More automodel (#1098)

* add more hf alias

---------

Co-authored-by: Yingda Chen <yingda.chen@alibaba-inc.com>
This commit is contained in:
Yingda Chen
2024-11-25 22:16:05 +08:00
committed by GitHub
parent 4a3b255d53
commit 6d9e6d57c0
2 changed files with 52 additions and 11 deletions

View File

@@ -36,9 +36,12 @@ if TYPE_CHECKING:
from .utils.hf_util import (
AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification, AutoModelForImageSegmentation,
AutoTokenizer, GenerationConfig, AutoImageProcessor, BatchFeature,
T5EncoderModel)
AutoModelForTokenClassification, AutoModelForImageClassification,
AutoModelForImageToImage, AutoModelForImageSegmentation,
AutoModelForQuestionAnswering, AutoModelForMaskedLM, AutoTokenizer,
AutoModelForMaskGeneration, AutoModelForPreTraining,
AutoModelForTextEncoding, GenerationConfig, AutoImageProcessor,
BatchFeature, T5EncoderModel)
else:
print(
'transformer is not installed, please install it if you want to use related modules'
@@ -96,8 +99,13 @@ else:
'AwqConfig', 'BitsAndBytesConfig', 'AutoModelForCausalLM',
'AutoModelForSeq2SeqLM', 'AutoTokenizer',
'AutoModelForSequenceClassification',
'AutoModelForTokenClassification', 'AutoModelForImageSegmentation',
'AutoImageProcessor', 'BatchFeature', 'T5EncoderModel'
'AutoModelForTokenClassification',
'AutoModelForImageClassification', 'AutoModelForImageToImage',
'AutoModelForQuestionAnswering', 'AutoModelForMaskedLM',
'AutoModelForMaskGeneration', 'AutoModelForPreTraining',
'AutoModelForTextEncoding', 'AutoModelForTokenClassification',
'AutoModelForImageSegmentation', 'AutoImageProcessor',
'BatchFeature', 'T5EncoderModel'
]
import sys

View File

@@ -9,11 +9,21 @@ from transformers import AutoFeatureExtractor as AutoFeatureExtractorHF
from transformers import AutoImageProcessor as AutoImageProcessorHF
from transformers import AutoModel as AutoModelHF
from transformers import AutoModelForCausalLM as AutoModelForCausalLMHF
from transformers import \
AutoModelForImageClassification as AutoModelForImageClassificationHF
from transformers import \
AutoModelForImageSegmentation as AutoModelForImageSegmentationHF
from transformers import AutoModelForImageToImage as AutoModelForImageToImageHF
from transformers import AutoModelForMaskedLM as AutoModelForMaskedLMHF
from transformers import \
AutoModelForMaskGeneration as AutoModelForMaskGenerationHF
from transformers import AutoModelForPreTraining as AutoModelForPreTrainingHF
from transformers import \
AutoModelForQuestionAnswering as AutoModelForQuestionAnsweringHF
from transformers import AutoModelForSeq2SeqLM as AutoModelForSeq2SeqLMHF
from transformers import \
AutoModelForSequenceClassification as AutoModelForSequenceClassificationHF
from transformers import AutoModelForTextEncoding as AutoModelForTextEncodingHF
from transformers import \
AutoModelForTokenClassification as AutoModelForTokenClassificationHF
from transformers import AutoProcessor as AutoProcessorHF
@@ -272,7 +282,7 @@ def get_wrapped_class(module_class,
ignore_file_pattern = kwargs.pop('ignore_file_pattern',
default_ignore_file_pattern)
subfolder = kwargs.pop('subfolder', default_file_filter)
file_filter = None
if subfolder:
file_filter = f'{subfolder}/*'
if not os.path.exists(pretrained_model_name_or_path):
@@ -315,25 +325,48 @@ AutoModelForTokenClassification = get_wrapped_class(
AutoModelForTokenClassificationHF)
AutoModelForImageSegmentation = get_wrapped_class(
AutoModelForImageSegmentationHF)
AutoModelForImageClassification = get_wrapped_class(
AutoModelForImageClassificationHF)
AutoModelForImageToImage = get_wrapped_class(AutoModelForImageToImageHF)
AutoModelForQuestionAnswering = get_wrapped_class(
AutoModelForQuestionAnsweringHF)
AutoModelForMaskedLM = get_wrapped_class(AutoModelForMaskedLMHF)
AutoModelForMaskGeneration = get_wrapped_class(AutoModelForMaskGenerationHF)
AutoModelForPreTraining = get_wrapped_class(AutoModelForPreTrainingHF)
AutoModelForTextEncoding = get_wrapped_class(AutoModelForTextEncodingHF)
T5EncoderModel = get_wrapped_class(T5EncoderModelHF)
AutoTokenizer = get_wrapped_class(
AutoTokenizerHF,
ignore_file_pattern=[
r'\w+\.bin', r'\w+\.safetensors', r'\w+\.pth', r'\w+\.pt'
r'\w+\.bin', r'\w+\.safetensors', r'\w+\.pth', r'\w+\.pt', r'\w+\.h5'
])
AutoProcessor = get_wrapped_class(
AutoProcessorHF,
ignore_file_pattern=[
r'\w+\.bin', r'\w+\.safetensors', r'\w+\.pth', r'\w+\.pt', r'\w+\.h5'
])
AutoConfig = get_wrapped_class(
AutoConfigHF,
ignore_file_pattern=[
r'\w+\.bin', r'\w+\.safetensors', r'\w+\.pth', r'\w+\.pt'
r'\w+\.bin', r'\w+\.safetensors', r'\w+\.pth', r'\w+\.pt', r'\w+\.h5'
])
GenerationConfig = get_wrapped_class(
GenerationConfigHF,
ignore_file_pattern=[
r'\w+\.bin', r'\w+\.safetensors', r'\w+\.pth', r'\w+\.pt'
r'\w+\.bin', r'\w+\.safetensors', r'\w+\.pth', r'\w+\.pt', r'\w+\.h5'
])
BitsAndBytesConfig = get_wrapped_class(
BitsAndBytesConfigHF,
ignore_file_pattern=[
r'\w+\.bin', r'\w+\.safetensors', r'\w+\.pth', r'\w+\.pt', r'\w+\.h5'
])
AutoImageProcessor = get_wrapped_class(
AutoImageProcessorHF,
ignore_file_pattern=[
r'\w+\.bin', r'\w+\.safetensors', r'\w+\.pth', r'\w+\.pt', r'\w+\.h5'
])
GPTQConfig = GPTQConfigHF
AwqConfig = AwqConfigHF
BitsAndBytesConfig = BitsAndBytesConfigHF
AutoImageProcessor = get_wrapped_class(AutoImageProcessorHF)
BatchFeature = get_wrapped_class(BatchFeatureHF)