mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-25 20:49:37 +01:00
support mossformer model for funasr
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/13809773 * support mossformer model for funasr
This commit is contained in:
@@ -508,6 +508,7 @@ class Pipelines(object):
|
||||
sv_inference = 'sv-inference'
|
||||
speaker_diarization_inference = 'speaker-diarization-inference'
|
||||
vad_inference = 'vad-inference'
|
||||
funasr_speech_separation = 'funasr-speech-separation'
|
||||
speaker_verification = 'speaker-verification'
|
||||
speaker_verification_rdino = 'speaker-verification-rdino'
|
||||
speaker_verification_eres2net = 'speaker-verification-eres2net'
|
||||
|
||||
@@ -15,6 +15,8 @@ __all__ = ['GenericAutomaticSpeechRecognition']
|
||||
Tasks.auto_speech_recognition, module_name=Models.generic_asr)
|
||||
@MODELS.register_module(
|
||||
Tasks.voice_activity_detection, module_name=Models.generic_asr)
|
||||
@MODELS.register_module(
|
||||
Tasks.speech_separation, module_name=Models.generic_asr)
|
||||
@MODELS.register_module(
|
||||
Tasks.language_score_prediction, module_name=Models.generic_asr)
|
||||
@MODELS.register_module(Tasks.speech_timestamp, module_name=Models.generic_asr)
|
||||
|
||||
243
modelscope/pipelines/audio/speech_separation_pipeline.py
Normal file
243
modelscope/pipelines/audio/speech_separation_pipeline.py
Normal file
@@ -0,0 +1,243 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
import os
|
||||
from typing import Any, Dict, List, Sequence, Tuple, Union
|
||||
|
||||
import json
|
||||
import yaml
|
||||
from funasr.utils import asr_utils
|
||||
|
||||
from modelscope.metainfo import Pipelines
|
||||
from modelscope.models import Model
|
||||
from modelscope.outputs import OutputKeys
|
||||
from modelscope.pipelines.base import Pipeline
|
||||
from modelscope.pipelines.builder import PIPELINES
|
||||
from modelscope.utils.audio.audio_utils import (generate_scp_from_url,
|
||||
update_local_model)
|
||||
from modelscope.utils.constant import Frameworks, ModelFile, Tasks
|
||||
from modelscope.utils.logger import get_logger
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
__all__ = ['SeparationPipeline']
|
||||
|
||||
|
||||
@PIPELINES.register_module(
|
||||
Tasks.speech_separation, module_name=Pipelines.funasr_speech_separation)
|
||||
class SeparationPipeline(Pipeline):
|
||||
"""Speech Separation Inference Pipeline
|
||||
use `model` to create a speech separation pipeline for prediction.
|
||||
|
||||
Args:
|
||||
model: A model instance, or a model local dir, or a model id in the model hub.
|
||||
kwargs (dict, `optional`):
|
||||
Extra kwargs passed into the preprocessor's constructor.
|
||||
|
||||
Example:
|
||||
>>> from modelscope.pipelines import pipeline
|
||||
>>> pipeline = pipeline(
|
||||
>>> task=Tasks.speech_separation, model='damo/speech_separation_mossformer_8k_pytorch')
|
||||
>>> audio_in = 'mix_speech.wav'
|
||||
>>> print(pipeline(audio_in))
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model: Union[Model, str] = None,
|
||||
ngpu: int = 1,
|
||||
**kwargs):
|
||||
"""use `model` to create an speech separation pipeline for prediction
|
||||
"""
|
||||
super().__init__(model=model, **kwargs)
|
||||
config_path = os.path.join(model, ModelFile.CONFIGURATION)
|
||||
self.cmd = self.get_cmd(config_path, kwargs, model)
|
||||
|
||||
from funasr.bin import ss_inference_launch
|
||||
self.funasr_infer_modelscope = ss_inference_launch.inference_launch(
|
||||
mode=self.cmd['mode'],
|
||||
batch_size=self.cmd['batch_size'],
|
||||
ngpu=ngpu,
|
||||
log_level=self.cmd['log_level'],
|
||||
ss_infer_config=self.cmd['ss_infer_config'],
|
||||
ss_model_file=self.cmd['ss_model_file'],
|
||||
output_dir=self.cmd['output_dir'],
|
||||
dtype=self.cmd['dtype'],
|
||||
seed=self.cmd['seed'],
|
||||
num_workers=self.cmd['num_workers'],
|
||||
num_spks=self.cmd['num_spks'],
|
||||
param_dict=self.cmd['param_dict'],
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def __call__(self,
|
||||
audio_in: Union[str, bytes],
|
||||
audio_fs: int = None,
|
||||
recog_type: str = None,
|
||||
audio_format: str = None,
|
||||
output_dir: str = None,
|
||||
param_dict: dict = None,
|
||||
**kwargs) -> Dict[str, Any]:
|
||||
"""
|
||||
Decoding the input audios
|
||||
Args:
|
||||
audio_in('str' or 'bytes'):
|
||||
- A string containing a local path to a wav file
|
||||
- A string containing a local path to a scp
|
||||
- A string containing a wav url
|
||||
- A bytes input
|
||||
audio_fs('int'):
|
||||
frequency of sample
|
||||
recog_type('str'):
|
||||
recog type for wav file or datasets file ('wav', 'test', 'dev', 'train')
|
||||
audio_format('str'):
|
||||
audio format ('pcm', 'scp', 'kaldi_ark', 'tfrecord')
|
||||
output_dir('str'):
|
||||
output dir
|
||||
param_dict('dict'):
|
||||
extra kwargs
|
||||
Return:
|
||||
A dictionary of result or a list of dictionary of result.
|
||||
|
||||
The dictionary contain the following keys:
|
||||
- **text** ('str') --The vad result.
|
||||
"""
|
||||
self.audio_in = None
|
||||
self.raw_inputs = None
|
||||
self.recog_type = recog_type
|
||||
self.audio_format = audio_format
|
||||
self.audio_fs = None
|
||||
checking_audio_fs = None
|
||||
if output_dir is not None:
|
||||
self.cmd['output_dir'] = output_dir
|
||||
if param_dict is not None:
|
||||
self.cmd['param_dict'] = param_dict
|
||||
if isinstance(audio_in, str):
|
||||
# for funasr code, generate wav.scp from url or local path
|
||||
self.audio_in, self.raw_inputs = generate_scp_from_url(audio_in)
|
||||
elif isinstance(audio_in, bytes):
|
||||
self.audio_in = audio_in
|
||||
self.raw_inputs = None
|
||||
else:
|
||||
import numpy
|
||||
import torch
|
||||
if isinstance(audio_in, torch.Tensor):
|
||||
self.audio_in = None
|
||||
self.raw_inputs = audio_in
|
||||
elif isinstance(audio_in, numpy.ndarray):
|
||||
self.audio_in = None
|
||||
self.raw_inputs = audio_in
|
||||
|
||||
# set the sample_rate of audio_in if checking_audio_fs is valid
|
||||
if checking_audio_fs is not None:
|
||||
self.audio_fs = checking_audio_fs
|
||||
|
||||
if recog_type is None or audio_format is None:
|
||||
self.recog_type, self.audio_format, self.audio_in = asr_utils.type_checking(
|
||||
audio_in=self.audio_in,
|
||||
recog_type=recog_type,
|
||||
audio_format=audio_format)
|
||||
|
||||
if hasattr(asr_utils,
|
||||
'sample_rate_checking') and self.audio_in is not None:
|
||||
checking_audio_fs = asr_utils.sample_rate_checking(
|
||||
self.audio_in, self.audio_format)
|
||||
if checking_audio_fs is not None:
|
||||
self.audio_fs = checking_audio_fs
|
||||
if audio_fs is not None:
|
||||
self.cmd['fs']['audio_fs'] = audio_fs
|
||||
else:
|
||||
self.cmd['fs']['audio_fs'] = self.audio_fs
|
||||
|
||||
output = self.forward(self.audio_in, **kwargs)
|
||||
return output
|
||||
|
||||
def get_cmd(self, config_path, extra_args, model_path) -> Dict[str, Any]:
|
||||
model_cfg = json.loads(open(config_path).read())
|
||||
model_dir = os.path.dirname(config_path)
|
||||
# generate inference command
|
||||
ss_model_path = os.path.join(
|
||||
model_dir, model_cfg['model']['model_config']['ss_model_name'])
|
||||
ss_model_config = os.path.join(
|
||||
model_dir, model_cfg['model']['model_config']['ss_model_config'])
|
||||
mode = model_cfg['model']['model_config']['mode']
|
||||
frontend_conf = None
|
||||
if os.path.exists(ss_model_config):
|
||||
config_file = open(ss_model_config, encoding='utf-8')
|
||||
root = yaml.full_load(config_file)
|
||||
config_file.close()
|
||||
if 'frontend_conf' in root:
|
||||
frontend_conf = root['frontend_conf']
|
||||
update_local_model(model_cfg['model']['model_config'], model_path,
|
||||
extra_args)
|
||||
|
||||
cmd = {
|
||||
'mode': mode,
|
||||
'batch_size': 1,
|
||||
'ngpu': 1, # 0: only CPU, ngpu>=1: gpu number if cuda is available
|
||||
'log_level': 'ERROR',
|
||||
'ss_infer_config': ss_model_config,
|
||||
'ss_model_file': ss_model_path,
|
||||
'output_dir': None,
|
||||
'dtype': 'float32',
|
||||
'seed': 0,
|
||||
'num_workers': 0,
|
||||
'num_spks': 2,
|
||||
'param_dict': None,
|
||||
'fs': {
|
||||
'model_fs': None,
|
||||
'audio_fs': None
|
||||
}
|
||||
}
|
||||
if frontend_conf is not None and 'fs' in frontend_conf:
|
||||
cmd['fs']['model_fs'] = frontend_conf['fs']
|
||||
|
||||
user_args_dict = [
|
||||
'output_dir', 'batch_size', 'mode', 'ngpu', 'param_dict',
|
||||
'num_workers', 'fs'
|
||||
]
|
||||
|
||||
for user_args in user_args_dict:
|
||||
if user_args in extra_args:
|
||||
if extra_args.get(user_args) is not None:
|
||||
cmd[user_args] = extra_args[user_args]
|
||||
del extra_args[user_args]
|
||||
|
||||
return cmd
|
||||
|
||||
def postprocess(self, inputs: Dict[str, Any],
|
||||
**post_params) -> Dict[str, Any]:
|
||||
return inputs
|
||||
|
||||
def forward(self, audio_in: Dict[str, Any], **kwargs) -> Dict[str, Any]:
|
||||
"""Decoding
|
||||
"""
|
||||
logger.info('Speech Separation Processing ...')
|
||||
# generate inputs
|
||||
data_cmd: Sequence[Tuple[str, str, str]]
|
||||
if isinstance(self.audio_in, bytes):
|
||||
data_cmd = [self.audio_in, 'speech', 'bytes']
|
||||
elif isinstance(self.audio_in, str):
|
||||
data_cmd = [self.audio_in, 'speech', 'sound']
|
||||
elif self.raw_inputs is not None:
|
||||
data_cmd = None
|
||||
self.cmd['name_and_type'] = data_cmd
|
||||
self.cmd['raw_inputs'] = self.raw_inputs
|
||||
self.cmd['audio_in'] = self.audio_in
|
||||
|
||||
ss_result = self.run_inference(self.cmd, **kwargs)
|
||||
|
||||
return ss_result
|
||||
|
||||
def run_inference(self, cmd, **kwargs):
|
||||
ss_result = []
|
||||
if self.framework == Frameworks.torch:
|
||||
ss_result = self.funasr_infer_modelscope(
|
||||
data_path_and_name_and_type=cmd['name_and_type'],
|
||||
raw_inputs=cmd['raw_inputs'],
|
||||
output_dir_v2=cmd['output_dir'],
|
||||
fs=cmd['fs'],
|
||||
param_dict=cmd['param_dict'],
|
||||
**kwargs)
|
||||
else:
|
||||
raise ValueError('model type is mismatching')
|
||||
|
||||
return ss_result
|
||||
Reference in New Issue
Block a user