library_statistics('pipeline', single_model.name, None)
|
||||
# place model to cpu or gpu
|
||||
if (self.model or (self.has_multiple_models and self.models[0])):
|
||||
if not self._model_prepare:
|
||||
|
||||
@@ -14,8 +14,8 @@ from torch.utils.data import DataLoader, Dataset
|
||||
from torch.utils.data.dataloader import default_collate
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
|
||||
from modelscope.hub.utils.utils import create_library_statistics
|
||||
from modelscope.hub.snapshot_download import snapshot_download
|
||||
from modelscope.hub.utils.utils import create_library_statistics
|
||||
from modelscope.metainfo import Trainers
|
||||
from modelscope.metrics import build_metric, task_default_metrics
|
||||
from modelscope.models.base import Model, TorchModel
|
||||
@@ -438,7 +438,7 @@ class EpochBasedTrainer(BaseTrainer):
|
||||
def train(self, checkpoint_path=None, *args, **kwargs):
|
||||
self._mode = ModeKeys.TRAIN
|
||||
if hasattr(self.model, 'name'):
|
||||
create_library_statistics("train", self.model.name, None)
|
||||
create_library_statistics('train', self.model.name, None)
|
||||
|
||||
if self.train_dataset is None:
|
||||
self.train_dataloader = self.get_train_dataloader()
|
||||
@@ -460,7 +460,7 @@ class EpochBasedTrainer(BaseTrainer):
|
||||
|
||||
def evaluate(self, checkpoint_path=None):
|
||||
if hasattr(self.model, 'name'):
|
||||
create_library_statistics("evaluate", self.model.name, None)
|
||||
create_library_statistics('evaluate', self.model.name, None)
|
||||
if checkpoint_path is not None and os.path.isfile(checkpoint_path):
|
||||
from modelscope.trainers.hooks import CheckpointHook
|
||||
CheckpointHook.load_checkpoint(checkpoint_path, self)
|
||||
|
||||
Reference in New Issue
Block a user