Merge pull request #591 from modelscope/master-merge-internal20231019

Master merge internal20231019
This commit is contained in:
wenmeng zhou
2023-10-23 15:55:08 +08:00
committed by GitHub
32 changed files with 6200 additions and 258 deletions

View File

@@ -150,7 +150,7 @@ echo -e "Building image with:\npython$python_version\npytorch$torch_version\nten
docker_file_content=`cat docker/Dockerfile.ubuntu`
if [ "$is_ci_test" != "True" ]; then
echo "Building ModelScope lib, will install ModelScope lib to image"
docker_file_content="${docker_file_content} \nRUN pip install --no-cache-dir https://modelscope.oss-cn-beijing.aliyuncs.com/releases/build/modelscope-$modelscope_version-py3-none-any.whl "
docker_file_content="${docker_file_content} \nRUN pip install --no-cache-dir numpy https://modelscope.oss-cn-beijing.aliyuncs.com/releases/build/modelscope-$modelscope_version-py3-none-any.whl && pip install --no-cache-dir -U transformers"
fi
echo "$is_dsw"
if [ "$is_dsw" == "False" ]; then

View File

@@ -1,6 +1,4 @@
git clone -b v1.0.8 https://github.com/Dao-AILab/flash-attention && \
cd flash-attention && pip install . && \
pip install csrc/layer_norm && \
pip install csrc/rotary && \
git clone -b v2.3.2 https://github.com/Dao-AILab/flash-attention && \
cd flash-attention && python setup.py install && \
cd .. && \
rm -rf flash-attention

View File

@@ -514,6 +514,7 @@ class Pipelines(object):
document_grounded_dialog_generate = 'document-grounded-dialog-generate'
language_identification = 'language_identification'
machine_reading_comprehension_for_ner = 'machine-reading-comprehension-for-ner'
llm = 'llm'
# audio tasks
sambert_hifigan_tts = 'sambert-hifigan-tts'

View File

@@ -117,6 +117,7 @@ class Model(ABC):
else:
invoked_by = Invoke.PRETRAINED
ignore_file_pattern = kwargs.pop('ignore_file_pattern', None)
if osp.exists(model_name_or_path):
local_model_dir = model_name_or_path
else:
@@ -126,7 +127,6 @@ class Model(ABC):
)
invoked_by = '%s/%s' % (Invoke.KEY, invoked_by)
ignore_file_pattern = kwargs.pop('ignore_file_pattern', None)
local_model_dir = snapshot_download(
model_name_or_path,
revision,

View File

@@ -15,10 +15,10 @@ from . import (action_recognition, animal_recognition, bad_image_detecting,
image_quality_assessment_man, image_quality_assessment_mos,
image_reid_person, image_restoration,
image_semantic_segmentation, image_super_resolution_pasd,
image_to_image_generation, image_to_image_translation,
language_guided_video_summarization, movie_scene_segmentation,
object_detection, panorama_depth_estimation,
pedestrian_attribute_recognition,
image_super_resolution_pasd_v2, image_to_image_generation,
image_to_image_translation, language_guided_video_summarization,
movie_scene_segmentation, object_detection,
panorama_depth_estimation, pedestrian_attribute_recognition,
pointcloud_sceneflow_estimation, product_retrieval_embedding,
referring_video_object_segmentation,
robust_image_classification, salient_detection,

View File

@@ -0,0 +1,24 @@
# Copyright (c) Alibaba, Inc. and its affiliates.
from typing import TYPE_CHECKING
from modelscope.utils.import_utils import LazyImportModule
if TYPE_CHECKING:
from .unet_2d_condition import UNet2DConditionModel
from .controlnet import ControlNetModel
else:
_import_structure = {
'unet_2d_condition': ['UNet2DConditionModel'],
'controlnet': ['ControlNetModel']
}
import sys
sys.modules[__name__] = LazyImportModule(
__name__,
globals()['__file__'],
_import_structure,
module_spec=__spec__,
extra_objects={},
)

View File

@@ -0,0 +1,980 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention_processor import (AttentionProcessor,
AttnProcessor)
from diffusers.models.embeddings import (TextImageProjection,
TextImageTimeEmbedding,
TextTimeEmbedding, TimestepEmbedding,
Timesteps)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput, logging
from torch import nn
from torch.nn import functional as F
from modelscope.models.cv.super_resolution.rrdbnet_arch import RRDB
from .unet_2d_blocks import (CrossAttnDownBlock2D, DownBlock2D,
UNetMidBlock2DCrossAttn, get_down_block)
from .unet_2d_condition import UNet2DConditionModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class ControlNetOutput(BaseOutput):
"""
The output of [`ControlNetModel`].
Args:
down_block_res_samples (`tuple[torch.Tensor]`):
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
used to condition the original UNet's downsampling activations.
mid_down_block_re_sample (`torch.Tensor`):
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
Output can be used to condition the original UNet's middle block activation.
"""
down_block_res_samples: Tuple[torch.Tensor]
mid_block_res_sample: torch.Tensor
class ControlNetConditioningEmbedding(nn.Module):
"""
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
model) to encode image-space conditions ... into feature maps ..."
"""
def __init__(
self,
conditioning_embedding_channels: int,
conditioning_channels: int = 3,
block_out_channels: Tuple[int] = (16, 32, 96, 256),
return_rgbs: bool = True,
use_rrdb: bool = True,
):
super().__init__()
self.return_rgbs = return_rgbs
self.use_rrdb = use_rrdb
self.conv_in = nn.Conv2d(
conditioning_channels,
block_out_channels[0],
kernel_size=3,
padding=1)
if self.use_rrdb:
num_rrdb_block = 2
layers = (
RRDB(block_out_channels[0], block_out_channels[0])
for i in range(num_rrdb_block))
self.preprocesser = nn.Sequential(*layers)
self.blocks = nn.ModuleList([])
self.to_rgbs = nn.ModuleList([])
for i in range(len(block_out_channels) - 1):
channel_in = block_out_channels[i]
channel_out = block_out_channels[i + 1]
self.blocks.append(
nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
self.blocks.append(
nn.Conv2d(
channel_in,
channel_out,
kernel_size=3,
padding=1,
stride=2))
if return_rgbs:
self.to_rgbs.append(
nn.Conv2d(channel_out, 3, kernel_size=3,
padding=1)) # channel_in
self.conv_out = zero_module(
nn.Conv2d(
block_out_channels[-1],
conditioning_embedding_channels,
kernel_size=3,
padding=1))
def forward(self, conditioning):
embedding = self.conv_in(conditioning)
embedding = F.silu(embedding)
if self.use_rrdb:
embedding = self.preprocesser(embedding)
out_rgbs = []
for i, block in enumerate(self.blocks):
embedding = block(embedding)
embedding = F.silu(embedding)
if i % 2 and self.return_rgbs: # 0
out_rgbs.append(self.to_rgbs[i // 2](embedding))
embedding = self.conv_out(embedding)
return [embedding, out_rgbs] if self.return_rgbs else embedding
class ControlNetModel(ModelMixin, ConfigMixin):
"""
A ControlNet model.
Args:
in_channels (`int`, defaults to 4):
The number of channels in the input sample.
flip_sin_to_cos (`bool`, defaults to `True`):
Whether to flip the sin to cos in the time embedding.
freq_shift (`int`, defaults to 0):
The frequency shift to apply to the time embedding.
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D",
"CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
The tuple of downsample blocks to use.
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
layers_per_block (`int`, defaults to 2):
The number of layers per block.
downsample_padding (`int`, defaults to 1):
The padding to use for the downsampling convolution.
mid_block_scale_factor (`float`, defaults to 1):
The scale factor to use for the mid block.
act_fn (`str`, defaults to "silu"):
The activation function to use.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
in post-processing.
norm_eps (`float`, defaults to 1e-5):
The epsilon to use for the normalization.
cross_attention_dim (`int`, defaults to 1280):
The dimension of the cross attention features.
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
encoder_hid_dim (`int`, *optional*, defaults to None):
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
dimension to `cross_attention_dim`.
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
The dimension of the attention heads.
use_linear_projection (`bool`, defaults to `False`):
class_embed_type (`str`, *optional*, defaults to `None`):
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
addition_embed_type (`str`, *optional*, defaults to `None`):
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
"text". "text" will use the `TextTimeEmbedding` layer.
num_class_embeds (`int`, *optional*, defaults to 0):
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
class conditioning with `class_embed_type` equal to `None`.
upcast_attention (`bool`, defaults to `False`):
resnet_time_scale_shift (`str`, defaults to `"default"`):
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
`class_embed_type="projection"`.
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
The tuple of output channel for each block in the `conditioning_embedding` layer.
global_pool_conditions (`bool`, defaults to `False`):
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 4,
conditioning_channels: int = 3,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
down_block_types: Tuple[str] = (
'CrossAttnDownBlock2D',
'CrossAttnDownBlock2D',
'CrossAttnDownBlock2D',
'DownBlock2D',
),
only_cross_attention: Union[bool, Tuple[bool]] = False,
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
layers_per_block: int = 2,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
act_fn: str = 'silu',
norm_num_groups: Optional[int] = 32,
norm_eps: float = 1e-5,
cross_attention_dim: int = 1280,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
encoder_hid_dim: Optional[int] = None,
encoder_hid_dim_type: Optional[str] = None,
attention_head_dim: Union[int, Tuple[int]] = 8,
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
use_linear_projection: bool = False,
class_embed_type: Optional[str] = None,
addition_embed_type: Optional[str] = None,
addition_time_embed_dim: Optional[int] = None,
num_class_embeds: Optional[int] = None,
upcast_attention: bool = False,
resnet_time_scale_shift: str = 'default',
projection_class_embeddings_input_dim: Optional[int] = None,
controlnet_conditioning_channel_order: str = 'rgb',
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32,
96, 256),
global_pool_conditions: bool = False,
addition_embed_type_num_heads=64,
return_rgbs: bool = True,
use_rrdb: bool = False,
):
super().__init__()
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in
# https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
num_attention_heads = num_attention_heads or attention_head_dim
# Check inputs
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f'Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: \
{block_out_channels}. `down_block_types`: {down_block_types}.'
)
if not isinstance(
only_cross_attention,
bool) and len(only_cross_attention) != len(down_block_types):
raise ValueError(
f'Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: \
{only_cross_attention}. `down_block_types`: {down_block_types}.'
)
if not isinstance(
num_attention_heads,
int) and len(num_attention_heads) != len(down_block_types):
raise ValueError(
f'Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: \
{num_attention_heads}. `down_block_types`: {down_block_types}.'
)
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block
] * len(down_block_types)
# input
self.return_rgbs = return_rgbs
conv_in_kernel = 3
conv_in_padding = (conv_in_kernel - 1) // 2
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[0],
kernel_size=conv_in_kernel,
padding=conv_in_padding)
# time
time_embed_dim = block_out_channels[0] * 4
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos,
freq_shift)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(
timestep_input_dim,
time_embed_dim,
act_fn=act_fn,
)
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
encoder_hid_dim_type = 'text_proj'
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
logger.info(
"encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined."
)
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
raise ValueError(
f'`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}.'
)
if encoder_hid_dim_type == 'text_proj':
self.encoder_hid_proj = nn.Linear(encoder_hid_dim,
cross_attention_dim)
elif encoder_hid_dim_type == 'text_image_proj':
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the
# currently only use case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
self.encoder_hid_proj = TextImageProjection(
text_embed_dim=encoder_hid_dim,
image_embed_dim=cross_attention_dim,
cross_attention_dim=cross_attention_dim,
)
elif encoder_hid_dim_type is not None:
raise ValueError(
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
)
else:
self.encoder_hid_proj = None
# class embedding
if class_embed_type is None and num_class_embeds is not None:
self.class_embedding = nn.Embedding(num_class_embeds,
time_embed_dim)
elif class_embed_type == 'timestep':
self.class_embedding = TimestepEmbedding(timestep_input_dim,
time_embed_dim)
elif class_embed_type == 'identity':
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
elif class_embed_type == 'projection':
if projection_class_embeddings_input_dim is None:
raise ValueError(
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
)
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
# 2. it projects from an arbitrary input dimension.
#
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
self.class_embedding = TimestepEmbedding(
projection_class_embeddings_input_dim, time_embed_dim)
else:
self.class_embedding = None
if addition_embed_type == 'text':
if encoder_hid_dim is not None:
text_time_embedding_from_dim = encoder_hid_dim
else:
text_time_embedding_from_dim = cross_attention_dim
self.add_embedding = TextTimeEmbedding(
text_time_embedding_from_dim,
time_embed_dim,
num_heads=addition_embed_type_num_heads)
elif addition_embed_type == 'text_image':
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter
# the __init__ too much they are set to `cross_attention_dim` here as this is exactly the
# required dimension for the currently only use
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
self.add_embedding = TextImageTimeEmbedding(
text_embed_dim=cross_attention_dim,
image_embed_dim=cross_attention_dim,
time_embed_dim=time_embed_dim)
elif addition_embed_type == 'text_time':
self.add_time_proj = Timesteps(addition_time_embed_dim,
flip_sin_to_cos, freq_shift)
self.add_embedding = TimestepEmbedding(
projection_class_embeddings_input_dim, time_embed_dim)
elif addition_embed_type is not None:
raise ValueError(
f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'."
)
# control net conditioning embedding
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0],
block_out_channels=conditioning_embedding_out_channels,
conditioning_channels=conditioning_channels,
return_rgbs=return_rgbs,
use_rrdb=use_rrdb,
)
self.down_blocks = nn.ModuleList([])
self.controlnet_down_blocks = nn.ModuleList([])
if isinstance(only_cross_attention, bool):
only_cross_attention = [only_cross_attention
] * len(down_block_types)
if isinstance(attention_head_dim, int):
attention_head_dim = (attention_head_dim, ) * len(down_block_types)
if isinstance(num_attention_heads, int):
num_attention_heads = (
num_attention_heads, ) * len(down_block_types)
# down
output_channel = block_out_channels[0]
controlnet_block = nn.Conv2d(
output_channel, output_channel, kernel_size=1)
controlnet_block = zero_module(controlnet_block)
self.controlnet_down_blocks.append(controlnet_block)
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
transformer_layers_per_block=transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads[i],
attention_head_dim=attention_head_dim[i]
if attention_head_dim[i] is not None else output_channel,
downsample_padding=downsample_padding,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
)
self.down_blocks.append(down_block)
for _ in range(layers_per_block):
controlnet_block = nn.Conv2d(
output_channel, output_channel, kernel_size=1)
controlnet_block = zero_module(controlnet_block)
self.controlnet_down_blocks.append(controlnet_block)
if not is_final_block:
controlnet_block = nn.Conv2d(
output_channel, output_channel, kernel_size=1)
controlnet_block = zero_module(controlnet_block)
self.controlnet_down_blocks.append(controlnet_block)
# mid
mid_block_channel = block_out_channels[-1]
controlnet_block = nn.Conv2d(
mid_block_channel, mid_block_channel, kernel_size=1)
controlnet_block = zero_module(controlnet_block)
self.controlnet_mid_block = controlnet_block
self.mid_block = UNetMidBlock2DCrossAttn(
transformer_layers_per_block=transformer_layers_per_block[-1],
in_channels=mid_block_channel,
temb_channels=time_embed_dim,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift=resnet_time_scale_shift,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads[-1],
resnet_groups=norm_num_groups,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
)
@classmethod
def from_unet(
cls,
unet: UNet2DConditionModel,
controlnet_conditioning_channel_order: str = 'rgb',
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32,
96, 256),
load_weights_from_unet: bool = True,
):
r"""
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
Parameters:
unet (`UNet2DConditionModel`):
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
where applicable.
"""
transformer_layers_per_block = (
unet.config.transformer_layers_per_block
if 'transformer_layers_per_block' in unet.config else 1)
encoder_hid_dim = unet.config.encoder_hid_dim if 'encoder_hid_dim' in unet.config else None
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if 'encoder_hid_dim_type' in unet.config else None
addition_embed_type = unet.config.addition_embed_type if 'addition_embed_type' in unet.config else None
addition_time_embed_dim = (
unet.config.addition_time_embed_dim
if 'addition_time_embed_dim' in unet.config else None)
controlnet = cls(
encoder_hid_dim=encoder_hid_dim,
encoder_hid_dim_type=encoder_hid_dim_type,
addition_embed_type=addition_embed_type,
addition_time_embed_dim=addition_time_embed_dim,
transformer_layers_per_block=transformer_layers_per_block,
in_channels=unet.config.in_channels,
flip_sin_to_cos=unet.config.flip_sin_to_cos,
freq_shift=unet.config.freq_shift,
down_block_types=unet.config.down_block_types,
only_cross_attention=unet.config.only_cross_attention,
block_out_channels=unet.config.block_out_channels,
layers_per_block=unet.config.layers_per_block,
downsample_padding=unet.config.downsample_padding,
mid_block_scale_factor=unet.config.mid_block_scale_factor,
act_fn=unet.config.act_fn,
norm_num_groups=unet.config.norm_num_groups,
norm_eps=unet.config.norm_eps,
cross_attention_dim=unet.config.cross_attention_dim,
attention_head_dim=unet.config.attention_head_dim,
num_attention_heads=unet.config.num_attention_heads,
use_linear_projection=unet.config.use_linear_projection,
class_embed_type=unet.config.class_embed_type,
num_class_embeds=unet.config.num_class_embeds,
upcast_attention=unet.config.upcast_attention,
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
projection_class_embeddings_input_dim=unet.config.
projection_class_embeddings_input_dim,
controlnet_conditioning_channel_order=
controlnet_conditioning_channel_order,
conditioning_embedding_out_channels=
conditioning_embedding_out_channels,
)
if load_weights_from_unet:
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
controlnet.time_embedding.load_state_dict(
unet.time_embedding.state_dict())
if controlnet.class_embedding:
controlnet.class_embedding.load_state_dict(
unet.class_embedding.state_dict())
controlnet.down_blocks.load_state_dict(
unet.down_blocks.state_dict())
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
return controlnet
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module,
processors: Dict[str,
AttentionProcessor]):
if hasattr(module, 'get_processor'):
processors[f'{name}.processor'] = module.get_processor(
return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f'{name}.{sub_name}', child,
processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor,
Dict[str,
AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f'A dict of processors was passed, but the number of processors {len(processor)} does not match the'
f' number of attention layers: {count}. Please make sure to pass {count} processor classes.'
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module,
processor):
if hasattr(module, 'set_processor'):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f'{name}.processor'))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f'{name}.{sub_name}', child,
processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
self.set_attn_processor(AttnProcessor())
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
def set_attention_slice(self, slice_size):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
Args:
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
must be a multiple of `slice_size`.
"""
sliceable_head_dims = []
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
if hasattr(module, 'set_attention_slice'):
sliceable_head_dims.append(module.sliceable_head_dim)
for child in module.children():
fn_recursive_retrieve_sliceable_dims(child)
# retrieve number of attention layers
for module in self.children():
fn_recursive_retrieve_sliceable_dims(module)
num_sliceable_layers = len(sliceable_head_dims)
if slice_size == 'auto':
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = [dim // 2 for dim in sliceable_head_dims]
elif slice_size == 'max':
# make smallest slice possible
slice_size = num_sliceable_layers * [1]
slice_size = num_sliceable_layers * [slice_size] if not isinstance(
slice_size, list) else slice_size
if len(slice_size) != len(sliceable_head_dims):
raise ValueError(
f'You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different'
f' attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}.'
)
for i in range(len(slice_size)):
size = slice_size[i]
dim = sliceable_head_dims[i]
if size is not None and size > dim:
raise ValueError(
f'size {size} has to be smaller or equal to {dim}.')
# Recursively walk through all the children.
# Any children which exposes the set_attention_slice method
# gets the message
def fn_recursive_set_attention_slice(module: torch.nn.Module,
slice_size: List[int]):
if hasattr(module, 'set_attention_slice'):
module.set_attention_slice(slice_size.pop())
for child in module.children():
fn_recursive_set_attention_slice(child, slice_size)
reversed_slice_size = list(reversed(slice_size))
for module in self.children():
fn_recursive_set_attention_slice(module, reversed_slice_size)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
module.gradient_checkpointing = value
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
controlnet_cond: torch.FloatTensor,
fg_mask: Optional[torch.FloatTensor] = None,
conditioning_scale_fg: float = 1.0,
conditioning_scale_bg: float = 1.0,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guess_mode: bool = False,
return_dict: bool = True,
) -> Union[ControlNetOutput, Tuple]:
"""
The [`ControlNetModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor.
timestep (`Union[torch.Tensor, float, int]`):
The number of timesteps to denoise an input.
encoder_hidden_states (`torch.Tensor`):
The encoder hidden states.
controlnet_cond (`torch.FloatTensor`):
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
conditioning_scale (`float`, defaults to `1.0`):
The scale factor for ControlNet outputs.
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
added_cond_kwargs (`dict`):
Additional conditions for the Stable Diffusion XL UNet.
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
guess_mode (`bool`, defaults to `False`):
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
return_dict (`bool`, defaults to `True`):
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
Returns:
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
returned where the first element is the sample tensor.
"""
# check channel order
channel_order = self.config.controlnet_conditioning_channel_order
if channel_order == 'rgb':
# in rgb order by default
...
elif channel_order == 'bgr':
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
else:
raise ValueError(
f'unknown `controlnet_conditioning_channel_order`: {channel_order}'
)
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == 'mps'
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps],
dtype=dtype,
device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
aug_emb = None
if self.class_embedding is not None:
if class_labels is None:
raise ValueError(
'class_labels should be provided when num_class_embeds > 0'
)
if self.config.class_embed_type == 'timestep':
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
if self.config.addition_embed_type is not None:
if self.config.addition_embed_type == 'text':
aug_emb = self.add_embedding(encoder_hidden_states)
elif self.config.addition_embed_type == 'text_time':
if 'text_embeds' not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' \
which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
)
text_embeds = added_cond_kwargs.get('text_embeds')
if 'time_ids' not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' \
which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
)
time_ids = added_cond_kwargs.get('time_ids')
time_embeds = self.add_time_proj(time_ids.flatten())
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
add_embeds = add_embeds.to(emb.dtype)
aug_emb = self.add_embedding(add_embeds)
emb = emb + aug_emb if aug_emb is not None else emb
# 2. pre-process
sample = self.conv_in(sample)
controlnet_cond_mid = None
if self.return_rgbs:
controlnet_cond, controlnet_cond_mid = self.controlnet_cond_embedding(
controlnet_cond)
else:
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
sample = sample + controlnet_cond
# 3. down
down_block_res_samples = (sample, )
for downsample_block in self.down_blocks:
if hasattr(downsample_block, 'has_cross_attention'
) and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample, res_samples = downsample_block(
hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. mid
if self.mid_block is not None:
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
# 5. Control net blocks
controlnet_down_block_res_samples = ()
for down_block_res_sample, controlnet_block in zip(
down_block_res_samples, self.controlnet_down_blocks):
down_block_res_sample = controlnet_block(down_block_res_sample)
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (
down_block_res_sample, )
down_block_res_samples = controlnet_down_block_res_samples
mid_block_res_sample = self.controlnet_mid_block(sample)
# 6. scaling
if guess_mode and not self.config.global_pool_conditions:
scales = torch.logspace(
-1, 0, len(down_block_res_samples) + 1,
device=sample.device) # 0.1 to 1.0
scales = scales * conditioning_scale_fg
down_block_res_samples = [
sample * scale
for sample, scale in zip(down_block_res_samples, scales)
]
mid_block_res_sample = mid_block_res_sample * scales[
-1] # last one
else:
if fg_mask is None:
down_block_res_samples = [
sample * conditioning_scale_fg
for sample in down_block_res_samples
]
mid_block_res_sample = mid_block_res_sample * conditioning_scale_fg
else:
down_block_masks = [
torch.zeros_like(sample) + conditioning_scale_bg
for i, sample in enumerate(down_block_res_samples)
]
mid_block_mask = torch.zeros_like(
mid_block_res_sample) + conditioning_scale_bg
for i, sample in enumerate(down_block_masks):
tmp_mask = F.interpolate(
fg_mask,
size=sample.shape[-2:]).repeat(sample.shape[0],
sample.shape[1], 1,
1).bool()
down_block_masks[i] = sample.masked_fill(
tmp_mask, conditioning_scale_fg)
tmp_mask = F.interpolate(
fg_mask, size=mid_block_mask.shape[-2:]).repeat(
mid_block_mask.shape[0], mid_block_mask.shape[1], 1,
1).bool()
mid_block_mask = mid_block_mask.masked_fill(
tmp_mask, conditioning_scale_fg)
down_block_res_samples = [
sample * down_block_mask for sample, down_block_mask in
zip(down_block_res_samples, down_block_masks)
]
mid_block_res_sample = mid_block_res_sample * mid_block_mask
if self.config.global_pool_conditions:
down_block_res_samples = [
torch.mean(sample, dim=(2, 3), keepdim=True)
for sample in down_block_res_samples
]
mid_block_res_sample = torch.mean(
mid_block_res_sample, dim=(2, 3), keepdim=True)
if not return_dict:
return (controlnet_cond_mid, down_block_res_samples,
mid_block_res_sample)
return ControlNetOutput(
controlnet_cond_mid=controlnet_cond_mid,
down_block_res_samples=down_block_res_samples,
mid_block_res_sample=mid_block_res_sample)
def zero_module(module):
for p in module.parameters():
nn.init.zeros_(p)
return module

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -9,8 +9,8 @@ import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from timm.layers.drop import drop_path
from timm.layers.weight_init import trunc_normal_
from timm.models.layers.drop import drop_path
from timm.models.layers.weight_init import trunc_normal_
from .common import Upsample, resize

View File

@@ -11,8 +11,8 @@ from collections import OrderedDict
import torch
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.layers.drop import drop_path
from timm.layers.weight_init import trunc_normal_
from timm.models.layers.drop import drop_path
from timm.models.layers.weight_init import trunc_normal_
from torch import nn

View File

@@ -8,8 +8,8 @@
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from timm.layers.drop import drop_path
from timm.layers.weight_init import trunc_normal_
from timm.models.layers.drop import drop_path
from timm.models.layers.weight_init import trunc_normal_
from .common import resize

View File

@@ -183,6 +183,12 @@ class OFATokenizerZH(PreTrainedTokenizer):
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained "
'model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`'
)
self.vocab = load_vocab(vocab_file)
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
@@ -199,12 +205,6 @@ class OFATokenizerZH(PreTrainedTokenizer):
**kwargs,
)
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained "
'model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`'
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([
(ids, tok) for tok, ids in self.vocab.items()
])

View File

@@ -199,6 +199,10 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
padding_side='left',
num_image_tokens=20000,
**kwargs) -> None:
self.sp_tokenizer = SPTokenizer(
vocab_file, num_image_tokens=num_image_tokens)
super().__init__(
do_lower_case=do_lower_case,
remove_space=remove_space,
@@ -220,9 +224,6 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
self.end_token = end_token
self.mask_token = mask_token
self.gmask_token = gmask_token
self.sp_tokenizer = SPTokenizer(
vocab_file, num_image_tokens=num_image_tokens)
""" Initialisation """
@property

View File

@@ -72,7 +72,6 @@ class ChatGLM2Tokenizer(PreTrainedTokenizer):
model_input_names = ['input_ids', 'attention_mask', 'position_ids']
def __init__(self, vocab_file, padding_side='left', **kwargs):
super().__init__(padding_side=padding_side, **kwargs)
self.name = 'GLMTokenizer'
self.vocab_file = vocab_file
@@ -82,6 +81,7 @@ class ChatGLM2Tokenizer(PreTrainedTokenizer):
'<eos>': self.tokenizer.eos_id,
'<pad>': self.tokenizer.pad_id
}
super().__init__(padding_side=padding_side, **kwargs)
def get_command(self, token):
if token in self.special_tokens:

View File

@@ -71,8 +71,9 @@ def get_chat_prompt(system: str, text: str, history: List[Tuple[str, str]],
# This file is mainly copied from the llama code of transformers
@MODELS.register_module(Tasks.text_generation, module_name=Models.llama2)
@MODELS.register_module(Tasks.chat, module_name=Models.llama2)
@MODELS.register_module(Tasks.chat, module_name=Models.llama)
@MODELS.register_module(Tasks.text_generation, module_name=Models.llama2)
@MODELS.register_module(Tasks.text_generation, module_name=Models.llama)
class LlamaForTextGeneration(MsModelMixin, LlamaForCausalLM, TorchModel):

View File

@@ -325,13 +325,9 @@ TASK_INPUTS = {
},
# ============ nlp tasks ===================
Tasks.chat: [
InputType.TEXT,
{
'text': InputType.TEXT,
'history': InputType.LIST,
}
],
Tasks.chat: {
'messages': InputType.LIST
},
Tasks.text_classification: [
InputType.TEXT,
(InputType.TEXT, InputType.TEXT),

View File

@@ -1,14 +1,16 @@
# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import os.path as osp
from typing import List, Optional, Union
from modelscope.hub.file_download import model_file_download
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.metainfo import DEFAULT_MODEL_FOR_PIPELINE, Pipelines
from modelscope.models.base import Model
from modelscope.utils.config import ConfigDict, check_config
from modelscope.utils.config import Config, ConfigDict, check_config
from modelscope.utils.constant import (DEFAULT_MODEL_REVISION, Invoke,
ThirdParty)
ModelFile, ThirdParty)
from modelscope.utils.hub import read_config
from modelscope.utils.plugins import (register_modelhub_repo,
register_plugins_repo)
@@ -117,6 +119,8 @@ def pipeline(task: str = None,
model_revision,
third_party=third_party,
ignore_file_pattern=ignore_file_pattern)
if pipeline_name is None and kwargs.get('llm_first'):
pipeline_name = llm_first_checker(model, model_revision)
pipeline_props = {'type': pipeline_name}
if pipeline_name is None:
# get default pipeline for this task
@@ -196,3 +200,39 @@ def get_default_pipeline_info(task):
else:
pipeline_name, default_model = DEFAULT_MODEL_FOR_PIPELINE[task]
return pipeline_name, default_model
def llm_first_checker(model: Union[str, List[str], Model, List[Model]],
revision: Optional[str]) -> Optional[str]:
from modelscope.pipelines.nlp.llm_pipeline import LLM_FORMAT_MAP
def get_file_name(model: str, cfg_name: str,
revision: Optional[str]) -> Optional[str]:
if osp.exists(model):
return osp.join(model, cfg_name)
try:
return model_file_download(model, cfg_name, revision=revision)
except Exception:
return None
def parse_model_type(file: Optional[str], pattern: str) -> Optional[str]:
if file is None or not osp.exists(file):
return None
return Config.from_file(file).safe_get(pattern)
def get_model_type(model: str, revision: Optional[str]) -> Optional[str]:
cfg_file = get_file_name(model, ModelFile.CONFIGURATION, revision)
hf_cfg_file = get_file_name(model, ModelFile.CONFIG, revision)
cfg_model_type = parse_model_type(cfg_file, 'model.type')
hf_cfg_model_type = parse_model_type(hf_cfg_file, 'model_type')
return cfg_model_type or hf_cfg_model_type
if isinstance(model, list):
model = model[0]
if not isinstance(model, str):
model = model.model_dir
model_type = get_model_type(model, revision)
if model_type is not None:
model_type = model_type.lower().split('-')[0]
if model_type in LLM_FORMAT_MAP:
return 'llm'

View File

@@ -8,14 +8,13 @@ import numpy as np
import PIL
import torch
from diffusers import AutoencoderKL, UniPCMultistepScheduler
from torchvision import transforms
from torchvision.models import ResNet50_Weights, resnet50
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from modelscope.metainfo import Pipelines
from modelscope.models.cv.image_portrait_enhancement.retinaface import \
detection
from modelscope.models.cv.image_super_resolution_pasd import (
ControlNetModel, UNet2DConditionModel)
from modelscope.models.cv.image_super_resolution_pasd.misc import (
load_dreambooth_lora, wavelet_color_fix)
from modelscope.outputs import OutputKeys
@@ -48,8 +47,8 @@ class ImageSuperResolutionPASDPipeline(Pipeline):
>>> 'image': input_location,
>>> 'upscale': 2,
>>> 'prompt': prompt,
>>> 'fidelity_scale_fg': 1.5,
>>> 'fidelity_scale_bg': 0.7
>>> 'fidelity_scale_fg': 1.0,
>>> 'fidelity_scale_bg': 1.0
>>> }
>>> pasd = pipeline(Tasks.image_super_resolution_pasd, model='damo/PASD_image_super_resolutions')
>>> output = pasd(input)[OutputKeys.OUTPUT_IMG]
@@ -69,6 +68,13 @@ class ImageSuperResolutionPASDPipeline(Pipeline):
self.device = create_device(device_name)
self.config = Config.from_file(
os.path.join(model, ModelFile.CONFIGURATION))
version = self.config.pipeline.get('version', 'pasd_v2')
if version == 'pasd':
from modelscope.models.cv.image_super_resolution_pasd import (
ControlNetModel, UNet2DConditionModel)
else:
from modelscope.models.cv.image_super_resolution_pasd_v2 import (
ControlNetModel, UNet2DConditionModel)
cfg = self.config.model_cfg
dreambooth_lora_ckpt = cfg['dreambooth_lora_ckpt']
tiled_size = cfg['tiled_size']
@@ -123,6 +129,12 @@ class ImageSuperResolutionPASDPipeline(Pipeline):
self.face_detector = detection.RetinaFaceDetection(
detector_model_path, self.device)
self.resize_preproc = transforms.Compose([
transforms.Resize(
self.process_size,
interpolation=transforms.InterpolationMode.BILINEAR),
])
def preprocess(self, input: Input):
return input
@@ -145,8 +157,8 @@ class ImageSuperResolutionPASDPipeline(Pipeline):
eta = inputs.get('eta', 0.0)
prompt = inputs.get('prompt', '')
upscale = inputs.get('upscale', 2)
fidelity_scale_fg = inputs.get('fidelity_scale_fg', 1.5)
fidelity_scale_bg = inputs.get('fidelity_scale_bg', 0.7)
fidelity_scale_fg = inputs.get('fidelity_scale_fg', 1.0)
fidelity_scale_bg = inputs.get('fidelity_scale_bg', 1.0)
input_image = load_image(inputs['image']).convert('RGB')
@@ -164,19 +176,15 @@ class ImageSuperResolutionPASDPipeline(Pipeline):
prompt = added_prompt if prompt == '' else f'{prompt}, {added_prompt}'
ori_width, ori_height = input_image.size
resize_flag = False
resize_flag = True
rscale = upscale
if ori_width < self.process_size // rscale or ori_height < self.process_size // rscale:
scale = (self.process_size // rscale) / min(
ori_width, ori_height)
tmp_image = input_image.resize(
(int(scale * ori_width), int(scale * ori_height)))
input_image = tmp_image
resize_flag = True
input_image = input_image.resize(
(input_image.size[0] * rscale, input_image.size[1] * rscale))
if min(input_image.size) < self.process_size:
input_image = self.resize_preproc(input_image)
input_image = input_image.resize(
(input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8))
width, height = input_image.size

View File

@@ -16,6 +16,8 @@ from . import utils
if tf.__version__ >= '2.0':
tf = tf.compat.v1
# test
# skip parse sys.argv in tf, so fix bug:
# absl.flags._exceptions.UnrecognizedFlagError:
# Unknown command line flag 'OCRDetectionPipeline: Unknown command line flag

View File

@@ -1031,46 +1031,213 @@ class PixelAwareStableDiffusionPipeline(DiffusionPipeline,
controlnet_latent_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
if image is not None:
rgbs, down_block_res_samples, mid_block_res_sample = self.controlnet(
controlnet_latent_model_input,
_, _, h, w = latent_model_input.size()
tile_size, tile_overlap = 120, 32
if h < tile_size and w < tile_size:
if image is not None:
rgbs, down_block_res_samples, mid_block_res_sample = self.controlnet(
controlnet_latent_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=image,
fg_mask=fg_mask,
conditioning_scale_fg=conditioning_scale_fg,
conditioning_scale_bg=conditioning_scale_bg,
guess_mode=guess_mode,
return_dict=False,
)
else:
down_block_res_samples, mid_block_res_sample = [
None
] * 10, [None] * 10
if guess_mode and do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [
torch.cat([torch.zeros_like(d), d])
for d in down_block_res_samples
]
mid_block_res_sample = torch.cat([
torch.zeros_like(mid_block_res_sample),
mid_block_res_sample
])
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=image,
fg_mask=fg_mask,
conditioning_scale_fg=conditioning_scale_fg,
conditioning_scale_bg=conditioning_scale_bg,
guess_mode=guess_mode,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)
)[0]
else:
down_block_res_samples, mid_block_res_sample = [
None
] * 10, [None] * 10
tile_size = min(tile_size, min(h, w))
tile_weights = self._gaussian_weights(
tile_size, tile_size, 1).to(latent_model_input.device)
if guess_mode and do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [
torch.cat([torch.zeros_like(d), d])
for d in down_block_res_samples
]
mid_block_res_sample = torch.cat([
torch.zeros_like(mid_block_res_sample),
mid_block_res_sample
])
grid_rows = 0
cur_x = 0
while cur_x < latent_model_input.size(-1):
cur_x = max(
grid_rows * tile_size - tile_overlap * grid_rows,
0) + tile_size
grid_rows += 1
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)[0]
grid_cols = 0
cur_y = 0
while cur_y < latent_model_input.size(-2):
cur_y = max(
grid_cols * tile_size - tile_overlap * grid_cols,
0) + tile_size
grid_cols += 1
input_list = []
cond_list = []
img_list = []
fg_mask_list = []
noise_preds = []
for row in range(grid_rows):
for col in range(grid_cols):
if col < grid_cols - 1 or row < grid_rows - 1:
# extract tile from input image
ofs_x = max(
row * tile_size - tile_overlap * row, 0)
ofs_y = max(
col * tile_size - tile_overlap * col, 0)
# input tile area on total image
if row == grid_rows - 1:
ofs_x = w - tile_size
if col == grid_cols - 1:
ofs_y = h - tile_size
input_start_x = ofs_x
input_end_x = ofs_x + tile_size
input_start_y = ofs_y
input_end_y = ofs_y + tile_size
# input tile dimensions
input_tile = latent_model_input[:, :,
input_start_y:
input_end_y,
input_start_x:
input_end_x]
input_list.append(input_tile)
cond_tile = controlnet_latent_model_input[:, :,
input_start_y:
input_end_y,
input_start_x:
input_end_x]
cond_list.append(cond_tile)
img_tile = image[:, :,
input_start_y * 8:input_end_y * 8,
input_start_x * 8:input_end_x * 8]
img_list.append(img_tile)
if fg_mask is not None:
fg_mask_tile = fg_mask[:, :, input_start_y
* 8:input_end_y * 8,
input_start_x
* 8:input_end_x * 8]
fg_mask_list.append(fg_mask_tile)
if len(input_list
) == batch_size or col == grid_cols - 1:
input_list_t = torch.cat(input_list, dim=0)
cond_list_t = torch.cat(cond_list, dim=0)
img_list_t = torch.cat(img_list, dim=0)
if fg_mask is not None:
fg_mask_list_t = torch.cat(
fg_mask_list, dim=0)
else:
fg_mask_list_t = None
_, down_block_res_samples, mid_block_res_sample = self.controlnet(
cond_list_t,
t,
encoder_hidden_states=
controlnet_prompt_embeds,
controlnet_cond=img_list_t,
fg_mask=fg_mask_list_t,
conditioning_scale_fg=conditioning_scale_fg,
conditioning_scale_bg=conditioning_scale_bg,
guess_mode=guess_mode,
return_dict=False,
)
if guess_mode and do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to the unconditional/conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [
torch.cat([torch.zeros_like(d), d])
for d in down_block_res_samples
]
mid_block_res_sample = torch.cat([
torch.zeros_like(mid_block_res_sample),
mid_block_res_sample
])
# predict the noise residual
model_out = self.unet(
input_list_t,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=
cross_attention_kwargs,
down_block_additional_residuals=
down_block_res_samples,
mid_block_additional_residual=
mid_block_res_sample,
return_dict=False,
)[0]
input_list = []
cond_list = []
img_list = []
fg_mask_list = []
noise_preds.append(model_out)
# Stitch noise predictions for all tiles
noise_pred = torch.zeros(
latent_model_input.shape,
device=latent_model_input.device)
contributors = torch.zeros(
latent_model_input.shape,
device=latent_model_input.device)
# Add each tile contribution to overall latents
for row in range(grid_rows):
for col in range(grid_cols):
if col < grid_cols - 1 or row < grid_rows - 1:
# extract tile from input image
ofs_x = max(
row * tile_size - tile_overlap * row, 0)
ofs_y = max(
col * tile_size - tile_overlap * col, 0)
# input tile area on total image
if row == grid_rows - 1:
ofs_x = w - tile_size
if col == grid_cols - 1:
ofs_y = h - tile_size
input_start_x = ofs_x
input_end_x = ofs_x + tile_size
input_start_y = ofs_y
input_end_y = ofs_y + tile_size
noise_pred[:, :, input_start_y:input_end_y,
input_start_x:
input_end_x] += noise_preds[
row * grid_cols
+ col] * tile_weights
contributors[:, :, input_start_y:input_end_y,
input_start_x:
input_end_x] += tile_weights
# Average overlapping areas with more than 1 contributor
noise_pred /= contributors
# perform guidance
if do_classifier_free_guidance:

View File

@@ -48,6 +48,7 @@ if TYPE_CHECKING:
from .document_grounded_dialog_rerank_pipeline import DocumentGroundedDialogRerankPipeline
from .language_identification_pipline import LanguageIdentificationPipeline
from .machine_reading_comprehension_pipeline import MachineReadingComprehensionForNERPipeline
from .llm_pipeline import LLMPipeline
else:
_import_structure = {
@@ -119,6 +120,7 @@ else:
'machine_reading_comprehension_pipeline': [
'MachineReadingComprehensionForNERPipeline'
],
'llm_pipeline': ['LLMPipeline'],
}
import sys

View File

@@ -11,6 +11,7 @@ from modelscope import (AutoModelForCausalLM, AutoTokenizer, Pipeline,
snapshot_download)
from modelscope.models.base import Model
from modelscope.models.nlp import ChatGLM2Tokenizer, Llama2Tokenizer
from modelscope.outputs import OutputKeys
from modelscope.pipelines.builder import PIPELINES
from modelscope.pipelines.util import is_model, is_official_hub_path
from modelscope.utils.constant import Invoke, ModelFile, Tasks
@@ -19,7 +20,8 @@ from modelscope.utils.logger import get_logger
logger = get_logger()
@PIPELINES.register_module(Tasks.chat, module_name='llm-pipeline')
@PIPELINES.register_module(Tasks.chat, module_name='llm')
@PIPELINES.register_module(Tasks.text_generation, module_name='llm')
class LLMPipeline(Pipeline):
def initiate_single_model(self, model):
@@ -55,6 +57,9 @@ class LLMPipeline(Pipeline):
*args,
**kwargs):
self.device_map = kwargs.pop('device_map', None)
# TODO: qwen-int4 need 'cuda'/'auto' device_map.
if not self.device_map and 'qwen' in kwargs['model'].lower():
self.device_map = 'cuda'
self.torch_dtype = kwargs.pop('torch_dtype', None)
self.ignore_file_pattern = kwargs.pop('ignore_file_pattern', None)
with self._temp_configuration_file(kwargs):
@@ -138,6 +143,8 @@ class LLMPipeline(Pipeline):
outputs, skip_special_tokens=True, **kwargs)
if is_messages:
response = self.format_output(response, **kwargs)
else:
response = {OutputKeys.TEXT: response}
return response
@@ -260,7 +267,7 @@ def chatglm2_format_output(response, **kwargs):
response = response.replace('[[训练时间]]', '2023年')
messages = {'role': 'assistant', 'content': response}
outputs = {
'messages': messages,
'message': messages,
}
return outputs

View File

@@ -773,6 +773,7 @@ def pipeline_output_to_service_base64_output(task_name, pipeline_output):
pipeline_output = pipeline_output[0]
for key, value in pipeline_output.items():
if key not in task_outputs:
json_serializable_output[key] = value
continue # skip the output not defined.
if key in [
OutputKeys.OUTPUT_IMG, OutputKeys.OUTPUT_IMGS,

View File

@@ -1,78 +1,85 @@
{
"action-detection":{
"input":{
"video":"data/test/videos/action_detection_test_video.mp4"
"video":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/videos/action_detection_test_video.mp4"
}
},
"action-recognition":{
"input":{
"video":"data/test/videos/action_recognition_test_video.mp4"
"video":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/videos/action_recognition_test_video.mp4"
}
},
"animal-recognition":{
"input":{
"image":"data/test/images/dogs.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/dogs.jpg"
}
},
"chat":{
"input":{
"text":"你有什么推荐吗?",
"history":[
[
"今天天气真好,",
"今天天气真好,出去走走怎么样?"
]
]
"messages": [{
"role": "user",
"content": "Hello! 你是谁?"
}, {
"role": "assistant",
"content": "我是你的助手。"
}, {
"role": "user",
"content": "你叫什么名字?"
}]
},
"parameters": {
"do_sample": true,
"max_length": 512
}
},
"domain-specific-object-detection":{
"input":{
"image":"data/test/images/image_traffic_sign.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/image_traffic_sign.jpg"
}
},
"face-2d-keypoints":{
"input":{
"image":"data/test/images/face_detection.png"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/face_detection.png"
}
},
"face-attribute-recognition":{
"input":{
"image":"data/test/images/face_recognition_1.png"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/face_recognition_1.png"
}
},
"facial-expression-recognition":{
"input":{
"image":"data/test/images/facial_expression_recognition.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/facial_expression_recognition.jpg"
}
},
"general-recognition":{
"input":{
"image":"data/test/images/dogs.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/dogs.jpg"
}
},
"human-detection":{
"input":{
"image":"data/test/images/image_detection.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/image_detection.jpg"
}
},
"image-captioning":{
"input":{
"image":"data/test/images/image_captioning.png"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/image_captioning.png"
}
},
"image-classification":{
"input":{
"image":"data/test/images/content_check.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/content_check.jpg"
}
},
"image-demoireing":{
"input":{
"image":"data/test/images/shop_segmentation.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/shop_segmentation.jpg"
}
},
"image-object-detection":{
"input":{
"image":"data/test/images/image_detection.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/image_detection.jpg"
}
},
"image-portrait-stylization":{
@@ -82,7 +89,7 @@
},
"image-segmentation":{
"input":{
"image":"data/test/images/image_semantic_segmentation.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/image_semantic_segmentation.jpg"
},
"parameters":{
@@ -90,18 +97,18 @@
},
"image-text-retrieval":{
"input":{
"image":"data/test/images/image_mplug_vqa.jpg",
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/image_mplug_vqa.jpg",
"text":"What is the woman doing?"
}
},
"indoor-layout-estimation":{
"input":{
"image":"data/test/images/image_traffic_sign.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/image_traffic_sign.jpg"
}
},
"live-category":{
"input":{
"video":"data/test/videos/live_category_test_video.mp4"
"video":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/videos/live_category_test_video.mp4"
}
},
"motion-generation":{
@@ -125,22 +132,22 @@
},
"ocr-recognition":{
"input":{
"image":"data/test/images/image_ocr_recognition.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/image_ocr_recognition.jpg"
}
},
"panorama-depth-estimation":{
"input":{
"image":"data/test/images/panorama_depth_estimation.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/panorama_depth_estimation.jpg"
}
},
"semantic-segmentation":{
"input":{
"image":"data/test/images/image_salient_detection.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/image_salient_detection.jpg"
}
},
"shop-segmentation":{
"input":{
"image":"data/test/images/shop_segmentation.jpg"
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/shop_segmentation.jpg"
}
},
"text-classification":{
@@ -153,7 +160,7 @@
},
"text-driven-segmentation":{
"input":{
"image":"data/test/images/text_driven_segmentation.jpg",
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/text_driven_segmentation.jpg",
"text":"bear"
}
},
@@ -194,60 +201,60 @@
},
"video-captioning":{
"input":{
"video":"data/test/videos/video_caption_and_qa_test.mp4"
"video":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/videos/video_caption_and_qa_test.mp4"
}
},
"video-category":{
"input":{
"video":"data/test/videos/video_category_test_video.mp4"
"video":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/videos/video_category_test_video.mp4"
}
},
"video-depth-estimation":{
"input":{
"video":"data/test/videos/video_depth_estimation.mp4"
"video":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/videos/video_depth_estimation.mp4"
}
},
"video-embedding":{
"input":{
"video":"data/test/videos/action_recognition_test_video.mp4"
"video":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/videos/action_recognition_test_video.mp4"
}
},
"video-multi-object-tracking":{
"input":{
"video":"data/test/videos/MOT17-03-partial.mp4"
"video":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/videos/MOT17-03-partial.mp4"
}
},
"video-panoptic-segmentation":{
"input":{
"video":"data/test/videos/kitti-step_testing_image_02_0000.mp4"
"video":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/videos/kitti-step_testing_image_02_0000.mp4"
}
},
"video-question-answering":{
"input":{
"video":"data/test/videos/video_caption_and_qa_test.mp4",
"video":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/videos/video_caption_and_qa_test.mp4",
"text":"How many people are there?"
}
},
"video-summarization":{
"input":{
"text":"data/test/videos/video_category_test_video.mp4"
"text":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/videos/video_category_test_video.mp4"
}
},
"visual-entailment":{
"input":{
"image":"data/test/images/dogs.jpg",
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/dogs.jpg",
"text":"there are two birds."
}
},
"visual-grounding":{
"input":{
"image":"data/test/images/visual_grounding.png",
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/visual_grounding.png",
"text":"a blue turtle-like pokemon with round head"
}
},
"visual-question-answering":{
"input":{
"image":"data/test/images/image_mplug_vqa.jpg",
"image":"http://modelscope.oss-cn-beijing.aliyuncs.com/demo/images/image_mplug_vqa.jpg",
"text":"What is the woman doing?"
}
},

View File

@@ -1,5 +1,5 @@
# Make sure to modify __release_datetime__ to release time when making official release.
__version__ = '1.9.2'
__version__ = '1.9.3'
# default release datetime for branches under active development is set
# to be a time far-far-away-into-the-future
__release_datetime__ = '2099-09-06 00:00:00'

View File

@@ -37,12 +37,15 @@ class ModelJsonTest:
# init pipeline
ppl = pipeline(
task=task, model=model_id, model_revision=model_revision)
task=task,
model=model_id,
model_revision=model_revision,
llm_first=True)
pipeline_info = get_pipeline_information_by_pipeline(ppl)
# call pipeline
data = get_task_input_examples(task)
print(task, data)
infer_result = call_pipeline_with_json(pipeline_info, ppl, data)
result = pipeline_output_to_service_base64_output(task, infer_result)
return result
@@ -50,27 +53,20 @@ class ModelJsonTest:
if __name__ == '__main__':
model_list = [
'damo/nlp_structbert_nli_chinese-base',
'damo/nlp_structbert_word-segmentation_chinese-base',
'damo/nlp_structbert_zero-shot-classification_chinese-base',
'damo/cv_unet_person-image-cartoon_compound-models',
'damo/nlp_structbert_sentiment-classification_chinese-tiny',
'damo/nlp_csanmt_translation_zh2en',
'damo/nlp_rom_passage-ranking_chinese-base',
'damo/ofa_image-caption_muge_base_zh',
'damo/nlp_raner_named-entity-recognition_chinese-base-ecom-50cls',
'damo/nlp_structbert_sentiment-classification_chinese-ecommerce-base',
'damo/text-to-video-synthesis',
'qwen/Qwen-7B',
'qwen/Qwen-7B-Chat',
'ZhipuAI/ChatGLM-6B',
'qwen/Qwen-7B-Chat-Int4',
'qwen/Qwen-14B-Chat-Int4',
'baichuan-inc/Baichuan2-7B-Chat-4bits',
'baichuan-inc/Baichuan2-13B-Chat-4bits',
'ZhipuAI/chatglm2-6b-int4',
]
tester = ModelJsonTest()
for model in model_list:
try:
res = tester.test_single(model)
print(f'\nmodel_id {model} call_pipeline_with_json run ok.\n')
print(
f'\nmodel_id {model} call_pipeline_with_json run ok. {res}\n\n\n\n'
)
except BaseException as e:
print(
f'\nmodel_id {model} call_pipeline_with_json run failed: {e}.\n'
f'\nmodel_id {model} call_pipeline_with_json run failed: {e}.\n\n\n\n'
)

View File

@@ -15,13 +15,14 @@ class ImageSuperResolutionPASDTest(unittest.TestCase):
def setUp(self) -> None:
self.model_id = 'damo/PASD_image_super_resolutions'
self.model_v2_id = 'damo/PASD_v2_image_super_resolutions'
self.img = 'data/test/images/dogs.jpg'
self.input = {
'image': self.img,
'prompt': '',
'upscale': 1,
'fidelity_scale_fg': 1.5,
'fidelity_scale_bg': 0.7
'fidelity_scale_fg': 1.0,
'fidelity_scale_bg': 1.0
}
self.task = Tasks.image_super_resolution_pasd
@@ -38,6 +39,13 @@ class ImageSuperResolutionPASDTest(unittest.TestCase):
self.pipeline_inference(super_resolution, self.input)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_modelhub_v2(self):
super_resolution = pipeline(
Tasks.image_super_resolution_pasd, model=self.model_v2_id)
self.pipeline_inference(super_resolution, self.input)
if __name__ == '__main__':
unittest.main()

View File

@@ -3,6 +3,7 @@ import unittest
import torch
from modelscope import pipeline
from modelscope.pipelines.nlp.llm_pipeline import LLMPipeline
from modelscope.utils.test_utils import test_level
@@ -132,143 +133,172 @@ class LLMPipelineTest(unittest.TestCase):
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_chatglm2(self):
pipe = LLMPipeline(model='ZhipuAI/chatglm2-6b', device_map='auto')
pipe = pipeline(
task='chat', model='ZhipuAI/chatglm2-6b', llm_first=True)
print('messages: ', pipe(self.messages_zh, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_zh, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_chatglm2int4(self):
pipe = LLMPipeline(model='ZhipuAI/chatglm2-6b-int4')
pipe = pipeline(
task='chat', model='ZhipuAI/chatglm2-6b-int4', llm_first=True)
print('messages: ', pipe(self.messages_zh, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_zh, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_chatglm232k(self):
pipe = LLMPipeline(model='ZhipuAI/chatglm2-6b-32k', device_map='auto')
pipe = pipeline(
task='chat', model='ZhipuAI/chatglm2-6b-32k', llm_first=True)
print('messages: ', pipe(self.messages_zh, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_zh, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_llama2(self):
pipe = LLMPipeline(
pipe = pipeline(
task='chat',
model='modelscope/Llama-2-7b-ms',
torch_dtype=torch.float16,
device_map='auto',
ignore_file_pattern=[r'.+\.bin$'])
ignore_file_pattern=[r'.+\.bin$'],
llm_first=True)
print('messages: ', pipe(self.messages_en, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_en, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_llama2chat(self):
pipe = LLMPipeline(
pipe = pipeline(
task='chat',
model='modelscope/Llama-2-7b-chat-ms',
revision='v1.0.2',
torch_dtype=torch.float16,
device_map='auto',
ignore_file_pattern=[r'.+\.bin$'])
ignore_file_pattern=[r'.+\.bin$'],
llm_first=True)
print('messages: ', pipe(self.messages_en, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_en, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_codellama(self):
pipe = LLMPipeline(
pipe = pipeline(
task='chat',
model='AI-ModelScope/CodeLlama-7b-Instruct-hf',
torch_dtype=torch.float16,
device_map='auto',
ignore_file_pattern=[r'.+\.bin$'])
ignore_file_pattern=[r'.+\.bin$'],
llm_first=True)
print('messages: ', pipe(self.messages_code, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_code, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_baichuan_7b(self):
pipe = LLMPipeline(
pipe = pipeline(
task='chat',
model='baichuan-inc/baichuan-7B',
device_map='auto',
torch_dtype=torch.float16)
torch_dtype=torch.float16,
llm_first=True)
print('messages: ', pipe(self.messages_zh, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_zh, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_baichuan_13b(self):
pipe = LLMPipeline(
pipe = pipeline(
task='chat',
model='baichuan-inc/Baichuan-13B-Base',
device_map='auto',
torch_dtype=torch.float16)
torch_dtype=torch.float16,
llm_first=True)
print('messages: ', pipe(self.messages_zh, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_zh, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_baichuan_13bchat(self):
pipe = LLMPipeline(
pipe = pipeline(
task='chat',
model='baichuan-inc/Baichuan-13B-Chat',
device_map='auto',
torch_dtype=torch.float16)
torch_dtype=torch.float16,
llm_first=True)
print('messages: ', pipe(self.messages_zh, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_zh, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_baichuan2_7b(self):
pipe = LLMPipeline(
pipe = pipeline(
task='chat',
model='baichuan-inc/Baichuan2-7B-Base',
device_map='auto',
torch_dtype=torch.float16)
torch_dtype=torch.float16,
llm_first=True)
print('messages: ', pipe(self.messages_zh, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_zh, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_baichuan2_7bchat(self):
pipe = LLMPipeline(
pipe = pipeline(
task='chat',
model='baichuan-inc/Baichuan2-7B-Chat',
device_map='auto',
torch_dtype=torch.float16)
torch_dtype=torch.float16,
llm_first=True)
print('messages: ', pipe(self.messages_zh, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_zh, **self.gen_cfg))
@unittest.skip('Need bitsandbytes')
def test_baichuan2_7bchat_int4(self):
pipe = LLMPipeline(
pipe = pipeline(
task='chat',
model='baichuan-inc/Baichuan2-7B-Chat-4bits',
device_map='auto',
torch_dtype=torch.float16)
torch_dtype=torch.float16,
llm_first=True)
print('messages: ', pipe(self.messages_zh, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_zh, **self.gen_cfg))
@unittest.skip('Need bitsandbytes')
def test_baichuan2_13bchat_int4(self):
pipe = LLMPipeline(
pipe = pipeline(
task='chat',
model='baichuan-inc/Baichuan2-13B-Chat-4bits',
device_map='auto',
torch_dtype=torch.float16)
torch_dtype=torch.float16,
llm_first=True)
print('messages: ', pipe(self.messages_zh, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_zh, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_wizardlm_13b(self):
pipe = LLMPipeline(
pipe = pipeline(
task='chat',
model='AI-ModelScope/WizardLM-13B-V1.2',
device_map='auto',
torch_dtype=torch.float16,
format_messages='wizardlm')
format_messages='wizardlm',
llm_first=True)
print('messages: ', pipe(self.messages_en, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_en, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_wizardmath(self):
pipe = LLMPipeline(
pipe = pipeline(
task='chat',
model='AI-ModelScope/WizardMath-7B-V1.0',
device_map='auto',
torch_dtype=torch.float16,
format_messages='wizardcode')
format_messages='wizardcode',
llm_first=True)
print('messages: ', pipe(self.message_wizard_math, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_wizard_math, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_wizardcode_13b(self):
pipe = LLMPipeline(
pipe = pipeline(
task='chat',
model='AI-ModelScope/WizardCoder-Python-13B-V1.0',
device_map='auto',
torch_dtype=torch.float16,
format_messages='wizardcode')
format_messages='wizardcode',
llm_first=True)
print('messages: ', pipe(self.message_wizard_code, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_wizard_code, **self.gen_cfg))
@@ -284,19 +314,20 @@ class LLMPipelineTest(unittest.TestCase):
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_qwen(self):
pipe = LLMPipeline(model='qwen/Qwen-7B-Chat', device_map='auto')
pipe = pipeline(task='chat', model='qwen/Qwen-7B-Chat', llm_first=True)
print('messages: ', pipe(self.messages_zh_with_system, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_zh, **self.gen_cfg))
@unittest.skip('Need optimum and auto-gptq')
def test_qwen_int4(self):
pipe = LLMPipeline(model='qwen/Qwen-7B-Chat-Int4', device_map='auto')
pipe = pipeline(
task='chat', model='qwen/Qwen-7B-Chat-Int4', llm_first=True)
print('messages: ', pipe(self.messages_zh_with_system, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_zh, **self.gen_cfg))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_qwen_vl(self):
pipe = LLMPipeline(model='qwen/Qwen-VL-Chat', device_map='auto')
pipe = pipeline(task='chat', model='qwen/Qwen-VL-Chat', llm_first=True)
print('messages: ', pipe(self.messages_mm, **self.gen_cfg))
print('prompt: ', pipe(self.prompt_zh, **self.gen_cfg))

View File

@@ -231,8 +231,8 @@ def get_test_suites_to_run():
affected_pipeline_cases.extend(
task_pipeline_test_suite_map[affected_register_module[1]])
else:
logger.warn('Pipeline task: %s has no test case!'
% affected_register_module[1])
logger.warning('Pipeline task: %s has no test case!'
% affected_register_module[1])
elif affected_register_module[0] == 'MODELS':
# ["MODELS", "keyword_spotting", "kws_kwsbp", "GenericKeyWordSpotting"],
# ["MODELS", task, model_name, model_class_name]
@@ -240,8 +240,8 @@ def get_test_suites_to_run():
affected_pipeline_cases.extend(
task_pipeline_test_suite_map[affected_register_module[1]])
else:
logger.warn('Pipeline task: %s has no test case!'
% affected_register_module[1])
logger.warning('Pipeline task: %s has no test case!'
% affected_register_module[1])
elif affected_register_module[0] == 'TRAINERS':
# ["TRAINERS", "", "nlp_base_trainer", "NlpEpochBasedTrainer"],
# ["TRAINERS", "", trainer_name, trainer_class_name]
@@ -298,13 +298,27 @@ def get_test_suites_to_run():
return test_suites_to_run
def get_files_related_modules(files):
def get_files_related_modules(files, reverse_import_map):
register_modules = []
for single_file in files:
if single_file.startswith('./modelscope') or \
single_file.startswith('modelscope'):
register_modules.extend(get_file_register_modules(single_file))
while len(register_modules) == 0:
logger.warn('There is no affected register module')
deeper_imported_by = []
has_deeper_affected_files = False
for source_file in files:
if len(source_file.split('/')) > 4 and source_file.startswith(
'modelscope'):
deeper_imported_by.extend(reverse_import_map[source_file])
has_deeper_affected_files = True
if not has_deeper_affected_files:
break
for file in deeper_imported_by:
register_modules = get_file_register_modules(file)
files = deeper_imported_by
return register_modules
@@ -354,8 +368,8 @@ def get_all_file_test_info():
file_test_info = {}
file_test_info['imports'] = import_map[f]
file_test_info['imported_by'] = reverse_depend_map[f]
register_modules = get_files_related_modules([f]
+ reverse_depend_map[f])
register_modules = get_files_related_modules(
[f] + reverse_depend_map[f], reverse_depend_map)
file_test_info['relate_modules'] = register_modules
affected_pipeline_cases, affected_trainer_cases = get_modules_related_cases(
register_modules, task_pipeline_test_suite_map,

View File

@@ -90,7 +90,8 @@ class AnalysisTestClass(ast.NodeVisitor):
if isinstance(item, ast.Name):
res.append(self.get_variables(item.id))
elif isinstance(item, ast.Attribute):
res.append(self.get_variables(item.value.id))
if hasattr(item.value, 'id'):
res.append(self.get_variables(item.value.id))
elif isinstance(item, ast.Str):
res.append(self.get_variables(item.s))
elif isinstance(item, ast.Dict):

View File

@@ -8,24 +8,62 @@ import pkgutil
import site
import sys
import json
from modelscope.utils.logger import get_logger
logger = get_logger()
class AnalysisSourceFileDefines(ast.NodeVisitor):
"""Analysis source file function, class, global variable defines.
"""
def __init__(self, source_file_path) -> None:
super().__init__()
self.global_variables = []
self.functions = []
self.classes = []
self.async_functions = []
self.symbols = []
self.source_file_path = source_file_path
rel_file_path = source_file_path
if os.path.isabs(source_file_path):
rel_file_path = os.path.relpath(source_file_path, os.getcwd())
if rel_file_path.endswith('__init__.py'): # processing package
self.base_module_name = os.path.dirname(rel_file_path).replace(
'/', '.')
else: # import x.y.z z is the filename
self.base_module_name = rel_file_path.replace('/', '.').replace(
'.py', '')
self.symbols.append(self.base_module_name)
def visit_ClassDef(self, node: ast.ClassDef):
self.symbols.append(self.base_module_name + '.' + node.name)
self.classes.append(node.name)
def visit_FunctionDef(self, node: ast.FunctionDef):
self.symbols.append(self.base_module_name + '.' + node.name)
self.functions.append(node.name)
def visit_AsyncFunctionDef(self, node: ast.AsyncFunctionDef):
self.symbols.append(self.base_module_name + '.' + node.name)
self.async_functions.append(node.name)
def visit_Assign(self, node: ast.Assign):
for tg in node.targets:
if isinstance(tg, ast.Name):
self.symbols.append(self.base_module_name + '.' + tg.id)
self.global_variables.append(tg.id)
def is_relative_import(path):
# from .x import y or from ..x import y
return path.startswith('.')
def resolve_import(module_name):
try:
spec = importlib.util.find_spec(module_name)
return spec and spec.origin
except Exception:
return None
def convert_to_path(name):
if name.startswith('.'):
remainder = name.lstrip('.')
@@ -39,58 +77,93 @@ def convert_to_path(name):
return filename
def resolve_relative_import(source_file_path, module_name):
def resolve_relative_import(source_file_path, module_name, all_symbols):
current_package = os.path.dirname(source_file_path).replace('/', '.')
absolute_name = importlib.util.resolve_name(module_name,
current_package) # get
return resolve_absolute_import(absolute_name)
return resolve_absolute_import(absolute_name, all_symbols)
def onerror(name):
logger.error('Importing module %s error!' % name)
def resolve_absolute_import(module_name, all_symbols):
# direct imports
if module_name in all_symbols:
return all_symbols[module_name]
# some symble import by package __init__.py, we need find the real file which define the symbel.
parent, sub = module_name.rsplit('.', 1)
# case module_name is a python Definition
for symbol, symbol_path in all_symbols.items():
if symbol.startswith(parent) and symbol.endswith(sub):
return all_symbols[symbol]
return None
def resolve_absolute_import(module_name):
module_file_path = resolve_import(module_name)
if module_file_path is None:
# find from base module.
parent_module, sub_module = module_name.rsplit('.', 1)
if parent_module in sys.modules:
if hasattr(sys.modules[parent_module], '_import_structure'):
import_structure = sys.modules[parent_module]._import_structure
for k, v in import_structure.items():
if sub_module in v:
parent_module = parent_module + '.' + k
break
module_file_path = resolve_absolute_import(parent_module)
# the parent_module is a package, we need find the module_name's file
if os.path.basename(module_file_path) == '__init__.py' and \
(os.path.relpath(module_file_path, site.getsitepackages()[0]) != 'modelscope/__init__.py'
or os.path.relpath(module_file_path, os.getcwd()) != 'modelscope/__init__.py'):
for _, sub_module_name, _ in pkgutil.walk_packages(
[os.path.dirname(module_file_path)],
parent_module + '.',
onerror=onerror):
try:
module_ = importlib.import_module(sub_module_name)
for k, v in module_.__dict__.items():
if k == sub_module and v.__module__ == module_.__name__:
module_file_path = module_.__file__
break
except ModuleNotFoundError as e:
logger.warn(
'Import error in %s, ModuleNotFoundError: %s' %
(sub_module_name, e))
continue
except Exception as e:
logger.warn('Import error in %s, Exception: %s' %
(sub_module_name, e))
continue
class IndirectDefines(ast.NodeVisitor):
"""Analysis source file function, class, global variable defines.
"""
def __init__(self, source_file_path, all_symbols,
file_symbols_map) -> None:
super().__init__()
self.symbols_map = {
} # key symbol name in current file, value the real file path.
self.all_symbols = all_symbols
self.file_symbols_map = file_symbols_map
self.source_file_path = source_file_path
rel_file_path = source_file_path
if os.path.isabs(source_file_path):
rel_file_path = os.path.relpath(source_file_path, os.getcwd())
if rel_file_path.endswith('__init__.py'): # processing package
self.base_module_name = os.path.dirname(rel_file_path).replace(
'/', '.')
else: # import x.y.z z is the filename
self.base_module_name = rel_file_path.replace('/', '.').replace(
'.py', '')
# import from will get the symbol in current file.
# from a import b, will get b in current file.
def visit_ImportFrom(self, node):
# level 0 absolute import such as from os.path import join
# level 1 from .x import y
# level 2 from ..x import y
module_name = '.' * node.level + (node.module or '')
for alias in node.names:
file_path = None
if alias.name == '*': # from x import *
if is_relative_import(module_name):
# resolve model path.
file_path = resolve_relative_import(
self.source_file_path, module_name, self.all_symbols)
elif module_name.startswith('modelscope'):
file_path = resolve_absolute_import(
module_name, self.all_symbols)
else:
file_path = None # ignore other package.
if file_path is not None:
for symbol in self.file_symbols_map[file_path][1:]:
symbol_name = symbol.split('.')[-1]
self.symbols_map[self.base_module_name
+ symbol_name] = file_path
else:
return module_file_path
else:
module_file_path = resolve_absolute_import(parent_module)
return module_file_path
if not module_name.endswith('.'):
module_name = module_name + '.'
name = module_name + alias.name
if alias.asname is not None:
current_module_name = self.base_module_name + '.' + alias.asname
else:
current_module_name = self.base_module_name + '.' + alias.name
if is_relative_import(name):
# resolve model path.
file_path = resolve_relative_import(
self.source_file_path, name, self.all_symbols)
elif name.startswith('modelscope'):
file_path = resolve_absolute_import(name, self.all_symbols)
if file_path is not None:
self.symbols_map[current_module_name] = file_path
class AnalysisSourceFileImports(ast.NodeVisitor):
@@ -98,23 +171,19 @@ class AnalysisSourceFileImports(ast.NodeVisitor):
List imports of the modelscope.
"""
def __init__(self, source_file_path) -> None:
def __init__(self, source_file_path, all_symbols) -> None:
super().__init__()
self.imports = []
self.source_file_path = source_file_path
self.all_symbols = all_symbols
def visit_Import(self, node):
"""Processing import x,y,z or import os.path as osp"""
for alias in node.names:
if alias.name.startswith('modelscope'):
file_path = resolve_absolute_import(alias.name)
if file_path.startswith(site.getsitepackages()[0]):
self.imports.append(
os.path.relpath(file_path,
site.getsitepackages()[0]))
else:
self.imports.append(
os.path.relpath(file_path, os.getcwd()))
file_path = resolve_absolute_import(alias.name,
self.all_symbols)
self.imports.append(os.path.relpath(file_path, os.getcwd()))
def visit_ImportFrom(self, node):
# level 0 absolute import such as from os.path import join
@@ -126,9 +195,10 @@ class AnalysisSourceFileImports(ast.NodeVisitor):
if is_relative_import(module_name):
# resolve model path.
file_path = resolve_relative_import(
self.source_file_path, module_name)
self.source_file_path, module_name, self.all_symbols)
elif module_name.startswith('modelscope'):
file_path = resolve_absolute_import(module_name)
file_path = resolve_absolute_import(
module_name, self.all_symbols)
else:
file_path = None # ignore other package.
else:
@@ -138,9 +208,17 @@ class AnalysisSourceFileImports(ast.NodeVisitor):
if is_relative_import(name):
# resolve model path.
file_path = resolve_relative_import(
self.source_file_path, name)
self.source_file_path, name, self.all_symbols)
if file_path is None:
logger.warning(
'File: %s, import %s%s not exist!' %
(self.source_file_path, module_name, alias.name))
elif name.startswith('modelscope'):
file_path = resolve_absolute_import(name)
file_path = resolve_absolute_import(name, self.all_symbols)
if file_path is None:
logger.warning(
'File: %s, import %s%s not exist!' %
(self.source_file_path, module_name, alias.name))
else:
file_path = None # ignore other package.
@@ -152,6 +230,10 @@ class AnalysisSourceFileImports(ast.NodeVisitor):
else:
self.imports.append(
os.path.relpath(file_path, os.getcwd()))
elif module_name.startswith('modelscope'):
logger.warning(
'File: %s, import %s%s not exist!' %
(self.source_file_path, module_name, alias.name))
class AnalysisSourceFileRegisterModules(ast.NodeVisitor):
@@ -216,14 +298,14 @@ class AnalysisSourceFileRegisterModules(ast.NodeVisitor):
node.name)) # PIPELINES, task, module, class_name
def get_imported_files(file_path):
def get_imported_files(file_path, all_symbols):
"""Get file dependencies.
"""
if os.path.isabs(file_path):
file_path = os.path.relpath(file_path, os.getcwd())
with open(file_path, 'rb') as f:
src = f.read()
analyzer = AnalysisSourceFileImports(file_path)
analyzer = AnalysisSourceFileImports(file_path, all_symbols)
analyzer.visit(ast.parse(src, filename=file_path))
return list(set(analyzer.imports))
@@ -236,7 +318,6 @@ def path_to_module_name(file_path):
def get_file_register_modules(file_path):
logger.info('Get file: %s register_module' % file_path)
with open(file_path, 'rb') as f:
src = f.read()
analyzer = AnalysisSourceFileRegisterModules(file_path)
@@ -244,15 +325,51 @@ def get_file_register_modules(file_path):
return analyzer.register_modules
def get_file_defined_symbols(file_path):
if os.path.isabs(file_path):
file_path = os.path.relpath(file_path, os.getcwd())
with open(file_path, 'rb') as f:
src = f.read()
analyzer = AnalysisSourceFileDefines(file_path)
analyzer.visit(ast.parse(src, filename=file_path))
return analyzer.symbols
def get_indirect_symbols(file_path, symbols, file_symbols_map):
if os.path.isabs(file_path):
file_path = os.path.relpath(file_path, os.getcwd())
with open(file_path, 'rb') as f:
src = f.read()
analyzer = IndirectDefines(file_path, symbols, file_symbols_map)
analyzer.visit(ast.parse(src, filename=file_path))
return analyzer.symbols_map
def get_import_map():
all_files = [
os.path.join(dp, f) for dp, dn, filenames in os.walk(
os.path.join(os.getcwd(), 'modelscope')) for f in filenames
if os.path.splitext(f)[1] == '.py'
]
all_symbols = {}
file_symbols_map = {}
for f in all_files:
file_path = os.path.relpath(f, os.getcwd())
file_symbols_map[file_path] = get_file_defined_symbols(f)
for s in file_symbols_map[file_path]:
all_symbols[s] = file_path
# get indirect(imported) symbols, refer to origin define.
for f in all_files:
for name, real_path in get_indirect_symbols(f, all_symbols,
file_symbols_map).items():
all_symbols[name] = os.path.relpath(real_path, os.getcwd())
with open('symbols.json', 'w') as f:
json.dump(all_symbols, f)
import_map = {}
for f in all_files:
files = get_imported_files(f)
files = get_imported_files(f, all_symbols)
import_map[os.path.relpath(f, os.getcwd())] = files
return import_map