This commit is contained in:
fubang.zfb
2022-06-15 17:07:04 +08:00
parent 7140cdb670
commit 48da1619a7
2 changed files with 9 additions and 8 deletions

View File

@@ -28,8 +28,7 @@ class Tokenize(Preprocessor):
@PREPROCESSORS.register_module(
Fields.sentiment_classification,
module_name=r'sbert-sentiment-classification')
Fields.nlp, module_name=r'sbert-sentiment-classification')
class SentimentClassificationPreprocessor(Preprocessor):
def __init__(self, model_dir: str, *args, **kwargs):

View File

@@ -11,8 +11,8 @@ from modelscope.utils.constant import Tasks
class SentimentClassificationTest(unittest.TestCase):
model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
sentence1 = '四川商务职业学院和四川财经职业学院哪个好?'
model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base'
sentence1 = '启动的时候很大声音然后就会听到1.2秒的卡察的声音,类似齿轮摩擦的声音'
def test_run_from_local(self):
cache_path = snapshot_download(self.model_id)
@@ -22,7 +22,9 @@ class SentimentClassificationTest(unittest.TestCase):
pipeline1 = SentimentClassificationPipeline(
model, preprocessor=tokenizer)
pipeline2 = pipeline(
Tasks.sentence_similarity, model=model, preprocessor=tokenizer)
Tasks.sentiment_classification,
model=model,
preprocessor=tokenizer)
print(f'sentence1: {self.sentence1}\n'
f'pipeline1:{pipeline1(input=self.sentence1)}')
print()
@@ -33,18 +35,18 @@ class SentimentClassificationTest(unittest.TestCase):
model = Model.from_pretrained(self.model_id)
tokenizer = SentimentClassificationPreprocessor(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.sentence_similarity,
task=Tasks.sentiment_classification,
model=model,
preprocessor=tokenizer)
print(pipeline_ins(input=self.sentence1))
def test_run_with_model_name(self):
pipeline_ins = pipeline(
task=Tasks.sentence_similarity, model=self.model_id)
task=Tasks.sentiment_classification, model=self.model_id)
print(pipeline_ins(input=self.sentence1))
def test_run_with_default_model(self):
pipeline_ins = pipeline(task=Tasks.sentence_similarity)
pipeline_ins = pipeline(task=Tasks.sentiment_classification)
print(pipeline_ins(input=self.sentence1))