Merge branch library_api_tag_ci into master

Title: api tagging for pipeline/train/evaluate 
        Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/10588387
This commit is contained in:
mulin.lyh
2022-11-01 21:12:37 +08:00
4 changed files with 26 additions and 1 deletions

View File

@@ -5,6 +5,8 @@ import os
from datetime import datetime
from typing import Optional
import requests
from modelscope.hub.constants import (DEFAULT_MODELSCOPE_DOMAIN,
DEFAULT_MODELSCOPE_GROUP,
MODEL_ID_SEPARATOR, MODELSCOPE_SDK_DEBUG,
@@ -85,3 +87,16 @@ def file_integrity_validation(file_path, expected_sha256):
msg = 'File %s integrity check failed, the download may be incomplete, please try again.' % file_path
logger.error(msg)
raise FileIntegrityError(msg)
def create_library_statistics(method: str, name: str, cn_name: Optional[str]):
try:
from modelscope.hub.api import ModelScopeConfig
path = f'{get_endpoint()}/api/v1/statistics/library'
headers = {'user-agent': ModelScopeConfig.get_user_agent()}
params = {'Method': method, 'Name': name, 'CnName': cn_name}
r = requests.post(path, params=params, headers=headers)
r.raise_for_status()
except Exception:
pass
return

View File

@@ -131,6 +131,8 @@ class Model(ABC):
if not hasattr(model, 'cfg'):
model.cfg = cfg
model.name = model_name_or_path
return model
def save_pretrained(self,

View File

@@ -10,6 +10,7 @@ from typing import Any, Dict, Generator, List, Mapping, Union
import numpy as np
from modelscope.hub.utils.utils import create_library_statistics
from modelscope.models.base import Model
from modelscope.msdatasets import MsDataset
from modelscope.outputs import TASK_OUTPUTS
@@ -151,7 +152,9 @@ class Pipeline(ABC):
**kwargs) -> Union[Dict[str, Any], Generator]:
# model provider should leave it as it is
# modelscope library developer will handle this function
for single_model in self.models:
if hasattr(single_model, 'name'):
create_library_statistics('pipeline', single_model.name, None)
# place model to cpu or gpu
if (self.model or (self.has_multiple_models and self.models[0])):
if not self._model_prepare:

View File

@@ -15,6 +15,7 @@ from torch.utils.data.dataloader import default_collate
from torch.utils.data.distributed import DistributedSampler
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.hub.utils.utils import create_library_statistics
from modelscope.metainfo import Trainers
from modelscope.metrics import build_metric, task_default_metrics
from modelscope.models.base import Model, TorchModel
@@ -436,6 +437,8 @@ class EpochBasedTrainer(BaseTrainer):
def train(self, checkpoint_path=None, *args, **kwargs):
self._mode = ModeKeys.TRAIN
if hasattr(self.model, 'name'):
create_library_statistics('train', self.model.name, None)
if self.train_dataset is None:
self.train_dataloader = self.get_train_dataloader()
@@ -456,6 +459,8 @@ class EpochBasedTrainer(BaseTrainer):
self.train_loop(self.train_dataloader)
def evaluate(self, checkpoint_path=None):
if hasattr(self.model, 'name'):
create_library_statistics('evaluate', self.model.name, None)
if checkpoint_path is not None and os.path.isfile(checkpoint_path):
from modelscope.trainers.hooks import CheckpointHook
CheckpointHook.load_checkpoint(checkpoint_path, self)