mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-24 12:09:22 +01:00
Merge branch 'master-github' into merge_master_github_0224
This commit is contained in:
2
.github/workflows/citest.yaml
vendored
2
.github/workflows/citest.yaml
vendored
@@ -27,7 +27,7 @@ on:
|
||||
- "tools/**"
|
||||
- ".dev_scripts/**"
|
||||
- "README.md"
|
||||
- "README_zh-CN.md"
|
||||
- "README_*.md"
|
||||
- "NOTICE"
|
||||
- ".github/workflows/lint.yaml"
|
||||
- ".github/workflows/publish.yaml"
|
||||
|
||||
7
.github/workflows/publish.yaml
vendored
7
.github/workflows/publish.yaml
vendored
@@ -20,11 +20,10 @@ jobs:
|
||||
with:
|
||||
python-version: '3.7'
|
||||
- name: Install wheel
|
||||
run: pip install wheel
|
||||
run: pip install wheel && pip install -r requirements/framework.txt
|
||||
- name: Build ModelScope
|
||||
run: python setup.py sdist bdist_wheel
|
||||
- name: Publish package to PyPI
|
||||
run: |
|
||||
echo "I got run"
|
||||
#pip install twine
|
||||
#twine upload package/dist/* --skip-existing -u __token__ -p ${{ secrets.PYPI_API_TOKEN }}
|
||||
pip install twine
|
||||
twine upload package/dist/* --skip-existing -u __token__ -p ${{ secrets.PYPI_API_TOKEN }}
|
||||
|
||||
256
README.md
256
README.md
@@ -1,4 +1,10 @@
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
<img src="https://modelscope.oss-cn-beijing.aliyuncs.com/modelscope.gif" width="400"/>
|
||||
<br>
|
||||
<p>
|
||||
|
||||
<div align="center">
|
||||
|
||||
[](https://pypi.org/project/modelscope/)
|
||||
@@ -12,31 +18,263 @@
|
||||
<!-- [](https://GitHub.com/modelscope/modelscope/graphs/contributors/) -->
|
||||
<!-- [](http://makeapullrequest.com) -->
|
||||
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<b>English</b> |
|
||||
<a href="https://github.com/modelscope/modelscope/blob/master/README_zh.md">中文</a>
|
||||
<p>
|
||||
</h4>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
# Introduction
|
||||
|
||||
[ModelScope]( https://www.modelscope.cn) is a “Model-as-a-Service” (MaaS) platform that seeks to bring together most advanced machine learning models from the AI community, and to streamline the process of leveraging AI models in real applications. The core ModelScope library enables developers to perform inference, training and evaluation, through rich layers of API designs that facilitate a unified experience across state-of-the-art models from different AI domains.
|
||||
[ModelScope]( https://www.modelscope.cn) is built upon the notion of “Model-as-a-Service” (MaaS). It seeks to bring together most advanced machine learning models from the AI community, and streamlines the process of leveraging AI models in real-world applications. The core ModelScope library open-sourced in this repository provides the interfaces and implementations that allow developers to perform model inference, training and evaluation.
|
||||
|
||||
The Python library offers the layered-APIs necessary for model contributors to integrate models from CV, NLP, Speech, Multi-Modality, as well as Scientific-computation, into the ModelScope ecosystem. Implementations for all these different models are encapsulated within the library in a way that allows easy and unified access. With such integration, model inference, finetuning, and evaluations can be done with only a few lines of codes. In the meantime, flexibilities are provided so that different components in the model applications can be customized as well, where necessary.
|
||||
|
||||
Apart from harboring implementations of various models, ModelScope library also enables the necessary interactions with ModelScope backend services, particularly with the Model-Hub and Dataset-Hub. Such interactions facilitate management of various entities (models and datasets) to be performed seamlessly under-the-hood, including entity lookup, version control, cache management, and many others.
|
||||
In particular, with rich layers of API-abstraction, the ModelScope library offers unified experience to explore state-of-the-art models spanning across domains such as CV, NLP, Speech, Multi-Modality, and Scientific-computation. Model contributors of different areas can integrate models into the ModelScope ecosystem through the layered-APIs, allowing easy and unified access to their models. Once integrated, model inference, fine-tuning, and evaluations can be done with only a few lines of codes. In the meantime, flexibilities are also provided so that different components in the model applications can be customized wherever necessary.
|
||||
|
||||
Apart from harboring implementations of a wide range of different models, ModelScope library also enables the necessary interactions with ModelScope backend services, particularly with the Model-Hub and Dataset-Hub. Such interactions facilitate management of various entities (models and datasets) to be performed seamlessly under-the-hood, including entity lookup, version control, cache management, and many others.
|
||||
|
||||
# Models and Online Accessibility
|
||||
|
||||
Hundreds of models are made publicly available on [ModelScope]( https://www.modelscope.cn) (600+ and counting), covering the latest development in areas such as NLP, CV, Audio, Multi-modality, and AI for Science, etc. Many of these models represent the SOTA in their specific fields, and made their open-sourced debut on ModelScope. Users can visit ModelScope([modelscope.cn](http://www.modelscope.cn)) and experience first-hand how these models perform via online experience, with just a few clicks. Immediate developer-experience is also possible through the ModelScope Notebook, which is backed by ready-to-use CPU/GPU development environment in the cloud - only one click away on [ModelScope](https://www.modelscope.cn).
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
<img src="data/resource/inference.gif" width="1024"/>
|
||||
<br>
|
||||
<p>
|
||||
|
||||
Some representative examples include:
|
||||
|
||||
NLP:
|
||||
|
||||
* [nlp_gpt3_text-generation_2.7B](https://modelscope.cn/models/damo/nlp_gpt3_text-generation_2.7B)
|
||||
|
||||
* [ChatYuan-large](https://modelscope.cn/models/ClueAI/ChatYuan-large)
|
||||
|
||||
* [mengzi-t5-base](https://modelscope.cn/models/langboat/mengzi-t5-base)
|
||||
|
||||
* [nlp_csanmt_translation_en2zh](https://modelscope.cn/models/damo/nlp_csanmt_translation_en2zh)
|
||||
|
||||
* [nlp_raner_named-entity-recognition_chinese-base-news](https://modelscope.cn/models/damo/nlp_raner_named-entity-recognition_chinese-base-news)
|
||||
|
||||
* [nlp_structbert_word-segmentation_chinese-base](https://modelscope.cn/models/damo/nlp_structbert_word-segmentation_chinese-base)
|
||||
|
||||
* [Erlangshen-RoBERTa-330M-Sentiment](https://modelscope.cn/models/fengshenbang/Erlangshen-RoBERTa-330M-Sentiment)
|
||||
|
||||
* [nlp_convai_text2sql_pretrain_cn](https://modelscope.cn/models/damo/nlp_convai_text2sql_pretrain_cn)
|
||||
|
||||
Audio:
|
||||
|
||||
* [speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch)
|
||||
|
||||
* [speech_sambert-hifigan_tts_zh-cn_16k](https://modelscope.cn/models/damo/speech_sambert-hifigan_tts_zh-cn_16k)
|
||||
|
||||
* [speech_charctc_kws_phone-xiaoyun](https://modelscope.cn/models/damo/speech_charctc_kws_phone-xiaoyun)
|
||||
|
||||
* [u2pp_conformer-asr-cn-16k-online](https://modelscope.cn/models/wenet/u2pp_conformer-asr-cn-16k-online)
|
||||
|
||||
* [speech_frcrn_ans_cirm_16k](https://modelscope.cn/models/damo/speech_frcrn_ans_cirm_16k)
|
||||
|
||||
* [speech_dfsmn_aec_psm_16k](https://modelscope.cn/models/damo/speech_dfsmn_aec_psm_16k)
|
||||
|
||||
|
||||
CV:
|
||||
|
||||
* [cv_tinynas_object-detection_damoyolo](https://modelscope.cn/models/damo/cv_tinynas_object-detection_damoyolo)
|
||||
|
||||
* [cv_unet_person-image-cartoon_compound-models](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon_compound-models)
|
||||
|
||||
* [cv_convnextTiny_ocr-recognition-general_damo](https://modelscope.cn/models/damo/cv_convnextTiny_ocr-recognition-general_damo)
|
||||
|
||||
* [cv_resnet18_human-detection](https://modelscope.cn/models/damo/cv_resnet18_human-detection)
|
||||
|
||||
* [cv_resnet50_face-detection_retinaface](https://modelscope.cn/models/damo/cv_resnet50_face-detection_retinaface)
|
||||
|
||||
* [cv_unet_image-matting](https://modelscope.cn/models/damo/cv_unet_image-matting)
|
||||
|
||||
* [cv_F3Net_product-segmentation](https://modelscope.cn/models/damo/cv_F3Net_product-segmentation)
|
||||
|
||||
* [cv_resnest101_general_recognition](https://modelscope.cn/models/damo/cv_resnest101_general_recognition)
|
||||
|
||||
|
||||
Multi-Modal:
|
||||
|
||||
* [multi-modal_clip-vit-base-patch16_zh](https://modelscope.cn/models/damo/multi-modal_clip-vit-base-patch16_zh)
|
||||
|
||||
* [ofa_pretrain_base_zh](https://modelscope.cn/models/damo/ofa_pretrain_base_zh)
|
||||
|
||||
* [Taiyi-Stable-Diffusion-1B-Chinese-v0.1](https://modelscope.cn/models/fengshenbang/Taiyi-Stable-Diffusion-1B-Chinese-v0.1)
|
||||
|
||||
* [mplug_visual-question-answering_coco_large_en](https://modelscope.cn/models/damo/mplug_visual-question-answering_coco_large_en)
|
||||
|
||||
AI for Science:
|
||||
|
||||
* [uni-fold-monomer](https://modelscope.cn/models/DPTech/uni-fold-monomer/summary)
|
||||
|
||||
* [uni-fold-multimer](https://modelscope.cn/models/DPTech/uni-fold-multimer/summary)
|
||||
|
||||
# QuickTour
|
||||
|
||||
We provide unified interface for inference using `pipeline`, fine-tuning and evaluation using `Trainer` for different tasks.
|
||||
|
||||
For any given task with any type of input (image, text, audio, video...), inference pipeline can be implemented with only a few lines of code, which will automatically load the underlying model to get inference result, as is exemplified below:
|
||||
|
||||
```python
|
||||
>>> from modelscope.pipelines import pipeline
|
||||
>>> word_segmentation = pipeline('word-segmentation',model='damo/nlp_structbert_word-segmentation_chinese-base')
|
||||
>>> word_segmentation('今天天气不错,适合出去游玩')
|
||||
{'output': '今天 天气 不错 , 适合 出去 游玩'}
|
||||
```
|
||||
|
||||
Given an image, portrait matting (aka. background-removal) can be accomplished with the following code snippet:
|
||||
|
||||

|
||||
|
||||
```python
|
||||
>>> import cv2
|
||||
>>> from modelscope.pipelines import pipeline
|
||||
|
||||
>>> portrait_matting = pipeline('portrait-matting')
|
||||
>>> result = portrait_matting('https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/image_matting.png')
|
||||
>>> cv2.imwrite('result.png', result['output_img'])
|
||||
```
|
||||
|
||||
The output image with the background removed is:
|
||||

|
||||
|
||||
|
||||
Fine-tuning and evaluation can also be done with a few more lines of code to set up training dataset and trainer, with the heavy-lifting work of training and evaluation a model encapsulated in the implementation of `traner.train()` and
|
||||
`trainer.evaluate()` interfaces.
|
||||
|
||||
For example, the gpt3 base model (1.3B) can be fine-tuned with the chinese-poetry dataset, resulting in a model that can be used for chinese-poetry generation.
|
||||
|
||||
```python
|
||||
>>> from modelscope.metainfo import Trainers
|
||||
>>> from modelscope.msdatasets import MsDataset
|
||||
>>> from modelscope.trainers import build_trainer
|
||||
|
||||
>>> train_dataset = MsDataset.load('chinese-poetry-collection', split='train'). remap_columns({'text1': 'src_txt'})
|
||||
>>> eval_dataset = MsDataset.load('chinese-poetry-collection', split='test').remap_columns({'text1': 'src_txt'})
|
||||
>>> max_epochs = 10
|
||||
>>> tmp_dir = './gpt3_poetry'
|
||||
|
||||
>>> kwargs = dict(
|
||||
model='damo/nlp_gpt3_text-generation_1.3B',
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
max_epochs=max_epochs,
|
||||
work_dir=tmp_dir)
|
||||
|
||||
>>> trainer = build_trainer(name=Trainers.gpt3_trainer, default_args=kwargs)
|
||||
>>> trainer.train()
|
||||
```
|
||||
|
||||
# Why should I use ModelScope library
|
||||
|
||||
1. A unified and concise user interface is abstracted for different tasks and different models. Model inferences and training can be implemented by as few as 3 and 10 lines of code, respectively. It is convenient for users to explore models in different fields in the ModelScope community. All models integrated into ModelScope are ready to use, which makes it easy to get started with AI, in both educational and industrial settings.
|
||||
|
||||
2. ModelScope offers a model-centric development and application experience. It streamlines the support for model training, inference, export and deployment, and facilitates users to build their own MLOps based on the ModelScope ecosystem.
|
||||
|
||||
3. For the model inference and training process, a modular design is put in place, and a wealth of functional module implementations are provided, which is convenient for users to customize their own model inference, training and other processes.
|
||||
|
||||
4. For distributed model training, especially for large models, it provides rich training strategy support, including data parallel, model parallel, hybrid parallel and so on.
|
||||
|
||||
# Installation
|
||||
|
||||
Please refer to [installation](https://modelscope.cn/docs/%E7%8E%AF%E5%A2%83%E5%AE%89%E8%A3%85).
|
||||
## Docker
|
||||
|
||||
# Get Started
|
||||
ModelScope Library currently supports popular deep learning framework for model training and inference, including PyTorch, TensorFlow and ONNX. All releases are tested and run on Python 3.7+, Pytorch 1.8+, Tensorflow1.15 or Tensorflow2.0+.
|
||||
|
||||
You can refer to [quick_start](https://modelscope.cn/docs/%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B) for quick start.
|
||||
To allow out-of-box usage for all the models on ModelScope, official docker images are provided for all releases. Based on the docker image, developers can skip all environment installation and configuration and use it directly. Currently, the latest version of the CPU image and GPU image can be obtained from:
|
||||
|
||||
We also provide other documentations including:
|
||||
CPU docker image
|
||||
```shell
|
||||
registry.cn-hangzhou.aliyuncs.com/modelscope-repo/modelscope:ubuntu20.04-py37-torch1.11.0-tf1.15.5-1.3.0
|
||||
```
|
||||
|
||||
GPU docker image
|
||||
```shell
|
||||
registry.cn-hangzhou.aliyuncs.com/modelscope-repo/modelscope:ubuntu20.04-cuda11.3.0-py37-torch1.11.0-tf1.15.5-1.3.0
|
||||
```
|
||||
|
||||
## Setup Local Python Environment
|
||||
|
||||
One can also set up local ModelScope environment using pip and conda. We suggest [anaconda](https://docs.anaconda.com/anaconda/install/) for creating local python environment:
|
||||
|
||||
```shell
|
||||
conda create -n modelscope python=3.7
|
||||
conda activate modelscope
|
||||
```
|
||||
|
||||
PyTorch or TensorFlow can be installed separately according to each model's requirements.
|
||||
* Install pytorch [doc](https://pytorch.org/get-started/locally/)
|
||||
* Install tensorflow [doc](https://www.tensorflow.org/install/pip)
|
||||
|
||||
After installing the necessary machine-learning framework, you can install modelscope library as follows:
|
||||
|
||||
If you only want to play around with the modelscope framework, of trying out model/dataset download, you can install the core modelscope components:
|
||||
```shell
|
||||
pip install modelscope
|
||||
```
|
||||
|
||||
If you want to use multi-modal models:
|
||||
```shell
|
||||
pip install modelscope[multi-modal]
|
||||
```
|
||||
|
||||
If you want to use nlp models:
|
||||
```shell
|
||||
pip install modelscope[nlp] -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
|
||||
```
|
||||
|
||||
If you want to use cv models:
|
||||
```shell
|
||||
pip install modelscope[cv] -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
|
||||
```
|
||||
|
||||
If you want to use audio models:
|
||||
```shell
|
||||
pip install modelscope[audio] -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
|
||||
```
|
||||
|
||||
If you want to use science models:
|
||||
```shell
|
||||
pip install modelscope[science] -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
|
||||
```
|
||||
|
||||
`Notes`:
|
||||
1. Currently, some audio-task models only support python3.7, tensorflow1.15.4 Linux environments. Most other models can be installed and used on Windows and Mac (x86).
|
||||
|
||||
2. Some models in the audio field use the third-party library SoundFile for wav file processing. On the Linux system, users need to manually install libsndfile of SoundFile([doc link](https://github.com/bastibe/python-soundfile#installation)). On Windows and MacOS, it will be installed automatically without user operation. For example, on Ubuntu, you can use following commands:
|
||||
```shell
|
||||
sudo apt-get update
|
||||
sudo apt-get install libsndfile1
|
||||
```
|
||||
|
||||
3. Some models in computer vision need mmcv-full, you can refer to mmcv [installation guide](https://github.com/open-mmlab/mmcv#installation), a minimal installation is as follows:
|
||||
|
||||
```shell
|
||||
pip uninstall mmcv # if you have installed mmcv, uninstall it
|
||||
pip install -U openmim
|
||||
mim install mmcv-full
|
||||
```
|
||||
|
||||
|
||||
|
||||
# Learn More
|
||||
|
||||
We provide additional documentations including:
|
||||
* [More detailed Installation Guide](https://modelscope.cn/docs/%E7%8E%AF%E5%A2%83%E5%AE%89%E8%A3%85)
|
||||
* [Introduction to tasks](https://modelscope.cn/docs/%E4%BB%BB%E5%8A%A1%E7%9A%84%E4%BB%8B%E7%BB%8D)
|
||||
* [Use pipeline for model inference](https://modelscope.cn/docs/%E6%A8%A1%E5%9E%8B%E7%9A%84%E6%8E%A8%E7%90%86Pipeline)
|
||||
* [Finetune example](https://modelscope.cn/docs/%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%AE%AD%E7%BB%83Train)
|
||||
* [Finetuning example](https://modelscope.cn/docs/%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%AE%AD%E7%BB%83Train)
|
||||
* [Preprocessing of data](https://modelscope.cn/docs/%E6%95%B0%E6%8D%AE%E7%9A%84%E9%A2%84%E5%A4%84%E7%90%86)
|
||||
* [Evaluation metrics](https://modelscope.cn/docs/%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%AF%84%E4%BC%B0)
|
||||
* [Evaluation](https://modelscope.cn/docs/%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%AF%84%E4%BC%B0)
|
||||
* [Contribute your own model to ModelScope](https://modelscope.cn/docs/ModelScope%E6%A8%A1%E5%9E%8B%E6%8E%A5%E5%85%A5%E6%B5%81%E7%A8%8B%E6%A6%82%E8%A7%88)
|
||||
|
||||
# License
|
||||
|
||||
|
||||
273
README_zh.md
Normal file
273
README_zh.md
Normal file
@@ -0,0 +1,273 @@
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
<img src="https://modelscope.oss-cn-beijing.aliyuncs.com/modelscope.gif" width="400"/>
|
||||
<br>
|
||||
<p>
|
||||
|
||||
<div align="center">
|
||||
|
||||
[](https://pypi.org/project/modelscope/)
|
||||
<!-- [](https://easy-cv.readthedocs.io/en/latest/) -->
|
||||
[](https://github.com/modelscope/modelscope/blob/master/LICENSE)
|
||||
[](https://github.com/modelscope/modelscope/issues)
|
||||
[](https://GitHub.com/modelscope/modelscope/pull/)
|
||||
[](https://GitHub.com/modelscope/modelscope/commit/)
|
||||
[](https://opensource.alibaba.com/contribution_leaderboard/details?projectValue=modelscope)
|
||||
|
||||
<!-- [](https://GitHub.com/modelscope/modelscope/graphs/contributors/) -->
|
||||
<!-- [](http://makeapullrequest.com) -->
|
||||
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<a href="https://github.com/modelscope/modelscope/blob/master/README.md">English</a> |
|
||||
<b>中文</b>
|
||||
<p>
|
||||
</h4>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
# 简介
|
||||
|
||||
[ModelScope]( https://www.modelscope.cn) 是一个“模型即服务”(MaaS)平台,旨在汇集来自AI社区的最先进的机器学习模型,并简化在实际应用中使用AI模型的流程。ModelScope库使开发人员能够通过丰富的API设计执行推理、训练和评估,从而促进跨不同AI领域的最先进模型的统一体验。
|
||||
|
||||
ModelScope Library为模型贡献者提供了必要的分层API,以便将来自 CV、NLP、语音、多模态以及科学计算的模型集成到ModelScope生态系统中。所有这些不同模型的实现都以一种简单统一访问的方式进行封装,用户只需几行代码即可完成模型推理、微调和评估。同时,灵活的模块化设计使得在必要时也可以自定义模型训练推理过程中的不同组件。
|
||||
|
||||
除了包含各种模型的实现之外,ModelScope Library还支持与ModelScope后端服务进行必要的交互,特别是与Model-Hub和Dataset-Hub的交互。这种交互促进了模型和数据集的管理在后台无缝执行,包括模型数据集查询、版本控制、缓存管理等。
|
||||
|
||||
# 部分模型和在线体验
|
||||
ModelScope开源了数百个(当前600+)模型,涵盖自然语言处理、计算机视觉、语音、多模态、科学计算等,其中包含数百个SOTA模型。用户可以进入ModelScope网站([modelscope.cn](http://www.modelscope.cn))的模型中心零门槛在线体验,或者Notebook方式体验模型。
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
<img src="data/resource/inference.gif" width="1024"/>
|
||||
<br>
|
||||
<p>
|
||||
|
||||
示例如下:
|
||||
|
||||
自然语言处理:
|
||||
|
||||
* [GPT-3预训练生成模型-中文-2.7B](https://modelscope.cn/models/damo/nlp_gpt3_text-generation_2.7B)
|
||||
|
||||
* [元语功能型对话大模型](https://modelscope.cn/models/ClueAI/ChatYuan-large)
|
||||
|
||||
* [孟子T5预训练生成模型-中文-base](https://modelscope.cn/models/langboat/mengzi-t5-base)
|
||||
|
||||
* [CSANMT连续语义增强机器翻译-英中-通用领域-large](https://modelscope.cn/models/damo/nlp_csanmt_translation_en2zh)
|
||||
|
||||
* [RaNER命名实体识别-中文-新闻领域-base](https://modelscope.cn/models/damo/nlp_raner_named-entity-recognition_chinese-base-news)
|
||||
|
||||
* [BAStructBERT分词-中文-新闻领域-base](https://modelscope.cn/models/damo/nlp_structbert_word-segmentation_chinese-base)
|
||||
|
||||
* [二郎神-RoBERTa-330M-情感分类](https://modelscope.cn/models/fengshenbang/Erlangshen-RoBERTa-330M-Sentiment)
|
||||
|
||||
* [SPACE-T表格问答预训练模型-中文-通用领域-base](https://modelscope.cn/models/damo/nlp_convai_text2sql_pretrain_cn)
|
||||
|
||||
语音:
|
||||
|
||||
* [Paraformer语音识别-中文-通用-16k-离线-large-pytorch](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch)
|
||||
|
||||
* [语音合成-中文-多情感领域-16k-多发音人](https://modelscope.cn/models/damo/speech_sambert-hifigan_tts_zh-cn_16k)
|
||||
|
||||
* [CTC语音唤醒-移动端-单麦-16k-小云小云](https://modelscope.cn/models/damo/speech_charctc_kws_phone-xiaoyun)
|
||||
|
||||
* [WeNet-U2pp_Conformer-语音识别-中文-16k-实时](https://modelscope.cn/models/wenet/u2pp_conformer-asr-cn-16k-online)
|
||||
|
||||
* [FRCRN语音降噪-单麦-16k](https://modelscope.cn/models/damo/speech_frcrn_ans_cirm_16k)
|
||||
|
||||
* [DFSMN回声消除-单麦单参考-16k](https://modelscope.cn/models/damo/speech_dfsmn_aec_psm_16k)
|
||||
|
||||
|
||||
计算机视觉:
|
||||
|
||||
* [DAMOYOLO-高性能通用检测模型-S](https://modelscope.cn/models/damo/cv_tinynas_object-detection_damoyolo)
|
||||
|
||||
* [DCT-Net人像卡通化](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon_compound-models)
|
||||
|
||||
* [读光-文字识别-行识别模型-中英-通用领域](https://modelscope.cn/models/damo/cv_convnextTiny_ocr-recognition-general_damo)
|
||||
|
||||
* [人体检测-通用-Base](https://modelscope.cn/models/damo/cv_resnet18_human-detection)
|
||||
|
||||
* [RetinaFace人脸检测关键点模型](https://modelscope.cn/models/damo/cv_resnet50_face-detection_retinaface)
|
||||
|
||||
* [BSHM人像抠图](https://modelscope.cn/models/damo/cv_unet_image-matting)
|
||||
|
||||
* [图像分割-商品展示图场景的商品分割-电商领域](https://modelscope.cn/models/damo/cv_F3Net_product-segmentation)
|
||||
|
||||
* [万物识别-中文-通用领域](https://modelscope.cn/models/damo/cv_resnest101_general_recognition)
|
||||
|
||||
|
||||
多模态:
|
||||
|
||||
* [CLIP模型-中文-通用领域-base](https://modelscope.cn/models/damo/multi-modal_clip-vit-base-patch16_zh)
|
||||
|
||||
* [OFA预训练模型-中文-通用领域-base](https://modelscope.cn/models/damo/ofa_pretrain_base_zh)
|
||||
|
||||
* [太乙-Stable-Diffusion-1B-中文-v0.1](https://modelscope.cn/models/fengshenbang/Taiyi-Stable-Diffusion-1B-Chinese-v0.1)
|
||||
|
||||
* [mPLUG视觉问答模型-英文-large](https://modelscope.cn/models/damo/mplug_visual-question-answering_coco_large_en)
|
||||
|
||||
科学计算:
|
||||
|
||||
* [Uni-Fold-Monomer 开源的蛋白质单体结构预测模型](https://modelscope.cn/models/DPTech/uni-fold-monomer/summary)
|
||||
|
||||
* [Uni-Fold-Multimer 开源的蛋白质复合物结构预测模型](https://modelscope.cn/models/DPTech/uni-fold-multimer/summary)
|
||||
|
||||
# 快速上手
|
||||
|
||||
我们针对不同任务提供了统一的使用接口, 使用`pipeline`进行模型推理、使用`Trainer`进行微调和评估。
|
||||
|
||||
对于任意类型输入(图像、文本、音频、视频...)的任何任务,只需3行代码即可加载模型并获得推理结果,如下所示:
|
||||
```python
|
||||
>>> from modelscope.pipelines import pipeline
|
||||
>>> word_segmentation = pipeline('word-segmentation',model='damo/nlp_structbert_word-segmentation_chinese-base')
|
||||
>>> word_segmentation('今天天气不错,适合出去游玩')
|
||||
{'output': '今天 天气 不错 , 适合 出去 游玩'}
|
||||
```
|
||||
|
||||
给定一张图片,你可以使用如下代码进行人像抠图.
|
||||
|
||||

|
||||
|
||||
```python
|
||||
>>> import cv2
|
||||
>>> from modelscope.pipelines import pipeline
|
||||
|
||||
>>> portrait_matting = pipeline('portrait-matting')
|
||||
>>> result = portrait_matting('https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/image_matting.png')
|
||||
>>> cv2.imwrite('result.png', result['output_img'])
|
||||
```
|
||||
输出图像如下
|
||||

|
||||
|
||||
对于微调和评估模型, 你需要通过十多行代码构建dataset和trainer,调用`trainer.train()`和`trainer.evaluate()`即可。
|
||||
|
||||
例如我们利用gpt3 1.3B的模型,加载是诗歌数据集进行finetune,可以完成古诗生成模型的训练。
|
||||
```python
|
||||
>>> from modelscope.metainfo import Trainers
|
||||
>>> from modelscope.msdatasets import MsDataset
|
||||
>>> from modelscope.trainers import build_trainer
|
||||
|
||||
>>> train_dataset = MsDataset.load('chinese-poetry-collection', split='train'). remap_columns({'text1': 'src_txt'})
|
||||
>>> eval_dataset = MsDataset.load('chinese-poetry-collection', split='test').remap_columns({'text1': 'src_txt'})
|
||||
>>> max_epochs = 10
|
||||
>>> tmp_dir = './gpt3_poetry'
|
||||
|
||||
>>> kwargs = dict(
|
||||
model='damo/nlp_gpt3_text-generation_1.3B',
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
max_epochs=max_epochs,
|
||||
work_dir=tmp_dir)
|
||||
|
||||
>>> trainer = build_trainer(name=Trainers.gpt3_trainer, default_args=kwargs)
|
||||
>>> trainer.train()
|
||||
```
|
||||
|
||||
# 为什么要用ModelScope library
|
||||
|
||||
1. 针对不同任务、不同模型抽象了统一简洁的用户接口,3行代码完成推理,10行代码完成模型训练,方便用户使用ModelScope社区中多个领域的不同模型,开箱即用,便于AI入门和教学。
|
||||
|
||||
2. 构造以模型为中心的开发应用体验,支持模型训练、推理、导出部署,方便用户基于ModelScope Library构建自己的MLOps.
|
||||
|
||||
3. 针对模型推理、训练流程,进行了模块化的设计,并提供了丰富的功能模块实现,方便用户定制化开发来自定义自己的推理、训练等过程。
|
||||
|
||||
4. 针对分布式模型训练,尤其是大模型,提供了丰富的训练策略支持,包括数据并行、模型并行、混合并行等。
|
||||
|
||||
# 安装
|
||||
|
||||
## 镜像
|
||||
ModelScope Library目前支持tensorflow,pytorch深度学习框架进行模型训练、推理, 在Python 3.7+, Pytorch 1.8+, Tensorflow1.15/Tensorflow2.0+测试可运行。
|
||||
|
||||
为了让大家能直接用上ModelScope平台上的所有模型,无需配置环境,ModelScope提供了官方镜像,方便有需要的开发者获取。地址如下:
|
||||
|
||||
CPU镜像
|
||||
```shell
|
||||
registry.cn-hangzhou.aliyuncs.com/modelscope-repo/modelscope:ubuntu20.04-py37-torch1.11.0-tf1.15.5-1.3.0
|
||||
```
|
||||
|
||||
GPU镜像
|
||||
```shell
|
||||
registry.cn-hangzhou.aliyuncs.com/modelscope-repo/modelscope:ubuntu20.04-cuda11.3.0-py37-torch1.11.0-tf1.15.5-1.3.0
|
||||
```
|
||||
|
||||
## 搭建本地Python环境
|
||||
|
||||
你也可以使用pip和conda搭建本地python环境,我们推荐使用[Anaconda](https://docs.anaconda.com/anaconda/install/),安装完成后,执行如下命令为modelscope library创建对应的python环境:
|
||||
```shell
|
||||
conda create -n modelscope python=3.7
|
||||
conda activate modelscope
|
||||
```
|
||||
|
||||
接下来根据所需使用的模型依赖安装底层计算框架
|
||||
* 安装Pytorch [文档链接](https://pytorch.org/get-started/locally/)
|
||||
* 安装tensorflow [文档链接](https://www.tensorflow.org/install/pip)
|
||||
|
||||
|
||||
安装完前置依赖,你可以按照如下方式安装ModelScope Library。
|
||||
|
||||
ModelScope Libarary由核心框架,以及不同领域模型的对接组件组成。如果只需要ModelScope模型和数据集访问等基础能力,可以只安装ModelScope的核心框架:
|
||||
```shell
|
||||
pip install modelscope
|
||||
```
|
||||
|
||||
如仅需体验多模态领域的模型,可执行如下命令安装领域依赖:
|
||||
```shell
|
||||
pip install modelscope[multi-modal]
|
||||
```
|
||||
|
||||
如仅需体验NLP领域模型,可执行如下命令安装领域依赖(因部分依赖由ModelScope独立host,所以需要使用"-f"参数):
|
||||
```shell
|
||||
pip install modelscope[nlp] -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
|
||||
```
|
||||
|
||||
If you want to use cv models:
|
||||
```shell
|
||||
pip install modelscope[cv] -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
|
||||
```
|
||||
|
||||
如仅需体验语音领域模型,可执行如下命令安装领域依赖(因部分依赖由ModelScope独立host,所以需要使用"-f"参数):
|
||||
```shell
|
||||
pip install modelscope[audio] -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
|
||||
```
|
||||
|
||||
`注意`:当前大部分语音模型需要在Linux环境上使用,并且推荐使用python3.7 + tensorflow 1.x的组合。
|
||||
|
||||
如仅需体验科学计算领域模型,可执行如下命令安装领域依赖(因部分依赖由ModelScope独立host,所以需要使用"-f"参数):
|
||||
```shell
|
||||
pip install modelscope[science] -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
|
||||
```
|
||||
|
||||
`注`:
|
||||
1. 目前部分语音相关的模型仅支持 python3.7,tensorflow1.15.4的Linux环境使用。 其他绝大部分模型可以在windows、mac(x86)上安装使用。.
|
||||
|
||||
2. 语音领域中一部分模型使用了三方库SoundFile进行wav文件处理,在Linux系统上用户需要手动安装SoundFile的底层依赖库libsndfile,在Windows和MacOS上会自动安装不需要用户操作。详细信息可参考[SoundFile 官网](https://github.com/bastibe/python-soundfile#installation)。以Ubuntu系统为例,用户需要执行如下命令:
|
||||
```shell
|
||||
sudo apt-get update
|
||||
sudo apt-get install libsndfile1
|
||||
```
|
||||
|
||||
3. CV领域的少数模型,需要安装mmcv-full, 如果运行过程中提示缺少mmcv,请参考mmcv[安装手册](https://github.com/open-mmlab/mmcv#installation)进行安装。 这里提供一个最简版的mmcv-full安装步骤,但是要达到最优的mmcv-full的安装效果(包括对于cuda版本的兼容),请根据自己的实际机器环境,以mmcv官方安装手册为准。
|
||||
```shell
|
||||
pip uninstall mmcv # if you have installed mmcv, uninstall it
|
||||
pip install -U openmim
|
||||
mim install mmcv-full
|
||||
```
|
||||
|
||||
|
||||
# 更多教程
|
||||
|
||||
除了上述内容,我们还提供如下信息:
|
||||
* [更加详细的安装文档](https://modelscope.cn/docs/%E7%8E%AF%E5%A2%83%E5%AE%89%E8%A3%85)
|
||||
* [任务的介绍](https://modelscope.cn/docs/%E4%BB%BB%E5%8A%A1%E7%9A%84%E4%BB%8B%E7%BB%8D)
|
||||
* [模型推理](https://modelscope.cn/docs/%E6%A8%A1%E5%9E%8B%E7%9A%84%E6%8E%A8%E7%90%86Pipeline)
|
||||
* [模型微调](https://modelscope.cn/docs/%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%AE%AD%E7%BB%83Train)
|
||||
* [数据预处理](https://modelscope.cn/docs/%E6%95%B0%E6%8D%AE%E7%9A%84%E9%A2%84%E5%A4%84%E7%90%86)
|
||||
* [模型评估](https://modelscope.cn/docs/%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%AF%84%E4%BC%B0)
|
||||
* [贡献模型到ModelScope](https://modelscope.cn/docs/ModelScope%E6%A8%A1%E5%9E%8B%E6%8E%A5%E5%85%A5%E6%B5%81%E7%A8%8B%E6%A6%82%E8%A7%88)
|
||||
|
||||
# License
|
||||
|
||||
本项目使用[Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE).
|
||||
BIN
data/resource/inference.gif
Normal file
BIN
data/resource/inference.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 1.7 MiB |
3
data/resource/portrait_input.png
Normal file
3
data/resource/portrait_input.png
Normal file
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:af83a94899a6d23339c3ecc5c4c58c57c835af57b531a2f4c50461184f820141
|
||||
size 603621
|
||||
3
data/resource/portrait_output.png
Normal file
3
data/resource/portrait_output.png
Normal file
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:28f6d784547c295711f1a8b7c83cf7e8d19b6361de56e9a69667fc9c9b8a429a
|
||||
size 661491
|
||||
3
data/test/images/tbs_detection.jpg
Normal file
3
data/test/images/tbs_detection.jpg
Normal file
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:301b684c4f44e999654ce279ca82f2571fe902f1e1ada70c0b852c04c2dc667b
|
||||
size 102532
|
||||
@@ -395,8 +395,8 @@ class HubApi:
|
||||
Args:
|
||||
model_id (str): The model id
|
||||
cutoff_timestamp (int): Tags created before the cutoff will be included.
|
||||
The timestamp is represented by the seconds elasped from the epoch time.
|
||||
use_cookies (Union[bool, CookieJar], optional): If is cookieJar, we will use this cookie, if True, will
|
||||
The timestamp is represented by the seconds elapsed from the epoch time.
|
||||
use_cookies (Union[bool, CookieJar], optional): If is cookieJar, we will use this cookie, if True,
|
||||
will load cookie from local. Defaults to False.
|
||||
|
||||
Returns:
|
||||
@@ -472,7 +472,7 @@ class HubApi:
|
||||
|
||||
Args:
|
||||
model_id (str): The model id
|
||||
use_cookies (Union[bool, CookieJar], optional): If is cookieJar, we will use this cookie, if True, will
|
||||
use_cookies (Union[bool, CookieJar], optional): If is cookieJar, we will use this cookie, if True,
|
||||
will load cookie from local. Defaults to False.
|
||||
|
||||
Returns:
|
||||
|
||||
@@ -75,7 +75,7 @@ def check_local_model_is_latest(
|
||||
continue
|
||||
else:
|
||||
logger.info(
|
||||
'Model is updated from modelscope hub, you can verify from http://www.modelscope.cn.'
|
||||
'Model is updated from modelscope hub, you can verify from https://www.modelscope.cn.'
|
||||
)
|
||||
break
|
||||
else:
|
||||
@@ -86,7 +86,7 @@ def check_local_model_is_latest(
|
||||
continue
|
||||
else:
|
||||
logger.info(
|
||||
'Model is updated from modelscope hub, you can verify from http://www.modelscope.cn.'
|
||||
'Model is updated from modelscope hub, you can verify from https://www.modelscope.cn.'
|
||||
)
|
||||
break
|
||||
except: # noqa: E722
|
||||
|
||||
@@ -185,7 +185,7 @@ class DeleteServiceParameters(AttrsToQueryString):
|
||||
|
||||
|
||||
class ServiceDeployer(object):
|
||||
"""Faciliate model deployment on to supported service provider(s).
|
||||
"""Facilitate model deployment on to supported service provider(s).
|
||||
"""
|
||||
|
||||
def __init__(self, endpoint=None):
|
||||
|
||||
@@ -49,7 +49,7 @@ def model_file_download(
|
||||
Can be any of a branch, tag or commit hash.
|
||||
cache_dir (str, Path, optional): Path to the folder where cached files are stored.
|
||||
user_agent (dict, str, optional): The user-agent info in the form of a dictionary or a string.
|
||||
local_files_only (bool, optional): If `True`, avoid downloading the file and return the path to the
|
||||
local_files_only (bool, optional): If `True`, avoid downloading the file and return the path to the
|
||||
local cached file if it exists. if `False`, download the file anyway even it exists.
|
||||
cookies (CookieJar, optional): The cookie of download request.
|
||||
|
||||
@@ -201,7 +201,7 @@ def http_get_file(
|
||||
http headers to carry necessary info when requesting the remote file
|
||||
|
||||
Raises:
|
||||
FileDownloadError: Failed download failed.
|
||||
FileDownloadError: File download failed.
|
||||
|
||||
"""
|
||||
total = -1
|
||||
|
||||
@@ -252,6 +252,7 @@ class Pipelines(object):
|
||||
body_3d_keypoints = 'canonical_body-3d-keypoints_video'
|
||||
hand_2d_keypoints = 'hrnetv2w18_hand-2d-keypoints_image'
|
||||
human_detection = 'resnet18-human-detection'
|
||||
tbs_detection = 'tbs-detection'
|
||||
object_detection = 'vit-object-detection'
|
||||
abnormal_object_detection = 'abnormal-object-detection'
|
||||
easycv_detection = 'easycv-detection'
|
||||
@@ -406,6 +407,7 @@ class Pipelines(object):
|
||||
dialog_state_tracking = 'dialog-state-tracking'
|
||||
zero_shot_classification = 'zero-shot-classification'
|
||||
text_error_correction = 'text-error-correction'
|
||||
word_alignment = 'word-alignment'
|
||||
plug_generation = 'plug-generation'
|
||||
gpt3_generation = 'gpt3-generation'
|
||||
gpt_moe_generation = 'gpt-moe-generation'
|
||||
@@ -928,6 +930,7 @@ class Preprocessors(object):
|
||||
sbert_token_cls_tokenizer = 'sbert-token-cls-tokenizer'
|
||||
zero_shot_cls_tokenizer = 'zero-shot-cls-tokenizer'
|
||||
text_error_correction = 'text-error-correction'
|
||||
word_alignment = 'word-alignment'
|
||||
sentence_embedding = 'sentence-embedding'
|
||||
text_ranking = 'text-ranking'
|
||||
sequence_labeling_tokenizer = 'sequence-labeling-tokenizer'
|
||||
|
||||
@@ -175,7 +175,7 @@ class CiderScorer(object):
|
||||
:return: array of score for each n-grams cosine similarity
|
||||
'''
|
||||
delta = float(length_hyp - length_ref)
|
||||
# measure consine similarity
|
||||
# measure cosine similarity
|
||||
val = np.array([0.0 for _ in range(self.n)])
|
||||
for n in range(self.n):
|
||||
# ngram
|
||||
|
||||
@@ -14,9 +14,9 @@ from .builder import METRICS, MetricKeys
|
||||
@METRICS.register_module(
|
||||
group_key=default_group, module_name=Metrics.multi_average_precision)
|
||||
class AveragePrecisionMetric(Metric):
|
||||
"""The metric computation class for multi avarage precision classes.
|
||||
"""The metric computation class for multi average precision classes.
|
||||
|
||||
This metric class calculates multi avarage precision for the whole input batches.
|
||||
This metric class calculates multi average precision for the whole input batches.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
|
||||
@@ -26,7 +26,7 @@ def calculate_weights_indices(in_length, out_length, scale, kernel,
|
||||
out_length (int): Output length.
|
||||
scale (float): Scale factor.
|
||||
kernel_width (int): Kernel width.
|
||||
antialisaing (bool): Whether to apply anti-aliasing when downsampling.
|
||||
antialiasing (bool): Whether to apply anti-aliasing when downsampling.
|
||||
"""
|
||||
|
||||
if (scale < 1) and antialiasing:
|
||||
@@ -98,7 +98,7 @@ def imresize(img, scale, antialiasing=True):
|
||||
Numpy: Input image with shape (h, w, c), [0, 1] range.
|
||||
scale (float): Scale factor. The same scale applies for both height
|
||||
and width.
|
||||
antialisaing (bool): Whether to apply anti-aliasing when downsampling.
|
||||
antialiasing (bool): Whether to apply anti-aliasing when downsampling.
|
||||
Default: True.
|
||||
Returns:
|
||||
Tensor: Output image with shape (c, h, w), [0, 1] range, w/o round.
|
||||
|
||||
@@ -26,7 +26,7 @@ def estimate_aggd_param(block):
|
||||
block (ndarray): 2D Image block.
|
||||
Returns:
|
||||
tuple: alpha (float), beta_l (float) and beta_r (float) for the AGGD
|
||||
distribution (Estimating the parames in Equation 7 in the paper).
|
||||
distribution (Estimating the parameters in Equation 7 in the paper).
|
||||
"""
|
||||
block = block.flatten()
|
||||
gam = np.arange(0.2, 10.001, 0.001) # len = 9801
|
||||
@@ -124,7 +124,7 @@ def niqe(img,
|
||||
feat = []
|
||||
for idx_w in range(num_block_w):
|
||||
for idx_h in range(num_block_h):
|
||||
# process ecah block
|
||||
# process each block
|
||||
block = img_nomalized[idx_h * block_size_h // scale:(idx_h + 1)
|
||||
* block_size_h // scale,
|
||||
idx_w * block_size_w // scale:(idx_w + 1)
|
||||
|
||||
@@ -273,8 +273,8 @@ def si_snr(s1, s2, eps=1e-8):
|
||||
s1_s2_norm = l2_norm(s1, s2)
|
||||
s2_s2_norm = l2_norm(s2, s2)
|
||||
s_target = s1_s2_norm / (s2_s2_norm + eps) * s2
|
||||
e_nosie = s1 - s_target
|
||||
e_noise = s1 - s_target
|
||||
target_norm = l2_norm(s_target, s_target)
|
||||
noise_norm = l2_norm(e_nosie, e_nosie)
|
||||
noise_norm = l2_norm(e_noise, e_noise)
|
||||
snr = 10 * torch.log10((target_norm) / (noise_norm + eps) + eps)
|
||||
return torch.mean(snr)
|
||||
|
||||
@@ -126,7 +126,7 @@ class PQMF(torch.nn.Module):
|
||||
Tensor: Output tensor (B, 1, T).
|
||||
|
||||
"""
|
||||
# NOTE(kan-bayashi): Power will be dreased so here multipy by # subbands.
|
||||
# NOTE(kan-bayashi): Power will be dreased so here multiply by # subbands.
|
||||
# Not sure this is the correct way, it is better to check again.
|
||||
x = F.conv_transpose1d(
|
||||
x, self.updown_filter * self.subbands, stride=self.subbands)
|
||||
|
||||
@@ -628,7 +628,7 @@ class PostNet(nn.Module):
|
||||
def forward(self, x, mask=None):
|
||||
postnet_fsmn_output = self.fsmn(x, mask)
|
||||
# The input can also be a packed variable length sequence,
|
||||
# here we just omit it for simpliciy due to the mask and uni-directional lstm.
|
||||
# here we just omit it for simplicity due to the mask and uni-directional lstm.
|
||||
postnet_lstm_output, _ = self.lstm(postnet_fsmn_output)
|
||||
mel_residual_output = self.fc(postnet_lstm_output)
|
||||
|
||||
@@ -736,7 +736,7 @@ class KanTtsSAMBERT(nn.Module):
|
||||
|
||||
def binarize_attention_parallel(self, attn, in_lens, out_lens):
|
||||
"""For training purposes only. Binarizes attention with MAS.
|
||||
These will no longer recieve a gradient.
|
||||
These will no longer receive a gradient.
|
||||
|
||||
Args:
|
||||
attn: B x 1 x max_mel_len x max_text_len
|
||||
|
||||
@@ -411,7 +411,7 @@ class AudioProcessor:
|
||||
self.badcase_list.append(wav_basename)
|
||||
else:
|
||||
durs, phone_list = result
|
||||
# Algin length with melspec
|
||||
# Align length with melspec
|
||||
if len(self.mel_dict) > 0:
|
||||
pair_mel = self.mel_dict.get(wav_basename, None)
|
||||
if pair_mel is None:
|
||||
|
||||
@@ -33,7 +33,7 @@ def save_wav(wav, path, sr):
|
||||
quant_wav = 32767 * wav
|
||||
else:
|
||||
quant_wav = wav
|
||||
# maxmize the volume to avoid clipping
|
||||
# maximize the volume to avoid clipping
|
||||
# wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
||||
wavfile.write(path, sr, quant_wav.astype(np.int16))
|
||||
|
||||
|
||||
@@ -514,7 +514,7 @@ def average_by_duration(x, durs):
|
||||
return None
|
||||
durs_cum = np.cumsum(np.pad(durs, (1, 0), 'constant'))
|
||||
|
||||
# average over each symbol's duraion
|
||||
# average over each symbol's duration
|
||||
x_symbol = np.zeros((durs.shape[0], ), dtype=np.float32)
|
||||
for idx, start, end in zip(
|
||||
range(durs.shape[0]), durs_cum[:-1], durs_cum[1:]):
|
||||
|
||||
@@ -61,7 +61,7 @@ def do_prosody_text_normalization(line):
|
||||
text = text.replace('"', ' ')
|
||||
text = text.replace(
|
||||
'-',
|
||||
'') # don't replace by space because compond word like two-year-old
|
||||
'') # don't replace by space because compound word like two-year-old
|
||||
text = text.replace(
|
||||
"'", '') # don't replace by space because English word like that's
|
||||
|
||||
|
||||
@@ -24,7 +24,7 @@ class Head(ABC):
|
||||
def forward(self, *args, **kwargs) -> Dict[str, Any]:
|
||||
"""
|
||||
This method will use the output from backbone model to do any
|
||||
downstream tasks. Recieve The output from backbone model.
|
||||
downstream tasks. Receive The output from backbone model.
|
||||
|
||||
Returns (Dict[str, Any]): The output from downstream task.
|
||||
"""
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# Implementation in this file is modified based on mmdetection
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/open-mmlab/mmdetection
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/open-mmlab/mmdetection
|
||||
import torch
|
||||
from mmdet.core import bbox2roi
|
||||
from mmdet.models.builder import HEADS, build_head
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# Implementation in this file is modified based on mmdetection
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/open-mmlab/mmdetection
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/open-mmlab/mmdetection
|
||||
import torch
|
||||
from mmcv.runner import force_fp32
|
||||
from mmdet.models.builder import ROI_EXTRACTORS
|
||||
|
||||
@@ -1063,7 +1063,7 @@ class BaseHead(nn.Module, metaclass=ABCMeta):
|
||||
elif labels.dim() == 1 and labels.size()[0] == self.num_classes \
|
||||
and cls_score.size()[0] == 1:
|
||||
# Fix a bug when training with soft labels and batch size is 1.
|
||||
# When using soft labels, `labels` and `cls_socre` share the same
|
||||
# When using soft labels, `labels` and `cls_score` share the same
|
||||
# shape.
|
||||
labels = labels.unsqueeze(0)
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet
|
||||
"""
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/core/bbox
|
||||
"""
|
||||
from .transforms import bbox2result, distance2kps, kps2distance
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/core/bbox/transforms.py
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/core/post_processing/bbox_nms.py
|
||||
"""
|
||||
from .bbox_nms import multiclass_nms
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/core/post_processing/bbox_nms.py
|
||||
"""
|
||||
import torch
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/datasets
|
||||
"""
|
||||
from .retinaface import RetinaFaceDataset
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/datasets/pipelines
|
||||
"""
|
||||
from .auto_augment import RotateV2
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/datasets/pipelines/auto_augment.py
|
||||
"""
|
||||
import copy
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/datasets/pipelines/formating.py
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/datasets/pipelines/loading.py
|
||||
"""
|
||||
import os.path as osp
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/datasets/pipelines/transforms.py
|
||||
"""
|
||||
import mmcv
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/datasets/retinaface.py
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/models
|
||||
"""
|
||||
from .dense_heads import * # noqa: F401,F403
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/models/backbones
|
||||
"""
|
||||
from .mobilenet import MobileNetV1
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/models/backbones/mobilenet.py
|
||||
"""
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/models/backbones/resnet.py
|
||||
"""
|
||||
import torch.nn as nn
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/models/dense_heads
|
||||
"""
|
||||
from .scrfd_head import SCRFDHead
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/models/dense_heads/scrfd_head.py
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/models/detectors
|
||||
"""
|
||||
from .scrfd import SCRFD
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/models/detectors/scrfd.py
|
||||
"""
|
||||
import torch
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/tree/master/detection/scrfd/mmdet/models/detectors/scrfd.py
|
||||
"""
|
||||
import torch
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on EfficientNet,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/lukemelas/EfficientNet-PyTorch
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/lukemelas/EfficientNet-PyTorch
|
||||
|
||||
from .model import VALID_MODELS, EfficientNet
|
||||
from .utils import (BlockArgs, BlockDecoder, GlobalParams, efficientnet,
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on EfficientNet,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/lukemelas/EfficientNet-PyTorch
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/lukemelas/EfficientNet-PyTorch
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on EfficientNet,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/lukemelas/EfficientNet-PyTorch
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/lukemelas/EfficientNet-PyTorch
|
||||
|
||||
import collections
|
||||
import math
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on nanodet,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/RangiLyu/nanodet
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/RangiLyu/nanodet
|
||||
|
||||
import math
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on nanodet,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/RangiLyu/nanodet
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/RangiLyu/nanodet
|
||||
|
||||
import math
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on nanodet,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/RangiLyu/nanodet
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/RangiLyu/nanodet
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on nanodet,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/RangiLyu/nanodet
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/RangiLyu/nanodet
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on nanodet,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/RangiLyu/nanodet
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/RangiLyu/nanodet
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly avaialbe at
|
||||
The implementation here is modified based on insightface, originally MIT license and publicly available at
|
||||
https://github.com/deepinsight/insightface/blob/master/python-package/insightface/utils/face_align.py
|
||||
"""
|
||||
import cv2
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
""" HandStatic
|
||||
The implementation here is modified based on MobileFaceNet,
|
||||
originally Apache 2.0 License and publicly avaialbe at https://github.com/xuexingyu24/MobileFaceNet_Tutorial_Pytorch
|
||||
originally Apache 2.0 License and publicly available at https://github.com/xuexingyu24/MobileFaceNet_Tutorial_Pytorch
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is adopted from ddpm-segmentation,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/yandex-research/ddpm-segmentation
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/yandex-research/ddpm-segmentation
|
||||
|
||||
|
||||
def get_palette(category):
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on ddpm-segmentation,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/yandex-research/ddpm-segmentation
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/yandex-research/ddpm-segmentation
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
|
||||
from typing import List
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on ddpm-segmentation,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/yandex-research/ddpm-segmentation
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/yandex-research/ddpm-segmentation
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
|
||||
import os
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on ddpm-segmentation,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/yandex-research/ddpm-segmentation
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/yandex-research/ddpm-segmentation
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
|
||||
import os.path as osp
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Part of the implementation is borrowed and modified from CLIP, publicly avaialbe at https://github.com/openai/CLIP.
|
||||
# Part of the implementation is borrowed and modified from CLIP, publicly available at https://github.com/openai/CLIP.
|
||||
# Copyright 2021-2022 The Alibaba Fundamental Vision Team Authors. All rights reserved.
|
||||
import math
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Part of the implementation is borrowed and modified from CLIP, publicly avaialbe at https://github.com/openai/CLIP.
|
||||
# Part of the implementation is borrowed and modified from CLIP, publicly available at https://github.com/openai/CLIP.
|
||||
# Copyright 2021-2022 The Alibaba Fundamental Vision Team Authors. All rights reserved.
|
||||
import math
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Part of the implementation is borrowed and modified from latent-diffusion,
|
||||
# publicly avaialbe at https://github.com/CompVis/latent-diffusion.
|
||||
# publicly available at https://github.com/CompVis/latent-diffusion.
|
||||
# Copyright 2021-2022 The Alibaba Fundamental Vision Team Authors. All rights reserved.
|
||||
import math
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on BaSSL,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/kakaobrain/bassl
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/kakaobrain/bassl
|
||||
|
||||
import math
|
||||
import os
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on BaSSL,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/kakaobrain/bassl
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/kakaobrain/bassl
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# The implementation here is modified based on SceneSeg,
|
||||
# originally Apache 2.0 License and publicly avaialbe at https://github.com/AnyiRao/SceneSeg
|
||||
# originally Apache 2.0 License and publicly available at https://github.com/AnyiRao/SceneSeg
|
||||
import os
|
||||
import os.path as osp
|
||||
import subprocess
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
from .backbones import ViT
|
||||
from .dense_heads import AnchorNHead, RPNNHead
|
||||
from .necks import FPNF
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
from .vit import ViT
|
||||
|
||||
__all__ = ['ViT']
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
from .anchor_head import AnchorNHead
|
||||
from .rpn_head import RPNNHead
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
from mmdet.models.builder import HEADS
|
||||
from mmdet.models.dense_heads import AnchorHead
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
import copy
|
||||
|
||||
import torch
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
from .fpn import FPNF
|
||||
|
||||
__all__ = ['FPNF']
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from mmcv.runner import BaseModule, auto_fp16
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
from .bbox_heads import (ConvFCBBoxNHead, Shared2FCBBoxNHead,
|
||||
Shared4Conv1FCBBoxNHead)
|
||||
from .mask_heads import FCNMaskNHead
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
from .convfc_bbox_head import (ConvFCBBoxNHead, Shared2FCBBoxNHead,
|
||||
Shared4Conv1FCBBoxNHead)
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
import torch.nn as nn
|
||||
from mmdet.models.builder import HEADS
|
||||
from mmdet.models.roi_heads.bbox_heads.bbox_head import BBoxHead
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
from .fcn_mask_head import FCNMaskNHead
|
||||
|
||||
__all__ = ['FCNMaskNHead']
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
from warnings import warn
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
from .checkpoint import load_checkpoint
|
||||
from .convModule_norm import ConvModule_Norm
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Copyright (c) Open-MMLab. All rights reserved.
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
import io
|
||||
import os
|
||||
import os.path as osp
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Implementation in this file is modified based on ViTAE-Transformer
|
||||
# Originally Apache 2.0 License and publicly avaialbe at https://github.com/ViTAE-Transformer/ViTDet
|
||||
# Originally Apache 2.0 License and publicly available at https://github.com/ViTAE-Transformer/ViTDet
|
||||
from mmcv.cnn import ConvModule
|
||||
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin
|
||||
"""
|
||||
from .core.bbox.assigners import HungarianAssigner3D
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin/core/bbox/assigners
|
||||
"""
|
||||
from .hungarian_assigner_3d import HungarianAssigner3D
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin/core/bbox/assigners
|
||||
"""
|
||||
import torch
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin/core/bbox/coders
|
||||
"""
|
||||
from .nms_free_coder import NMSFreeCoder
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin/core/bbox/coders
|
||||
"""
|
||||
import torch
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin/core/bbox/match_costs
|
||||
"""
|
||||
from .match_cost import BBox3DL1Cost
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin/core/bbox/match_costs
|
||||
"""
|
||||
import torch
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin/core/bbox
|
||||
"""
|
||||
import mmdet3d
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin/datasets
|
||||
"""
|
||||
from .nuscenes_dataset import CustomNuScenesDataset
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin/datasets
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin/datasets/pipelines
|
||||
"""
|
||||
from .loading import LoadMultiViewImageFromMultiSweepsFiles
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin/datasets/pipelines
|
||||
"""
|
||||
import mmcv
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin/datasets/pipelines
|
||||
"""
|
||||
import copy
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly avaialbe at
|
||||
The implementation here is modified based on PETR, originally Apache-2.0 license and publicly available at
|
||||
https://github.com/megvii-research/PETR/blob/main/projects/mmdet3d_plugin/models/backbones
|
||||
"""
|
||||
from .vovnet import VoVNet
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user