mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-24 03:59:23 +01:00
add test level
This commit is contained in:
@@ -7,6 +7,7 @@ from modelscope.models.nlp import SbertForNLI
|
||||
from modelscope.pipelines import NLIPipeline, pipeline
|
||||
from modelscope.preprocessors import NLIPreprocessor
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
class NLITest(unittest.TestCase):
|
||||
@@ -14,8 +15,8 @@ class NLITest(unittest.TestCase):
|
||||
sentence1 = '四川商务职业学院和四川财经职业学院哪个好?'
|
||||
sentence2 = '四川商务职业学院商务管理在哪个校区?'
|
||||
|
||||
@unittest.skip('skip temporarily to save test time')
|
||||
def test_run_from_local(self):
|
||||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||||
def test_run_with_direct_file_download(self):
|
||||
cache_path = snapshot_download(self.model_id)
|
||||
tokenizer = NLIPreprocessor(cache_path)
|
||||
model = SbertForNLI(cache_path, tokenizer=tokenizer)
|
||||
@@ -28,6 +29,7 @@ class NLITest(unittest.TestCase):
|
||||
f'sentence1: {self.sentence1}\nsentence2: {self.sentence2}\n'
|
||||
f'pipeline1: {pipeline2(input=(self.sentence1, self.sentence2))}')
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_with_model_from_modelhub(self):
|
||||
model = Model.from_pretrained(self.model_id)
|
||||
tokenizer = NLIPreprocessor(model.model_dir)
|
||||
@@ -35,10 +37,12 @@ class NLITest(unittest.TestCase):
|
||||
task=Tasks.nli, model=model, preprocessor=tokenizer)
|
||||
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_with_model_name(self):
|
||||
pipeline_ins = pipeline(task=Tasks.nli, model=self.model_id)
|
||||
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_with_default_model(self):
|
||||
pipeline_ins = pipeline(task=Tasks.nli)
|
||||
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
|
||||
|
||||
@@ -7,13 +7,15 @@ from modelscope.models.nlp import SbertForSentimentClassification
|
||||
from modelscope.pipelines import SentimentClassificationPipeline, pipeline
|
||||
from modelscope.preprocessors import SentimentClassificationPreprocessor
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
class SentimentClassificationTest(unittest.TestCase):
|
||||
model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base'
|
||||
sentence1 = '启动的时候很大声音,然后就会听到1.2秒的卡察的声音,类似齿轮摩擦的声音'
|
||||
|
||||
def test_run_from_local(self):
|
||||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||||
def test_run_with_direct_file_download(self):
|
||||
cache_path = snapshot_download(self.model_id)
|
||||
tokenizer = SentimentClassificationPreprocessor(cache_path)
|
||||
model = SbertForSentimentClassification(
|
||||
@@ -30,6 +32,7 @@ class SentimentClassificationTest(unittest.TestCase):
|
||||
print(f'sentence1: {self.sentence1}\n'
|
||||
f'pipeline1: {pipeline2(input=self.sentence1)}')
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_with_model_from_modelhub(self):
|
||||
model = Model.from_pretrained(self.model_id)
|
||||
tokenizer = SentimentClassificationPreprocessor(model.model_dir)
|
||||
@@ -39,11 +42,13 @@ class SentimentClassificationTest(unittest.TestCase):
|
||||
preprocessor=tokenizer)
|
||||
print(pipeline_ins(input=self.sentence1))
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_with_model_name(self):
|
||||
pipeline_ins = pipeline(
|
||||
task=Tasks.sentiment_classification, model=self.model_id)
|
||||
print(pipeline_ins(input=self.sentence1))
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_with_default_model(self):
|
||||
pipeline_ins = pipeline(task=Tasks.sentiment_classification)
|
||||
print(pipeline_ins(input=self.sentence1))
|
||||
|
||||
@@ -7,6 +7,7 @@ from modelscope.models.nlp import SbertForZeroShotClassification
|
||||
from modelscope.pipelines import ZeroShotClassificationPipeline, pipeline
|
||||
from modelscope.preprocessors import ZeroShotClassificationPreprocessor
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
class ZeroShotClassificationTest(unittest.TestCase):
|
||||
@@ -15,7 +16,8 @@ class ZeroShotClassificationTest(unittest.TestCase):
|
||||
labels = ['文化', '体育', '娱乐', '财经', '家居', '汽车', '教育', '科技', '军事']
|
||||
template = '这篇文章的标题是{}'
|
||||
|
||||
def test_run_from_local(self):
|
||||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||||
def test_run_with_direct_file_download(self):
|
||||
cache_path = snapshot_download(self.model_id)
|
||||
tokenizer = ZeroShotClassificationPreprocessor(cache_path)
|
||||
model = SbertForZeroShotClassification(cache_path, tokenizer=tokenizer)
|
||||
@@ -36,6 +38,7 @@ class ZeroShotClassificationTest(unittest.TestCase):
|
||||
f'pipeline2: {pipeline2(self.sentence,candidate_labels=self.labels,hypothesis_template=self.template)}'
|
||||
)
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_with_model_from_modelhub(self):
|
||||
model = Model.from_pretrained(self.model_id)
|
||||
tokenizer = ZeroShotClassificationPreprocessor(model.model_dir)
|
||||
@@ -45,11 +48,13 @@ class ZeroShotClassificationTest(unittest.TestCase):
|
||||
preprocessor=tokenizer)
|
||||
print(pipeline_ins(input=self.sentence, candidate_labels=self.labels))
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_with_model_name(self):
|
||||
pipeline_ins = pipeline(
|
||||
task=Tasks.zero_shot_classification, model=self.model_id)
|
||||
print(pipeline_ins(input=self.sentence, candidate_labels=self.labels))
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_with_default_model(self):
|
||||
pipeline_ins = pipeline(task=Tasks.zero_shot_classification)
|
||||
print(pipeline_ins(input=self.sentence, candidate_labels=self.labels))
|
||||
|
||||
Reference in New Issue
Block a user