mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-25 20:49:37 +01:00
[to #42322933]specifiy torch model to inherit from TorchModel
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9588834
This commit is contained in:
@@ -6,7 +6,8 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model, Tensor
|
||||
from modelscope.models import TorchModel
|
||||
from modelscope.models.base import Tensor
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.utils.constant import ModelFile, Tasks
|
||||
from .conv_stft import ConviSTFT, ConvSTFT
|
||||
@@ -59,7 +60,7 @@ class FTB(nn.Module):
|
||||
|
||||
@MODELS.register_module(
|
||||
Tasks.speech_signal_process, module_name=Models.speech_frcrn_ans_cirm_16k)
|
||||
class FRCRNModel(Model):
|
||||
class FRCRNModel(TorchModel):
|
||||
r""" A decorator of FRCRN for integrating into modelscope framework """
|
||||
|
||||
def __init__(self, model_dir: str, *args, **kwargs):
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .tada_convnext import TadaConvNeXt
|
||||
|
||||
@@ -13,7 +13,7 @@ from torch.distributed.nn.functional import \
|
||||
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model
|
||||
from modelscope.models import TorchModel
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.models.multi_modal.clip.clip_bert import TextTransformer
|
||||
from modelscope.models.multi_modal.clip.clip_vit import VisionTransformer
|
||||
@@ -116,7 +116,7 @@ class CLIPModel(nn.Module):
|
||||
|
||||
|
||||
@MODELS.register_module(Tasks.multi_modal_embedding, module_name=Models.clip)
|
||||
class CLIPForMultiModalEmbedding(Model):
|
||||
class CLIPForMultiModalEmbedding(TorchModel):
|
||||
|
||||
def __init__(self, model_dir, device_id=-1):
|
||||
super().__init__(model_dir=model_dir, device_id=device_id)
|
||||
|
||||
@@ -6,10 +6,9 @@ import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from PIL import Image
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model
|
||||
from modelscope.models import Model
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.models.multi_modal.imagen.diffusion import (GaussianDiffusion,
|
||||
beta_schedule)
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import os
|
||||
import random
|
||||
from os.path import exists
|
||||
from typing import Any, Dict
|
||||
@@ -9,7 +8,7 @@ import torch
|
||||
from PIL import Image
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model
|
||||
from modelscope.models import TorchModel
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.utils.constant import ModelFile, Tasks
|
||||
from modelscope.utils.logger import get_logger
|
||||
@@ -22,7 +21,7 @@ logger = get_logger()
|
||||
|
||||
@MODELS.register_module(
|
||||
Tasks.video_multi_modal_embedding, module_name=Models.video_clip)
|
||||
class VideoCLIPForMultiModalEmbedding(Model):
|
||||
class VideoCLIPForMultiModalEmbedding(TorchModel):
|
||||
|
||||
def __init__(self, model_dir, device_id=-1):
|
||||
super().__init__(model_dir=model_dir, device_id=device_id)
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
from typing import Dict
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model, Tensor
|
||||
from modelscope.models import TorchModel
|
||||
from modelscope.models.base import Tensor
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
@@ -10,7 +11,7 @@ __all__ = ['MPlugForVisualQuestionAnswering']
|
||||
|
||||
@MODELS.register_module(
|
||||
Tasks.visual_question_answering, module_name=Models.mplug)
|
||||
class MPlugForVisualQuestionAnswering(Model):
|
||||
class MPlugForVisualQuestionAnswering(TorchModel):
|
||||
|
||||
def __init__(self, model_dir: str, *args, **kwargs):
|
||||
"""initialize the mplug model from the `model_dir` path.
|
||||
|
||||
@@ -8,7 +8,8 @@ import torch.cuda
|
||||
import torch.nn.functional as F
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model, Tensor
|
||||
from modelscope.models import TorchModel
|
||||
from modelscope.models.base import Tensor
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.outputs import OutputKeys
|
||||
from modelscope.preprocessors.ofa.utils.collate import collate_tokens
|
||||
@@ -32,7 +33,7 @@ __all__ = ['OfaForAllTasks']
|
||||
@MODELS.register_module(Tasks.image_classification, module_name=Models.ofa)
|
||||
@MODELS.register_module(Tasks.summarization, module_name=Models.ofa)
|
||||
@MODELS.register_module(Tasks.text_classification, module_name=Models.ofa)
|
||||
class OfaForAllTasks(Model):
|
||||
class OfaForAllTasks(TorchModel):
|
||||
|
||||
def __init__(self, model_dir, *args, **kwargs):
|
||||
super().__init__(model_dir=model_dir, *args, **kwargs)
|
||||
|
||||
@@ -5,7 +5,7 @@ import json
|
||||
import numpy as np
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model
|
||||
from modelscope.models import TorchModel
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
@@ -13,7 +13,7 @@ __all__ = ['BertForSequenceClassification']
|
||||
|
||||
|
||||
@MODELS.register_module(Tasks.text_classification, module_name=Models.bert)
|
||||
class BertForSequenceClassification(Model):
|
||||
class BertForSequenceClassification(TorchModel):
|
||||
|
||||
def __init__(self, model_dir: str, *args, **kwargs):
|
||||
# Model.__init__(self, model_dir, model_cls, first_sequence, *args, **kwargs)
|
||||
|
||||
@@ -1,10 +1,7 @@
|
||||
import math
|
||||
import os
|
||||
from collections import namedtuple
|
||||
from typing import Any, Dict
|
||||
from typing import Dict
|
||||
|
||||
import json
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
|
||||
@@ -1,16 +1,17 @@
|
||||
from typing import Any, Dict, Optional, Union
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model, Tensor
|
||||
from modelscope.models import TorchModel
|
||||
from modelscope.models.base import Tensor
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
__all__ = ['BertForMaskedLM', 'StructBertForMaskedLM', 'VecoForMaskedLM']
|
||||
|
||||
|
||||
class MaskedLanguageModelBase(Model):
|
||||
class MaskedLanguageModelBase(TorchModel):
|
||||
|
||||
def __init__(self, model_dir: str, *args, **kwargs):
|
||||
super().__init__(model_dir, *args, **kwargs)
|
||||
|
||||
@@ -1,15 +1,12 @@
|
||||
import os
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.autograd import Variable
|
||||
from transformers import AutoConfig, AutoModel
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model
|
||||
from modelscope.models import TorchModel
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.utils.constant import ModelFile, Tasks
|
||||
|
||||
@@ -18,7 +15,7 @@ __all__ = ['TransformerCRFForNamedEntityRecognition']
|
||||
|
||||
@MODELS.register_module(
|
||||
Tasks.named_entity_recognition, module_name=Models.tcrf)
|
||||
class TransformerCRFForNamedEntityRecognition(Model):
|
||||
class TransformerCRFForNamedEntityRecognition(TorchModel):
|
||||
|
||||
def __init__(self, model_dir, *args, **kwargs):
|
||||
super().__init__(model_dir, *args, **kwargs)
|
||||
|
||||
@@ -7,7 +7,7 @@ import torch
|
||||
from sofa.models.sbert.modeling_sbert import SbertModel, SbertPreTrainedModel
|
||||
from torch import nn
|
||||
|
||||
from modelscope.models.base import Model
|
||||
from modelscope.models import TorchModel
|
||||
|
||||
|
||||
class SbertTextClassfier(SbertPreTrainedModel):
|
||||
@@ -43,7 +43,7 @@ class SbertTextClassfier(SbertPreTrainedModel):
|
||||
return SbertTextClassfier.from_pretrained(model_dir, **model_args)
|
||||
|
||||
|
||||
class SbertForSequenceClassificationBase(Model):
|
||||
class SbertForSequenceClassificationBase(TorchModel):
|
||||
|
||||
def __init__(self, model_dir: str, model_args=None, *args, **kwargs):
|
||||
super().__init__(model_dir, *args, **kwargs)
|
||||
|
||||
@@ -4,7 +4,8 @@ import numpy as np
|
||||
import torch
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model, Tensor
|
||||
from modelscope.models import TorchModel
|
||||
from modelscope.models.base import Tensor
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
@@ -12,7 +13,7 @@ __all__ = ['SbertForTokenClassification']
|
||||
|
||||
|
||||
@MODELS.register_module(Tasks.word_segmentation, module_name=Models.structbert)
|
||||
class SbertForTokenClassification(Model):
|
||||
class SbertForTokenClassification(TorchModel):
|
||||
|
||||
def __init__(self, model_dir: str, *args, **kwargs):
|
||||
"""initialize the word segmentation model from the `model_dir` path.
|
||||
|
||||
@@ -3,7 +3,7 @@ from typing import Any, Dict
|
||||
import numpy as np
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model
|
||||
from modelscope.models import TorchModel
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
@@ -12,7 +12,7 @@ __all__ = ['SbertForZeroShotClassification']
|
||||
|
||||
@MODELS.register_module(
|
||||
Tasks.zero_shot_classification, module_name=Models.structbert)
|
||||
class SbertForZeroShotClassification(Model):
|
||||
class SbertForZeroShotClassification(TorchModel):
|
||||
|
||||
def __init__(self, model_dir: str, *args, **kwargs):
|
||||
"""initialize the zero shot classification model from the `model_dir` path.
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
|
||||
import os
|
||||
from typing import Any, Dict
|
||||
from typing import Dict
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model, Tensor
|
||||
from modelscope.models import TorchModel
|
||||
from modelscope.models.base import Tensor
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.models.nlp.backbones import SpaceGenerator, SpaceModelBase
|
||||
from modelscope.preprocessors.space import IntentBPETextField
|
||||
@@ -16,7 +17,7 @@ __all__ = ['SpaceForDialogIntent']
|
||||
|
||||
@MODELS.register_module(
|
||||
Tasks.dialog_intent_prediction, module_name=Models.space)
|
||||
class SpaceForDialogIntent(Model):
|
||||
class SpaceForDialogIntent(TorchModel):
|
||||
|
||||
def __init__(self, model_dir: str, *args, **kwargs):
|
||||
"""initialize the test generation model from the `model_dir` path.
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
|
||||
import os
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Dict
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model, Tensor
|
||||
from modelscope.models import TorchModel
|
||||
from modelscope.models.base import Tensor
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.models.nlp.backbones import SpaceGenerator, SpaceModelBase
|
||||
from modelscope.preprocessors.space import MultiWOZBPETextField
|
||||
@@ -15,7 +16,7 @@ __all__ = ['SpaceForDialogModeling']
|
||||
|
||||
|
||||
@MODELS.register_module(Tasks.dialog_modeling, module_name=Models.space)
|
||||
class SpaceForDialogModeling(Model):
|
||||
class SpaceForDialogModeling(TorchModel):
|
||||
|
||||
def __init__(self, model_dir: str, *args, **kwargs):
|
||||
"""initialize the test generation model from the `model_dir` path.
|
||||
|
||||
@@ -1,17 +1,16 @@
|
||||
import os
|
||||
from typing import Any, Dict
|
||||
from typing import Dict
|
||||
|
||||
from modelscope.metainfo import Models
|
||||
from modelscope.models.base import Model, Tensor
|
||||
from modelscope.models import TorchModel
|
||||
from modelscope.models.base import Tensor
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.nlp.space.utils_dst import batch_to_device
|
||||
|
||||
__all__ = ['SpaceForDialogStateTracking']
|
||||
|
||||
|
||||
@MODELS.register_module(Tasks.dialog_state_tracking, module_name=Models.space)
|
||||
class SpaceForDialogStateTracking(Model):
|
||||
class SpaceForDialogStateTracking(TorchModel):
|
||||
|
||||
def __init__(self, model_dir: str, *args, **kwargs):
|
||||
"""initialize the test generation model from the `model_dir` path.
|
||||
|
||||
Reference in New Issue
Block a user