mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-25 20:49:37 +01:00
merge with master
This commit is contained in:
5
.gitignore
vendored
5
.gitignore
vendored
@@ -24,6 +24,7 @@ wheels/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
/package
|
||||
/temp
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
@@ -123,3 +124,7 @@ replace.sh
|
||||
|
||||
# Pytorch
|
||||
*.pth
|
||||
|
||||
|
||||
# audio
|
||||
*.wav
|
||||
|
||||
@@ -29,3 +29,15 @@ reference: [https://huggingface.co/docs/tokenizers/installation#installation-fro
|
||||
> ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
|
||||
|
||||
由于依赖库之间的版本不兼容,可能会存在版本冲突的情况,大部分情况下不影响正常运行。
|
||||
|
||||
### 3. 安装pytorch出现版本错误
|
||||
|
||||
> ERROR: Ignored the following versions that require a different python version: 1.1.0 Requires-Python >=3.8; 1.1.0rc1 Requires-Python >=3.8; 1.1.1 Requires-Python >=3.8
|
||||
> ERROR: Could not find a version that satisfies the requirement torch==1.8.1+cu111 (from versions: 1.0.0, 1.0.1, 1.0.1.post2, 1.1.0, 1.2.0, 1.3.0, 1.3.1, 1.4.0, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.8.1, 1.9.0, 1.9.1, 1.10.0, 1.10.1, 1.10.2, 1.11.0)
|
||||
> ERROR: No matching distribution found for torch==1.8.1+cu111
|
||||
|
||||
安装时使用如下命令:
|
||||
|
||||
```shell
|
||||
pip install -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt
|
||||
```
|
||||
|
||||
@@ -25,6 +25,10 @@ ModelScope Library目前支持tensorflow,pytorch两大深度学习框架进行
|
||||
* [Pytorch安装指导](https://pytorch.org/get-started/locally/)
|
||||
* [Tensorflow安装指导](https://www.tensorflow.org/install/pip)
|
||||
|
||||
部分第三方依赖库需要提前安装numpy
|
||||
```
|
||||
pip install numpy
|
||||
```
|
||||
|
||||
## ModelScope library 安装
|
||||
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
|
||||
from .audio.tts.am import SambertNetHifi16k
|
||||
from .audio.tts.vocoder import Hifigan16k
|
||||
from .base import Model
|
||||
from .builder import MODELS, build_model
|
||||
from .nlp import BertForSequenceClassification, SbertForSentenceSimilarity
|
||||
|
||||
0
modelscope/models/audio/tts/__init__.py
Normal file
0
modelscope/models/audio/tts/__init__.py
Normal file
1
modelscope/models/audio/tts/am/__init__.py
Normal file
1
modelscope/models/audio/tts/am/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .sambert_hifi_16k import * # noqa F403
|
||||
8
modelscope/models/audio/tts/am/models/__init__.py
Executable file
8
modelscope/models/audio/tts/am/models/__init__.py
Executable file
@@ -0,0 +1,8 @@
|
||||
from .robutrans import RobuTrans
|
||||
|
||||
|
||||
def create_model(name, hparams):
|
||||
if name == 'robutrans':
|
||||
return RobuTrans(hparams)
|
||||
else:
|
||||
raise Exception('Unknown model: ' + name)
|
||||
82
modelscope/models/audio/tts/am/models/compat.py
Executable file
82
modelscope/models/audio/tts/am/models/compat.py
Executable file
@@ -0,0 +1,82 @@
|
||||
"""Functions for compatibility with different TensorFlow versions."""
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def is_tf2():
|
||||
"""Returns ``True`` if running TensorFlow 2.0."""
|
||||
return tf.__version__.startswith('2')
|
||||
|
||||
|
||||
def tf_supports(symbol):
|
||||
"""Returns ``True`` if TensorFlow defines :obj:`symbol`."""
|
||||
return _string_to_tf_symbol(symbol) is not None
|
||||
|
||||
|
||||
def tf_any(*symbols):
|
||||
"""Returns the first supported symbol."""
|
||||
for symbol in symbols:
|
||||
module = _string_to_tf_symbol(symbol)
|
||||
if module is not None:
|
||||
return module
|
||||
return None
|
||||
|
||||
|
||||
def tf_compat(v2=None, v1=None): # pylint: disable=invalid-name
|
||||
"""Returns the compatible symbol based on the current TensorFlow version.
|
||||
|
||||
Args:
|
||||
v2: The candidate v2 symbol name.
|
||||
v1: The candidate v1 symbol name.
|
||||
|
||||
Returns:
|
||||
A TensorFlow symbol.
|
||||
|
||||
Raises:
|
||||
ValueError: if no symbol can be found.
|
||||
"""
|
||||
candidates = []
|
||||
if v2 is not None:
|
||||
candidates.append(v2)
|
||||
if v1 is not None:
|
||||
candidates.append(v1)
|
||||
candidates.append('compat.v1.%s' % v1)
|
||||
symbol = tf_any(*candidates)
|
||||
if symbol is None:
|
||||
raise ValueError('Failure to resolve the TensorFlow symbol')
|
||||
return symbol
|
||||
|
||||
|
||||
def name_from_variable_scope(name=''):
|
||||
"""Creates a name prefixed by the current variable scope."""
|
||||
var_scope = tf_compat(v1='get_variable_scope')().name
|
||||
compat_name = ''
|
||||
if name:
|
||||
compat_name = '%s/' % name
|
||||
if var_scope:
|
||||
compat_name = '%s/%s' % (var_scope, compat_name)
|
||||
return compat_name
|
||||
|
||||
|
||||
def reuse():
|
||||
"""Returns ``True`` if the current variable scope is marked for reuse."""
|
||||
return tf_compat(v1='get_variable_scope')().reuse
|
||||
|
||||
|
||||
def _string_to_tf_symbol(symbol):
|
||||
modules = symbol.split('.')
|
||||
namespace = tf
|
||||
for module in modules:
|
||||
namespace = getattr(namespace, module, None)
|
||||
if namespace is None:
|
||||
return None
|
||||
return namespace
|
||||
|
||||
|
||||
# pylint: disable=invalid-name
|
||||
gfile_copy = tf_compat(v2='io.gfile.copy', v1='gfile.Copy')
|
||||
gfile_exists = tf_compat(v2='io.gfile.exists', v1='gfile.Exists')
|
||||
gfile_open = tf_compat(v2='io.gfile.GFile', v1='gfile.GFile')
|
||||
is_tensor = tf_compat(v2='is_tensor', v1='contrib.framework.is_tensor')
|
||||
logging = tf_compat(v1='logging')
|
||||
nest = tf_compat(v2='nest', v1='contrib.framework.nest')
|
||||
273
modelscope/models/audio/tts/am/models/fsmn.py
Executable file
273
modelscope/models/audio/tts/am/models/fsmn.py
Executable file
@@ -0,0 +1,273 @@
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def build_sequence_mask(sequence_length,
|
||||
maximum_length=None,
|
||||
dtype=tf.float32):
|
||||
"""Builds the dot product mask.
|
||||
|
||||
Args:
|
||||
sequence_length: The sequence length.
|
||||
maximum_length: Optional size of the returned time dimension. Otherwise
|
||||
it is the maximum of :obj:`sequence_length`.
|
||||
dtype: The type of the mask tensor.
|
||||
|
||||
Returns:
|
||||
A broadcastable ``tf.Tensor`` of type :obj:`dtype` and shape
|
||||
``[batch_size, max_length]``.
|
||||
"""
|
||||
mask = tf.sequence_mask(
|
||||
sequence_length, maxlen=maximum_length, dtype=dtype)
|
||||
|
||||
return mask
|
||||
|
||||
|
||||
def norm(inputs):
|
||||
"""Layer normalizes :obj:`inputs`."""
|
||||
return tf.contrib.layers.layer_norm(inputs, begin_norm_axis=-1)
|
||||
|
||||
|
||||
def pad_in_time(x, padding_shape):
|
||||
"""Helper function to pad a tensor in the time dimension and retain the static depth dimension.
|
||||
|
||||
Agrs:
|
||||
x: [Batch, Time, Frequency]
|
||||
padding_length: padding size of constant value (0) before the time dimension
|
||||
|
||||
return:
|
||||
padded x
|
||||
"""
|
||||
|
||||
depth = x.get_shape().as_list()[-1]
|
||||
x = tf.pad(x, [[0, 0], padding_shape, [0, 0]])
|
||||
x.set_shape((None, None, depth))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def pad_in_time_right(x, padding_length):
|
||||
"""Helper function to pad a tensor in the time dimension and retain the static depth dimension.
|
||||
|
||||
Agrs:
|
||||
x: [Batch, Time, Frequency]
|
||||
padding_length: padding size of constant value (0) before the time dimension
|
||||
|
||||
return:
|
||||
padded x
|
||||
"""
|
||||
depth = x.get_shape().as_list()[-1]
|
||||
x = tf.pad(x, [[0, 0], [0, padding_length], [0, 0]])
|
||||
x.set_shape((None, None, depth))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def feed_forward(x, ffn_dim, memory_units, mode, dropout=0.0):
|
||||
"""Implements the Transformer's "Feed Forward" layer.
|
||||
|
||||
.. math::
|
||||
|
||||
ffn(x) = max(0, x*W_1 + b_1)*W_2
|
||||
|
||||
Args:
|
||||
x: The input.
|
||||
ffn_dim: The number of units of the nonlinear transformation.
|
||||
memory_units: the number of units of linear transformation
|
||||
mode: A ``tf.estimator.ModeKeys`` mode.
|
||||
dropout: The probability to drop units from the inner transformation.
|
||||
|
||||
Returns:
|
||||
The transformed input.
|
||||
"""
|
||||
inner = tf.layers.conv1d(x, ffn_dim, 1, activation=tf.nn.relu)
|
||||
inner = tf.layers.dropout(
|
||||
inner, rate=dropout, training=mode == tf.estimator.ModeKeys.TRAIN)
|
||||
outer = tf.layers.conv1d(inner, memory_units, 1, use_bias=False)
|
||||
|
||||
return outer
|
||||
|
||||
|
||||
def drop_and_add(inputs, outputs, mode, dropout=0.0):
|
||||
"""Drops units in the outputs and adds the previous values.
|
||||
|
||||
Args:
|
||||
inputs: The input of the previous layer.
|
||||
outputs: The output of the previous layer.
|
||||
mode: A ``tf.estimator.ModeKeys`` mode.
|
||||
dropout: The probability to drop units in :obj:`outputs`.
|
||||
|
||||
Returns:
|
||||
The residual and normalized output.
|
||||
"""
|
||||
outputs = tf.layers.dropout(outputs, rate=dropout, training=mode)
|
||||
|
||||
input_dim = inputs.get_shape().as_list()[-1]
|
||||
output_dim = outputs.get_shape().as_list()[-1]
|
||||
|
||||
if input_dim == output_dim:
|
||||
outputs += inputs
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def MemoryBlock(
|
||||
inputs,
|
||||
filter_size,
|
||||
mode,
|
||||
mask=None,
|
||||
dropout=0.0,
|
||||
):
|
||||
"""
|
||||
Define the bidirectional memory block in FSMN
|
||||
|
||||
Agrs:
|
||||
inputs: The output of the previous layer. [Batch, Time, Frequency]
|
||||
filter_size: memory block filter size
|
||||
mode: Training or Evaluation
|
||||
mask: A ``tf.Tensor`` applied to the memory block output
|
||||
|
||||
return:
|
||||
output: 3-D tensor ([Batch, Time, Frequency])
|
||||
"""
|
||||
static_shape = inputs.get_shape().as_list()
|
||||
depth = static_shape[-1]
|
||||
inputs = tf.expand_dims(inputs, axis=1) # [Batch, 1, Time, Frequency]
|
||||
depthwise_filter = tf.get_variable(
|
||||
'depth_conv_w',
|
||||
shape=[1, filter_size, depth, 1],
|
||||
initializer=tf.glorot_uniform_initializer(),
|
||||
dtype=tf.float32)
|
||||
memory = tf.nn.depthwise_conv2d(
|
||||
input=inputs,
|
||||
filter=depthwise_filter,
|
||||
strides=[1, 1, 1, 1],
|
||||
padding='SAME',
|
||||
rate=[1, 1],
|
||||
data_format='NHWC')
|
||||
memory = memory + inputs
|
||||
output = tf.layers.dropout(memory, rate=dropout, training=mode)
|
||||
output = tf.reshape(
|
||||
output,
|
||||
[tf.shape(output)[0], tf.shape(output)[2], depth])
|
||||
if mask is not None:
|
||||
output = output * tf.expand_dims(mask, -1)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def MemoryBlockV2(
|
||||
inputs,
|
||||
filter_size,
|
||||
mode,
|
||||
shift=0,
|
||||
mask=None,
|
||||
dropout=0.0,
|
||||
):
|
||||
"""
|
||||
Define the bidirectional memory block in FSMN
|
||||
|
||||
Agrs:
|
||||
inputs: The output of the previous layer. [Batch, Time, Frequency]
|
||||
filter_size: memory block filter size
|
||||
mode: Training or Evaluation
|
||||
shift: left padding, to control delay
|
||||
mask: A ``tf.Tensor`` applied to the memory block output
|
||||
|
||||
return:
|
||||
output: 3-D tensor ([Batch, Time, Frequency])
|
||||
"""
|
||||
if mask is not None:
|
||||
inputs = inputs * tf.expand_dims(mask, -1)
|
||||
|
||||
static_shape = inputs.get_shape().as_list()
|
||||
depth = static_shape[-1]
|
||||
# padding
|
||||
left_padding = int(round((filter_size - 1) / 2))
|
||||
right_padding = int((filter_size - 1) / 2)
|
||||
if shift > 0:
|
||||
left_padding = left_padding + shift
|
||||
right_padding = right_padding - shift
|
||||
pad_inputs = pad_in_time(inputs, [left_padding, right_padding])
|
||||
pad_inputs = tf.expand_dims(
|
||||
pad_inputs, axis=1) # [Batch, 1, Time, Frequency]
|
||||
depthwise_filter = tf.get_variable(
|
||||
'depth_conv_w',
|
||||
shape=[1, filter_size, depth, 1],
|
||||
initializer=tf.glorot_uniform_initializer(),
|
||||
dtype=tf.float32)
|
||||
memory = tf.nn.depthwise_conv2d(
|
||||
input=pad_inputs,
|
||||
filter=depthwise_filter,
|
||||
strides=[1, 1, 1, 1],
|
||||
padding='VALID',
|
||||
rate=[1, 1],
|
||||
data_format='NHWC')
|
||||
memory = tf.reshape(
|
||||
memory,
|
||||
[tf.shape(memory)[0], tf.shape(memory)[2], depth])
|
||||
memory = memory + inputs
|
||||
output = tf.layers.dropout(memory, rate=dropout, training=mode)
|
||||
if mask is not None:
|
||||
output = output * tf.expand_dims(mask, -1)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def UniMemoryBlock(
|
||||
inputs,
|
||||
filter_size,
|
||||
mode,
|
||||
cache=None,
|
||||
mask=None,
|
||||
dropout=0.0,
|
||||
):
|
||||
"""
|
||||
Define the unidirectional memory block in FSMN
|
||||
|
||||
Agrs:
|
||||
inputs: The output of the previous layer. [Batch, Time, Frequency]
|
||||
filter_size: memory block filter size
|
||||
cache: for streaming inference
|
||||
mode: Training or Evaluation
|
||||
mask: A ``tf.Tensor`` applied to the memory block output
|
||||
dropout: dorpout factor
|
||||
return:
|
||||
output: 3-D tensor ([Batch, Time, Frequency])
|
||||
"""
|
||||
if cache is not None:
|
||||
static_shape = cache['queries'].get_shape().as_list()
|
||||
depth = static_shape[-1]
|
||||
queries = tf.slice(cache['queries'], [0, 1, 0], [
|
||||
tf.shape(cache['queries'])[0],
|
||||
tf.shape(cache['queries'])[1] - 1, depth
|
||||
])
|
||||
queries = tf.concat([queries, inputs], axis=1)
|
||||
cache['queries'] = queries
|
||||
else:
|
||||
padding_length = filter_size - 1
|
||||
queries = pad_in_time(inputs, [padding_length, 0])
|
||||
|
||||
queries = tf.expand_dims(queries, axis=1) # [Batch, 1, Time, Frequency]
|
||||
static_shape = queries.get_shape().as_list()
|
||||
depth = static_shape[-1]
|
||||
depthwise_filter = tf.get_variable(
|
||||
'depth_conv_w',
|
||||
shape=[1, filter_size, depth, 1],
|
||||
initializer=tf.glorot_uniform_initializer(),
|
||||
dtype=tf.float32)
|
||||
memory = tf.nn.depthwise_conv2d(
|
||||
input=queries,
|
||||
filter=depthwise_filter,
|
||||
strides=[1, 1, 1, 1],
|
||||
padding='VALID',
|
||||
rate=[1, 1],
|
||||
data_format='NHWC')
|
||||
memory = tf.reshape(
|
||||
memory,
|
||||
[tf.shape(memory)[0], tf.shape(memory)[2], depth])
|
||||
memory = memory + inputs
|
||||
output = tf.layers.dropout(memory, rate=dropout, training=mode)
|
||||
if mask is not None:
|
||||
output = output * tf.expand_dims(mask, -1)
|
||||
|
||||
return output
|
||||
178
modelscope/models/audio/tts/am/models/fsmn_encoder.py
Executable file
178
modelscope/models/audio/tts/am/models/fsmn_encoder.py
Executable file
@@ -0,0 +1,178 @@
|
||||
import tensorflow as tf
|
||||
|
||||
from . import fsmn
|
||||
|
||||
|
||||
class FsmnEncoder():
|
||||
"""Encoder using Fsmn
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
filter_size,
|
||||
fsmn_num_layers,
|
||||
dnn_num_layers,
|
||||
num_memory_units=512,
|
||||
ffn_inner_dim=2048,
|
||||
dropout=0.0,
|
||||
position_encoder=None):
|
||||
"""Initializes the parameters of the encoder.
|
||||
|
||||
Args:
|
||||
filter_size: the total order of memory block
|
||||
fsmn_num_layers: The number of fsmn layers.
|
||||
dnn_num_layers: The number of dnn layers
|
||||
num_units: The number of memory units.
|
||||
ffn_inner_dim: The number of units of the inner linear transformation
|
||||
in the feed forward layer.
|
||||
dropout: The probability to drop units from the outputs.
|
||||
position_encoder: The :class:`opennmt.layers.position.PositionEncoder` to
|
||||
apply on inputs or ``None``.
|
||||
"""
|
||||
super(FsmnEncoder, self).__init__()
|
||||
self.filter_size = filter_size
|
||||
self.fsmn_num_layers = fsmn_num_layers
|
||||
self.dnn_num_layers = dnn_num_layers
|
||||
self.num_memory_units = num_memory_units
|
||||
self.ffn_inner_dim = ffn_inner_dim
|
||||
self.dropout = dropout
|
||||
self.position_encoder = position_encoder
|
||||
|
||||
def encode(self, inputs, sequence_length=None, mode=True):
|
||||
if self.position_encoder is not None:
|
||||
inputs = self.position_encoder(inputs)
|
||||
|
||||
inputs = tf.layers.dropout(inputs, rate=self.dropout, training=mode)
|
||||
|
||||
mask = fsmn.build_sequence_mask(
|
||||
sequence_length, maximum_length=tf.shape(inputs)[1])
|
||||
|
||||
state = ()
|
||||
|
||||
for layer in range(self.fsmn_num_layers):
|
||||
with tf.variable_scope('fsmn_layer_{}'.format(layer)):
|
||||
with tf.variable_scope('ffn'):
|
||||
context = fsmn.feed_forward(
|
||||
inputs,
|
||||
self.ffn_inner_dim,
|
||||
self.num_memory_units,
|
||||
mode,
|
||||
dropout=self.dropout)
|
||||
|
||||
with tf.variable_scope('memory'):
|
||||
memory = fsmn.MemoryBlock(
|
||||
context,
|
||||
self.filter_size,
|
||||
mode,
|
||||
mask=mask,
|
||||
dropout=self.dropout)
|
||||
|
||||
memory = fsmn.drop_and_add(
|
||||
inputs, memory, mode, dropout=self.dropout)
|
||||
|
||||
inputs = memory
|
||||
state += (tf.reduce_mean(inputs, axis=1), )
|
||||
|
||||
for layer in range(self.dnn_num_layers):
|
||||
with tf.variable_scope('dnn_layer_{}'.format(layer)):
|
||||
transformed = fsmn.feed_forward(
|
||||
inputs,
|
||||
self.ffn_inner_dim,
|
||||
self.num_memory_units,
|
||||
mode,
|
||||
dropout=self.dropout)
|
||||
|
||||
inputs = transformed
|
||||
state += (tf.reduce_mean(inputs, axis=1), )
|
||||
|
||||
outputs = inputs
|
||||
return (outputs, state, sequence_length)
|
||||
|
||||
|
||||
class FsmnEncoderV2():
|
||||
"""Encoder using Fsmn
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
filter_size,
|
||||
fsmn_num_layers,
|
||||
dnn_num_layers,
|
||||
num_memory_units=512,
|
||||
ffn_inner_dim=2048,
|
||||
dropout=0.0,
|
||||
shift=0,
|
||||
position_encoder=None):
|
||||
"""Initializes the parameters of the encoder.
|
||||
|
||||
Args:
|
||||
filter_size: the total order of memory block
|
||||
fsmn_num_layers: The number of fsmn layers.
|
||||
dnn_num_layers: The number of dnn layers
|
||||
num_units: The number of memory units.
|
||||
ffn_inner_dim: The number of units of the inner linear transformation
|
||||
in the feed forward layer.
|
||||
dropout: The probability to drop units from the outputs.
|
||||
shift: left padding, to control delay
|
||||
position_encoder: The :class:`opennmt.layers.position.PositionEncoder` to
|
||||
apply on inputs or ``None``.
|
||||
"""
|
||||
super(FsmnEncoderV2, self).__init__()
|
||||
self.filter_size = filter_size
|
||||
self.fsmn_num_layers = fsmn_num_layers
|
||||
self.dnn_num_layers = dnn_num_layers
|
||||
self.num_memory_units = num_memory_units
|
||||
self.ffn_inner_dim = ffn_inner_dim
|
||||
self.dropout = dropout
|
||||
self.shift = shift
|
||||
if not isinstance(shift, list):
|
||||
self.shift = [shift for _ in range(self.fsmn_num_layers)]
|
||||
self.position_encoder = position_encoder
|
||||
|
||||
def encode(self, inputs, sequence_length=None, mode=True):
|
||||
if self.position_encoder is not None:
|
||||
inputs = self.position_encoder(inputs)
|
||||
|
||||
inputs = tf.layers.dropout(inputs, rate=self.dropout, training=mode)
|
||||
|
||||
mask = fsmn.build_sequence_mask(
|
||||
sequence_length, maximum_length=tf.shape(inputs)[1])
|
||||
|
||||
state = ()
|
||||
for layer in range(self.fsmn_num_layers):
|
||||
with tf.variable_scope('fsmn_layer_{}'.format(layer)):
|
||||
with tf.variable_scope('ffn'):
|
||||
context = fsmn.feed_forward(
|
||||
inputs,
|
||||
self.ffn_inner_dim,
|
||||
self.num_memory_units,
|
||||
mode,
|
||||
dropout=self.dropout)
|
||||
|
||||
with tf.variable_scope('memory'):
|
||||
memory = fsmn.MemoryBlockV2(
|
||||
context,
|
||||
self.filter_size,
|
||||
mode,
|
||||
shift=self.shift[layer],
|
||||
mask=mask,
|
||||
dropout=self.dropout)
|
||||
|
||||
memory = fsmn.drop_and_add(
|
||||
inputs, memory, mode, dropout=self.dropout)
|
||||
|
||||
inputs = memory
|
||||
state += (tf.reduce_mean(inputs, axis=1), )
|
||||
|
||||
for layer in range(self.dnn_num_layers):
|
||||
with tf.variable_scope('dnn_layer_{}'.format(layer)):
|
||||
transformed = fsmn.feed_forward(
|
||||
inputs,
|
||||
self.ffn_inner_dim,
|
||||
self.num_memory_units,
|
||||
mode,
|
||||
dropout=self.dropout)
|
||||
|
||||
inputs = transformed
|
||||
state += (tf.reduce_mean(inputs, axis=1), )
|
||||
|
||||
outputs = inputs
|
||||
return (outputs, state, sequence_length)
|
||||
160
modelscope/models/audio/tts/am/models/helpers.py
Executable file
160
modelscope/models/audio/tts/am/models/helpers.py
Executable file
@@ -0,0 +1,160 @@
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from tensorflow.contrib.seq2seq import Helper
|
||||
|
||||
|
||||
class VarTestHelper(Helper):
|
||||
|
||||
def __init__(self, batch_size, inputs, dim):
|
||||
with tf.name_scope('VarTestHelper'):
|
||||
self._batch_size = batch_size
|
||||
self._inputs = inputs
|
||||
self._dim = dim
|
||||
|
||||
num_steps = tf.shape(self._inputs)[1]
|
||||
self._lengths = tf.tile([num_steps], [self._batch_size])
|
||||
|
||||
self._inputs = tf.roll(inputs, shift=-1, axis=1)
|
||||
self._init_inputs = inputs[:, 0, :]
|
||||
|
||||
@property
|
||||
def batch_size(self):
|
||||
return self._batch_size
|
||||
|
||||
@property
|
||||
def sample_ids_shape(self):
|
||||
return tf.TensorShape([])
|
||||
|
||||
@property
|
||||
def sample_ids_dtype(self):
|
||||
return np.int32
|
||||
|
||||
def initialize(self, name=None):
|
||||
return (tf.tile([False], [self._batch_size]),
|
||||
_go_frames(self._batch_size, self._dim, self._init_inputs))
|
||||
|
||||
def sample(self, time, outputs, state, name=None):
|
||||
return tf.tile([0], [self._batch_size]) # Return all 0; we ignore them
|
||||
|
||||
def next_inputs(self, time, outputs, state, sample_ids, name=None):
|
||||
with tf.name_scope('VarTestHelper'):
|
||||
finished = (time + 1 >= self._lengths)
|
||||
next_inputs = tf.concat([outputs, self._inputs[:, time, :]],
|
||||
axis=-1)
|
||||
return (finished, next_inputs, state)
|
||||
|
||||
|
||||
class VarTrainingHelper(Helper):
|
||||
|
||||
def __init__(self, targets, inputs, dim):
|
||||
with tf.name_scope('VarTrainingHelper'):
|
||||
self._targets = targets # [N, T_in, 1]
|
||||
self._batch_size = tf.shape(inputs)[0] # N
|
||||
self._inputs = inputs
|
||||
self._dim = dim
|
||||
|
||||
num_steps = tf.shape(self._targets)[1]
|
||||
self._lengths = tf.tile([num_steps], [self._batch_size])
|
||||
|
||||
self._inputs = tf.roll(inputs, shift=-1, axis=1)
|
||||
self._init_inputs = inputs[:, 0, :]
|
||||
|
||||
@property
|
||||
def batch_size(self):
|
||||
return self._batch_size
|
||||
|
||||
@property
|
||||
def sample_ids_shape(self):
|
||||
return tf.TensorShape([])
|
||||
|
||||
@property
|
||||
def sample_ids_dtype(self):
|
||||
return np.int32
|
||||
|
||||
def initialize(self, name=None):
|
||||
return (tf.tile([False], [self._batch_size]),
|
||||
_go_frames(self._batch_size, self._dim, self._init_inputs))
|
||||
|
||||
def sample(self, time, outputs, state, name=None):
|
||||
return tf.tile([0], [self._batch_size]) # Return all 0; we ignore them
|
||||
|
||||
def next_inputs(self, time, outputs, state, sample_ids, name=None):
|
||||
with tf.name_scope(name or 'VarTrainingHelper'):
|
||||
finished = (time + 1 >= self._lengths)
|
||||
next_inputs = tf.concat(
|
||||
[self._targets[:, time, :], self._inputs[:, time, :]], axis=-1)
|
||||
return (finished, next_inputs, state)
|
||||
|
||||
|
||||
class VarTrainingSSHelper(Helper):
|
||||
|
||||
def __init__(self, targets, inputs, dim, global_step, schedule_begin,
|
||||
alpha, decay_steps):
|
||||
with tf.name_scope('VarTrainingSSHelper'):
|
||||
self._targets = targets # [N, T_in, 1]
|
||||
self._batch_size = tf.shape(inputs)[0] # N
|
||||
self._inputs = inputs
|
||||
self._dim = dim
|
||||
|
||||
num_steps = tf.shape(self._targets)[1]
|
||||
self._lengths = tf.tile([num_steps], [self._batch_size])
|
||||
|
||||
self._inputs = tf.roll(inputs, shift=-1, axis=1)
|
||||
self._init_inputs = inputs[:, 0, :]
|
||||
|
||||
# for schedule sampling
|
||||
self._global_step = global_step
|
||||
self._schedule_begin = schedule_begin
|
||||
self._alpha = alpha
|
||||
self._decay_steps = decay_steps
|
||||
|
||||
@property
|
||||
def batch_size(self):
|
||||
return self._batch_size
|
||||
|
||||
@property
|
||||
def sample_ids_shape(self):
|
||||
return tf.TensorShape([])
|
||||
|
||||
@property
|
||||
def sample_ids_dtype(self):
|
||||
return np.int32
|
||||
|
||||
def initialize(self, name=None):
|
||||
self._ratio = _tf_decay(self._global_step, self._schedule_begin,
|
||||
self._alpha, self._decay_steps)
|
||||
return (tf.tile([False], [self._batch_size]),
|
||||
_go_frames(self._batch_size, self._dim, self._init_inputs))
|
||||
|
||||
def sample(self, time, outputs, state, name=None):
|
||||
return tf.tile([0], [self._batch_size]) # Return all 0; we ignore them
|
||||
|
||||
def next_inputs(self, time, outputs, state, sample_ids, name=None):
|
||||
with tf.name_scope(name or 'VarTrainingHelper'):
|
||||
finished = (time + 1 >= self._lengths)
|
||||
next_inputs_tmp = tf.cond(
|
||||
tf.less(
|
||||
tf.random_uniform([], minval=0, maxval=1,
|
||||
dtype=tf.float32), self._ratio),
|
||||
lambda: self._targets[:, time, :], lambda: outputs)
|
||||
next_inputs = tf.concat(
|
||||
[next_inputs_tmp, self._inputs[:, time, :]], axis=-1)
|
||||
return (finished, next_inputs, state)
|
||||
|
||||
|
||||
def _go_frames(batch_size, dim, init_inputs):
|
||||
'''Returns all-zero <GO> frames for a given batch size and output dimension'''
|
||||
return tf.concat([tf.tile([[0.0]], [batch_size, dim]), init_inputs],
|
||||
axis=-1)
|
||||
|
||||
|
||||
def _tf_decay(global_step, schedule_begin, alpha, decay_steps):
|
||||
tfr = tf.train.exponential_decay(
|
||||
1.0,
|
||||
global_step=global_step - schedule_begin,
|
||||
decay_steps=decay_steps,
|
||||
decay_rate=alpha,
|
||||
name='tfr_decay')
|
||||
final_tfr = tf.cond(
|
||||
tf.less(global_step, schedule_begin), lambda: 1.0, lambda: tfr)
|
||||
return final_tfr
|
||||
461
modelscope/models/audio/tts/am/models/modules.py
Executable file
461
modelscope/models/audio/tts/am/models/modules.py
Executable file
@@ -0,0 +1,461 @@
|
||||
import tensorflow as tf
|
||||
from tensorflow.contrib.cudnn_rnn import CudnnLSTM
|
||||
from tensorflow.contrib.cudnn_rnn.python.ops import cudnn_rnn_ops
|
||||
from tensorflow.contrib.rnn import LSTMBlockCell
|
||||
|
||||
|
||||
def encoder_prenet(inputs,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
dense_units,
|
||||
is_training,
|
||||
mask=None,
|
||||
scope='encoder_prenet'):
|
||||
x = inputs
|
||||
with tf.variable_scope(scope):
|
||||
for i in range(n_conv_layers):
|
||||
x = conv1d(
|
||||
x,
|
||||
filters,
|
||||
kernel_size,
|
||||
is_training,
|
||||
activation=tf.nn.relu,
|
||||
dropout=True,
|
||||
mask=mask,
|
||||
scope='conv1d_{}'.format(i))
|
||||
x = tf.layers.dense(
|
||||
x, units=dense_units, activation=None, name='dense')
|
||||
return x
|
||||
|
||||
|
||||
def decoder_prenet(inputs,
|
||||
prenet_units,
|
||||
dense_units,
|
||||
is_training,
|
||||
scope='decoder_prenet'):
|
||||
x = inputs
|
||||
with tf.variable_scope(scope):
|
||||
for i, units in enumerate(prenet_units):
|
||||
x = tf.layers.dense(
|
||||
x,
|
||||
units=units,
|
||||
activation=tf.nn.relu,
|
||||
name='dense_{}'.format(i))
|
||||
x = tf.layers.dropout(
|
||||
x, rate=0.5, training=is_training, name='dropout_{}'.format(i))
|
||||
x = tf.layers.dense(
|
||||
x, units=dense_units, activation=None, name='dense')
|
||||
return x
|
||||
|
||||
|
||||
def encoder(inputs,
|
||||
input_lengths,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
is_training,
|
||||
embedded_inputs_speaker,
|
||||
mask=None,
|
||||
scope='encoder'):
|
||||
with tf.variable_scope(scope):
|
||||
x = conv_and_lstm(
|
||||
inputs,
|
||||
input_lengths,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
is_training,
|
||||
embedded_inputs_speaker,
|
||||
mask=mask)
|
||||
return x
|
||||
|
||||
|
||||
def prenet(inputs, prenet_units, is_training, scope='prenet'):
|
||||
x = inputs
|
||||
with tf.variable_scope(scope):
|
||||
for i, units in enumerate(prenet_units):
|
||||
x = tf.layers.dense(
|
||||
x,
|
||||
units=units,
|
||||
activation=tf.nn.relu,
|
||||
name='dense_{}'.format(i))
|
||||
x = tf.layers.dropout(
|
||||
x, rate=0.5, training=is_training, name='dropout_{}'.format(i))
|
||||
return x
|
||||
|
||||
|
||||
def postnet_residual_ulstm(inputs,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
output_units,
|
||||
is_training,
|
||||
scope='postnet_residual_ulstm'):
|
||||
with tf.variable_scope(scope):
|
||||
x = conv_and_ulstm(inputs, None, n_conv_layers, filters, kernel_size,
|
||||
lstm_units, is_training)
|
||||
x = conv1d(
|
||||
x,
|
||||
output_units,
|
||||
kernel_size,
|
||||
is_training,
|
||||
activation=None,
|
||||
dropout=False,
|
||||
scope='conv1d_{}'.format(n_conv_layers - 1))
|
||||
return x
|
||||
|
||||
|
||||
def postnet_residual_lstm(inputs,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
output_units,
|
||||
is_training,
|
||||
scope='postnet_residual_lstm'):
|
||||
with tf.variable_scope(scope):
|
||||
x = conv_and_lstm(inputs, None, n_conv_layers, filters, kernel_size,
|
||||
lstm_units, is_training)
|
||||
x = conv1d(
|
||||
x,
|
||||
output_units,
|
||||
kernel_size,
|
||||
is_training,
|
||||
activation=None,
|
||||
dropout=False,
|
||||
scope='conv1d_{}'.format(n_conv_layers - 1))
|
||||
return x
|
||||
|
||||
|
||||
def postnet_linear_ulstm(inputs,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
output_units,
|
||||
is_training,
|
||||
scope='postnet_linear'):
|
||||
with tf.variable_scope(scope):
|
||||
x = conv_and_ulstm(inputs, None, n_conv_layers, filters, kernel_size,
|
||||
lstm_units, is_training)
|
||||
x = tf.layers.dense(x, units=output_units)
|
||||
return x
|
||||
|
||||
|
||||
def postnet_linear_lstm(inputs,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
output_units,
|
||||
output_lengths,
|
||||
is_training,
|
||||
embedded_inputs_speaker2,
|
||||
mask=None,
|
||||
scope='postnet_linear'):
|
||||
with tf.variable_scope(scope):
|
||||
x = conv_and_lstm_dec(
|
||||
inputs,
|
||||
output_lengths,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
is_training,
|
||||
embedded_inputs_speaker2,
|
||||
mask=mask)
|
||||
x = tf.layers.dense(x, units=output_units)
|
||||
return x
|
||||
|
||||
|
||||
def postnet_linear(inputs,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
output_units,
|
||||
output_lengths,
|
||||
is_training,
|
||||
embedded_inputs_speaker2,
|
||||
mask=None,
|
||||
scope='postnet_linear'):
|
||||
with tf.variable_scope(scope):
|
||||
x = conv_dec(
|
||||
inputs,
|
||||
output_lengths,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
is_training,
|
||||
embedded_inputs_speaker2,
|
||||
mask=mask)
|
||||
return x
|
||||
|
||||
|
||||
def conv_and_lstm(inputs,
|
||||
sequence_lengths,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
is_training,
|
||||
embedded_inputs_speaker,
|
||||
mask=None,
|
||||
scope='conv_and_lstm'):
|
||||
x = inputs
|
||||
with tf.variable_scope(scope):
|
||||
for i in range(n_conv_layers):
|
||||
x = conv1d(
|
||||
x,
|
||||
filters,
|
||||
kernel_size,
|
||||
is_training,
|
||||
activation=tf.nn.relu,
|
||||
dropout=True,
|
||||
mask=mask,
|
||||
scope='conv1d_{}'.format(i))
|
||||
|
||||
x = tf.concat([x, embedded_inputs_speaker], axis=2)
|
||||
|
||||
outputs, states = tf.nn.bidirectional_dynamic_rnn(
|
||||
LSTMBlockCell(lstm_units),
|
||||
LSTMBlockCell(lstm_units),
|
||||
x,
|
||||
sequence_length=sequence_lengths,
|
||||
dtype=tf.float32)
|
||||
x = tf.concat(outputs, axis=-1)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def conv_and_lstm_dec(inputs,
|
||||
sequence_lengths,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
is_training,
|
||||
embedded_inputs_speaker2,
|
||||
mask=None,
|
||||
scope='conv_and_lstm'):
|
||||
x = inputs
|
||||
with tf.variable_scope(scope):
|
||||
for i in range(n_conv_layers):
|
||||
x = conv1d(
|
||||
x,
|
||||
filters,
|
||||
kernel_size,
|
||||
is_training,
|
||||
activation=tf.nn.relu,
|
||||
dropout=True,
|
||||
mask=mask,
|
||||
scope='conv1d_{}'.format(i))
|
||||
|
||||
x = tf.concat([x, embedded_inputs_speaker2], axis=2)
|
||||
|
||||
outputs, states = tf.nn.bidirectional_dynamic_rnn(
|
||||
LSTMBlockCell(lstm_units),
|
||||
LSTMBlockCell(lstm_units),
|
||||
x,
|
||||
sequence_length=sequence_lengths,
|
||||
dtype=tf.float32)
|
||||
x = tf.concat(outputs, axis=-1)
|
||||
return x
|
||||
|
||||
|
||||
def conv_dec(inputs,
|
||||
sequence_lengths,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
is_training,
|
||||
embedded_inputs_speaker2,
|
||||
mask=None,
|
||||
scope='conv_and_lstm'):
|
||||
x = inputs
|
||||
with tf.variable_scope(scope):
|
||||
for i in range(n_conv_layers):
|
||||
x = conv1d(
|
||||
x,
|
||||
filters,
|
||||
kernel_size,
|
||||
is_training,
|
||||
activation=tf.nn.relu,
|
||||
dropout=True,
|
||||
mask=mask,
|
||||
scope='conv1d_{}'.format(i))
|
||||
x = tf.concat([x, embedded_inputs_speaker2], axis=2)
|
||||
return x
|
||||
|
||||
|
||||
def conv_and_ulstm(inputs,
|
||||
sequence_lengths,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
is_training,
|
||||
scope='conv_and_ulstm'):
|
||||
x = inputs
|
||||
with tf.variable_scope(scope):
|
||||
for i in range(n_conv_layers):
|
||||
x = conv1d(
|
||||
x,
|
||||
filters,
|
||||
kernel_size,
|
||||
is_training,
|
||||
activation=tf.nn.relu,
|
||||
dropout=True,
|
||||
scope='conv1d_{}'.format(i))
|
||||
|
||||
outputs, states = tf.nn.dynamic_rnn(
|
||||
LSTMBlockCell(lstm_units),
|
||||
x,
|
||||
sequence_length=sequence_lengths,
|
||||
dtype=tf.float32)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def conv1d(inputs,
|
||||
filters,
|
||||
kernel_size,
|
||||
is_training,
|
||||
activation=None,
|
||||
dropout=False,
|
||||
mask=None,
|
||||
scope='conv1d'):
|
||||
with tf.variable_scope(scope):
|
||||
if mask is not None:
|
||||
inputs = inputs * tf.expand_dims(mask, -1)
|
||||
x = tf.layers.conv1d(
|
||||
inputs, filters=filters, kernel_size=kernel_size, padding='same')
|
||||
if mask is not None:
|
||||
x = x * tf.expand_dims(mask, -1)
|
||||
|
||||
x = tf.layers.batch_normalization(x, training=is_training)
|
||||
if activation is not None:
|
||||
x = activation(x)
|
||||
if dropout:
|
||||
x = tf.layers.dropout(x, rate=0.5, training=is_training)
|
||||
return x
|
||||
|
||||
|
||||
def conv1d_dp(inputs,
|
||||
filters,
|
||||
kernel_size,
|
||||
is_training,
|
||||
activation=None,
|
||||
dropout=False,
|
||||
dropoutrate=0.5,
|
||||
mask=None,
|
||||
scope='conv1d'):
|
||||
with tf.variable_scope(scope):
|
||||
if mask is not None:
|
||||
inputs = inputs * tf.expand_dims(mask, -1)
|
||||
x = tf.layers.conv1d(
|
||||
inputs, filters=filters, kernel_size=kernel_size, padding='same')
|
||||
if mask is not None:
|
||||
x = x * tf.expand_dims(mask, -1)
|
||||
|
||||
x = tf.contrib.layers.layer_norm(x)
|
||||
if activation is not None:
|
||||
x = activation(x)
|
||||
if dropout:
|
||||
x = tf.layers.dropout(x, rate=dropoutrate, training=is_training)
|
||||
return x
|
||||
|
||||
|
||||
def duration_predictor(inputs,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
lstm_units,
|
||||
input_lengths,
|
||||
is_training,
|
||||
embedded_inputs_speaker,
|
||||
mask=None,
|
||||
scope='duration_predictor'):
|
||||
with tf.variable_scope(scope):
|
||||
x = inputs
|
||||
for i in range(n_conv_layers):
|
||||
x = conv1d_dp(
|
||||
x,
|
||||
filters,
|
||||
kernel_size,
|
||||
is_training,
|
||||
activation=tf.nn.relu,
|
||||
dropout=True,
|
||||
dropoutrate=0.1,
|
||||
mask=mask,
|
||||
scope='conv1d_{}'.format(i))
|
||||
|
||||
x = tf.concat([x, embedded_inputs_speaker], axis=2)
|
||||
|
||||
outputs, states = tf.nn.bidirectional_dynamic_rnn(
|
||||
LSTMBlockCell(lstm_units),
|
||||
LSTMBlockCell(lstm_units),
|
||||
x,
|
||||
sequence_length=input_lengths,
|
||||
dtype=tf.float32)
|
||||
x = tf.concat(outputs, axis=-1)
|
||||
|
||||
x = tf.layers.dense(x, units=1)
|
||||
x = tf.nn.relu(x)
|
||||
return x
|
||||
|
||||
|
||||
def duration_predictor2(inputs,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
input_lengths,
|
||||
is_training,
|
||||
mask=None,
|
||||
scope='duration_predictor'):
|
||||
with tf.variable_scope(scope):
|
||||
x = inputs
|
||||
for i in range(n_conv_layers):
|
||||
x = conv1d_dp(
|
||||
x,
|
||||
filters,
|
||||
kernel_size,
|
||||
is_training,
|
||||
activation=tf.nn.relu,
|
||||
dropout=True,
|
||||
dropoutrate=0.1,
|
||||
mask=mask,
|
||||
scope='conv1d_{}'.format(i))
|
||||
|
||||
x = tf.layers.dense(x, units=1)
|
||||
x = tf.nn.relu(x)
|
||||
return x
|
||||
|
||||
|
||||
def conv_prenet(inputs,
|
||||
n_conv_layers,
|
||||
filters,
|
||||
kernel_size,
|
||||
is_training,
|
||||
mask=None,
|
||||
scope='conv_prenet'):
|
||||
x = inputs
|
||||
with tf.variable_scope(scope):
|
||||
for i in range(n_conv_layers):
|
||||
x = conv1d(
|
||||
x,
|
||||
filters,
|
||||
kernel_size,
|
||||
is_training,
|
||||
activation=tf.nn.relu,
|
||||
dropout=True,
|
||||
mask=mask,
|
||||
scope='conv1d_{}'.format(i))
|
||||
|
||||
return x
|
||||
174
modelscope/models/audio/tts/am/models/position.py
Executable file
174
modelscope/models/audio/tts/am/models/position.py
Executable file
@@ -0,0 +1,174 @@
|
||||
"""Define position encoder classes."""
|
||||
|
||||
import abc
|
||||
import math
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from .reducer import SumReducer
|
||||
|
||||
|
||||
class PositionEncoder(tf.keras.layers.Layer):
|
||||
"""Base class for position encoders."""
|
||||
|
||||
def __init__(self, reducer=None, **kwargs):
|
||||
"""Initializes the position encoder.
|
||||
Args:
|
||||
reducer: A :class:`opennmt.layers.Reducer` to merge inputs and position
|
||||
encodings. Defaults to :class:`opennmt.layers.SumReducer`.
|
||||
**kwargs: Additional layer keyword arguments.
|
||||
"""
|
||||
super(PositionEncoder, self).__init__(**kwargs)
|
||||
if reducer is None:
|
||||
reducer = SumReducer(dtype=kwargs.get('dtype'))
|
||||
self.reducer = reducer
|
||||
|
||||
def call(self, inputs, position=None): # pylint: disable=arguments-differ
|
||||
"""Add position encodings to :obj:`inputs`.
|
||||
Args:
|
||||
inputs: The inputs to encode.
|
||||
position: The single position to encode, to use when this layer is called
|
||||
step by step.
|
||||
Returns:
|
||||
A ``tf.Tensor`` whose shape depends on the configured ``reducer``.
|
||||
"""
|
||||
batch_size = tf.shape(inputs)[0]
|
||||
timesteps = tf.shape(inputs)[1]
|
||||
input_dim = inputs.shape[-1].value
|
||||
positions = tf.range(timesteps) + 1 if position is None else [position]
|
||||
position_encoding = self._encode([positions], input_dim)
|
||||
position_encoding = tf.tile(position_encoding, [batch_size, 1, 1])
|
||||
return self.reducer([inputs, position_encoding])
|
||||
|
||||
@abc.abstractmethod
|
||||
def _encode(self, positions, depth):
|
||||
"""Creates position encodings.
|
||||
Args:
|
||||
positions: The positions to encode of shape :math:`[B, ...]`.
|
||||
depth: The encoding depth :math:`D`.
|
||||
Returns:
|
||||
A ``tf.Tensor`` of shape :math:`[B, ..., D]`.
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class PositionEmbedder(PositionEncoder):
|
||||
"""Encodes position with a lookup table."""
|
||||
|
||||
def __init__(self, maximum_position=128, reducer=None, **kwargs):
|
||||
"""Initializes the position encoder.
|
||||
Args:
|
||||
maximum_position: The maximum position to embed. Positions greater
|
||||
than this value will be set to :obj:`maximum_position`.
|
||||
reducer: A :class:`opennmt.layers.Reducer` to merge inputs and position
|
||||
encodings. Defaults to :class:`opennmt.layers.SumReducer`.
|
||||
**kwargs: Additional layer keyword arguments.
|
||||
"""
|
||||
super(PositionEmbedder, self).__init__(reducer=reducer, **kwargs)
|
||||
self.maximum_position = maximum_position
|
||||
self.embedding = None
|
||||
|
||||
def build(self, input_shape):
|
||||
shape = [self.maximum_position + 1, input_shape[-1]]
|
||||
self.embedding = self.add_weight('position_embedding', shape)
|
||||
super(PositionEmbedder, self).build(input_shape)
|
||||
|
||||
def _encode(self, positions, depth):
|
||||
positions = tf.minimum(positions, self.maximum_position)
|
||||
return tf.nn.embedding_lookup(self.embedding, positions)
|
||||
|
||||
|
||||
class SinusoidalPositionEncoder(PositionEncoder):
|
||||
"""Encodes positions with sine waves as described in
|
||||
https://arxiv.org/abs/1706.03762.
|
||||
"""
|
||||
|
||||
def _encode(self, positions, depth):
|
||||
if depth % 2 != 0:
|
||||
raise ValueError(
|
||||
'SinusoidalPositionEncoder expects the depth to be divisble '
|
||||
'by 2 but got %d' % depth)
|
||||
|
||||
batch_size = tf.shape(positions)[0]
|
||||
positions = tf.cast(positions, tf.float32)
|
||||
|
||||
log_timescale_increment = math.log(10000) / (depth / 2 - 1)
|
||||
inv_timescales = tf.exp(
|
||||
tf.range(depth / 2, dtype=tf.float32) * -log_timescale_increment)
|
||||
inv_timescales = tf.reshape(
|
||||
tf.tile(inv_timescales, [batch_size]), [batch_size, depth // 2])
|
||||
scaled_time = tf.expand_dims(positions, -1) * tf.expand_dims(
|
||||
inv_timescales, 1)
|
||||
encoding = tf.concat(
|
||||
[tf.sin(scaled_time), tf.cos(scaled_time)], axis=2)
|
||||
return tf.cast(encoding, self.dtype)
|
||||
|
||||
|
||||
class SinusodalPositionalEncoding(tf.keras.layers.Layer):
|
||||
|
||||
def __init__(self, name='SinusodalPositionalEncoding'):
|
||||
super(SinusodalPositionalEncoding, self).__init__(name=name)
|
||||
|
||||
@staticmethod
|
||||
def positional_encoding(len, dim, step=1.):
|
||||
"""
|
||||
:param len: int scalar
|
||||
:param dim: int scalar
|
||||
:param step:
|
||||
:return: position embedding
|
||||
"""
|
||||
pos_mat = tf.tile(
|
||||
tf.expand_dims(
|
||||
tf.range(0, tf.cast(len, dtype=tf.float32), dtype=tf.float32)
|
||||
* step,
|
||||
axis=-1), [1, dim])
|
||||
dim_mat = tf.tile(
|
||||
tf.expand_dims(
|
||||
tf.range(0, tf.cast(dim, dtype=tf.float32), dtype=tf.float32),
|
||||
axis=0), [len, 1])
|
||||
dim_mat_int = tf.cast(dim_mat, dtype=tf.int32)
|
||||
pos_encoding = tf.where( # [time, dims]
|
||||
tf.math.equal(tf.math.mod(dim_mat_int, 2), 0),
|
||||
x=tf.math.sin(
|
||||
pos_mat / tf.pow(10000., dim_mat / tf.cast(dim, tf.float32))),
|
||||
y=tf.math.cos(pos_mat
|
||||
/ tf.pow(10000.,
|
||||
(dim_mat - 1) / tf.cast(dim, tf.float32))))
|
||||
return pos_encoding
|
||||
|
||||
|
||||
class BatchSinusodalPositionalEncoding(tf.keras.layers.Layer):
|
||||
|
||||
def __init__(self, name='BatchSinusodalPositionalEncoding'):
|
||||
super(BatchSinusodalPositionalEncoding, self).__init__(name=name)
|
||||
|
||||
@staticmethod
|
||||
def positional_encoding(batch_size, len, dim, pos_mat, step=1.):
|
||||
"""
|
||||
:param len: int scalar
|
||||
:param dim: int scalar
|
||||
:param step:
|
||||
:param pos_mat: [B, len] = [len, 1] * dim
|
||||
:return: position embedding
|
||||
"""
|
||||
pos_mat = tf.tile(
|
||||
tf.expand_dims(tf.cast(pos_mat, dtype=tf.float32) * step, axis=-1),
|
||||
[1, 1, dim]) # [B, len, dim]
|
||||
|
||||
dim_mat = tf.tile(
|
||||
tf.expand_dims(
|
||||
tf.expand_dims(
|
||||
tf.range(
|
||||
0, tf.cast(dim, dtype=tf.float32), dtype=tf.float32),
|
||||
axis=0),
|
||||
axis=0), [batch_size, len, 1]) # [B, len, dim]
|
||||
|
||||
dim_mat_int = tf.cast(dim_mat, dtype=tf.int32)
|
||||
pos_encoding = tf.where( # [B, time, dims]
|
||||
tf.math.equal(tf.mod(dim_mat_int, 2), 0),
|
||||
x=tf.math.sin(
|
||||
pos_mat / tf.pow(10000., dim_mat / tf.cast(dim, tf.float32))),
|
||||
y=tf.math.cos(pos_mat
|
||||
/ tf.pow(10000.,
|
||||
(dim_mat - 1) / tf.cast(dim, tf.float32))))
|
||||
return pos_encoding
|
||||
155
modelscope/models/audio/tts/am/models/reducer.py
Executable file
155
modelscope/models/audio/tts/am/models/reducer.py
Executable file
@@ -0,0 +1,155 @@
|
||||
"""Define reducers: objects that merge inputs."""
|
||||
|
||||
import abc
|
||||
import functools
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def pad_in_time(x, padding_length):
|
||||
"""Helper function to pad a tensor in the time dimension and retain the static depth dimension."""
|
||||
return tf.pad(x, [[0, 0], [0, padding_length], [0, 0]])
|
||||
|
||||
|
||||
def align_in_time(x, length):
|
||||
"""Aligns the time dimension of :obj:`x` with :obj:`length`."""
|
||||
time_dim = tf.shape(x)[1]
|
||||
return tf.cond(
|
||||
tf.less(time_dim, length),
|
||||
true_fn=lambda: pad_in_time(x, length - time_dim),
|
||||
false_fn=lambda: x[:, :length])
|
||||
|
||||
|
||||
def pad_with_identity(x,
|
||||
sequence_length,
|
||||
max_sequence_length,
|
||||
identity_values=0,
|
||||
maxlen=None):
|
||||
"""Pads a tensor with identity values up to :obj:`max_sequence_length`.
|
||||
Args:
|
||||
x: A ``tf.Tensor`` of shape ``[batch_size, time, depth]``.
|
||||
sequence_length: The true sequence length of :obj:`x`.
|
||||
max_sequence_length: The sequence length up to which the tensor must contain
|
||||
:obj:`identity values`.
|
||||
identity_values: The identity value.
|
||||
maxlen: Size of the output time dimension. Default is the maximum value in
|
||||
obj:`max_sequence_length`.
|
||||
Returns:
|
||||
A ``tf.Tensor`` of shape ``[batch_size, maxlen, depth]``.
|
||||
"""
|
||||
if maxlen is None:
|
||||
maxlen = tf.reduce_max(max_sequence_length)
|
||||
|
||||
mask = tf.sequence_mask(sequence_length, maxlen=maxlen, dtype=x.dtype)
|
||||
mask = tf.expand_dims(mask, axis=-1)
|
||||
mask_combined = tf.sequence_mask(
|
||||
max_sequence_length, maxlen=maxlen, dtype=x.dtype)
|
||||
mask_combined = tf.expand_dims(mask_combined, axis=-1)
|
||||
|
||||
identity_mask = mask_combined * (1.0 - mask)
|
||||
|
||||
x = pad_in_time(x, maxlen - tf.shape(x)[1])
|
||||
x = x * mask + (identity_mask * identity_values)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def pad_n_with_identity(inputs, sequence_lengths, identity_values=0):
|
||||
"""Pads each input tensors with identity values up to
|
||||
``max(sequence_lengths)`` for each batch.
|
||||
Args:
|
||||
inputs: A list of ``tf.Tensor``.
|
||||
sequence_lengths: A list of sequence length.
|
||||
identity_values: The identity value.
|
||||
Returns:
|
||||
A tuple ``(padded, max_sequence_length)`` which are respectively a list of
|
||||
``tf.Tensor`` where each tensor are padded with identity and the combined
|
||||
sequence length.
|
||||
"""
|
||||
max_sequence_length = tf.reduce_max(sequence_lengths, axis=0)
|
||||
maxlen = tf.reduce_max([tf.shape(x)[1] for x in inputs])
|
||||
padded = [
|
||||
pad_with_identity(
|
||||
x,
|
||||
length,
|
||||
max_sequence_length,
|
||||
identity_values=identity_values,
|
||||
maxlen=maxlen) for x, length in zip(inputs, sequence_lengths)
|
||||
]
|
||||
return padded, max_sequence_length
|
||||
|
||||
|
||||
class Reducer(tf.keras.layers.Layer):
|
||||
"""Base class for reducers."""
|
||||
|
||||
def zip_and_reduce(self, x, y):
|
||||
"""Zips the :obj:`x` with :obj:`y` structures together and reduces all
|
||||
elements. If the structures are nested, they will be flattened first.
|
||||
Args:
|
||||
x: The first structure.
|
||||
y: The second structure.
|
||||
Returns:
|
||||
The same structure as :obj:`x` and :obj:`y` where each element from
|
||||
:obj:`x` is reduced with the correspond element from :obj:`y`.
|
||||
Raises:
|
||||
ValueError: if the two structures are not the same.
|
||||
"""
|
||||
tf.nest.assert_same_structure(x, y)
|
||||
x_flat = tf.nest.flatten(x)
|
||||
y_flat = tf.nest.flatten(y)
|
||||
reduced = list(map(self, zip(x_flat, y_flat)))
|
||||
return tf.nest.pack_sequence_as(x, reduced)
|
||||
|
||||
def call(self, inputs, sequence_length=None): # pylint: disable=arguments-differ
|
||||
"""Reduces all input elements.
|
||||
Args:
|
||||
inputs: A list of ``tf.Tensor``.
|
||||
sequence_length: The length of each input, if reducing sequences.
|
||||
Returns:
|
||||
If :obj:`sequence_length` is set, a tuple
|
||||
``(reduced_input, reduced_length)``, otherwise a reduced ``tf.Tensor``
|
||||
only.
|
||||
"""
|
||||
if sequence_length is None:
|
||||
return self.reduce(inputs)
|
||||
else:
|
||||
return self.reduce_sequence(
|
||||
inputs, sequence_lengths=sequence_length)
|
||||
|
||||
@abc.abstractmethod
|
||||
def reduce(self, inputs):
|
||||
"""See :meth:`opennmt.layers.Reducer.__call__`."""
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def reduce_sequence(self, inputs, sequence_lengths):
|
||||
"""See :meth:`opennmt.layers.Reducer.__call__`."""
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class SumReducer(Reducer):
|
||||
"""A reducer that sums the inputs."""
|
||||
|
||||
def reduce(self, inputs):
|
||||
if len(inputs) == 1:
|
||||
return inputs[0]
|
||||
if len(inputs) == 2:
|
||||
return inputs[0] + inputs[1]
|
||||
return tf.add_n(inputs)
|
||||
|
||||
def reduce_sequence(self, inputs, sequence_lengths):
|
||||
padded, combined_length = pad_n_with_identity(
|
||||
inputs, sequence_lengths, identity_values=0)
|
||||
return self.reduce(padded), combined_length
|
||||
|
||||
|
||||
class MultiplyReducer(Reducer):
|
||||
"""A reducer that multiplies the inputs."""
|
||||
|
||||
def reduce(self, inputs):
|
||||
return functools.reduce(lambda a, x: a * x, inputs)
|
||||
|
||||
def reduce_sequence(self, inputs, sequence_lengths):
|
||||
padded, combined_length = pad_n_with_identity(
|
||||
inputs, sequence_lengths, identity_values=1)
|
||||
return self.reduce(padded), combined_length
|
||||
240
modelscope/models/audio/tts/am/models/rnn_wrappers.py
Executable file
240
modelscope/models/audio/tts/am/models/rnn_wrappers.py
Executable file
@@ -0,0 +1,240 @@
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from tensorflow.contrib.rnn import RNNCell
|
||||
from tensorflow.contrib.seq2seq import AttentionWrapperState
|
||||
from tensorflow.python.ops import rnn_cell_impl
|
||||
|
||||
from .modules import prenet
|
||||
|
||||
|
||||
class VarPredictorCell(RNNCell):
|
||||
'''Wrapper wrapper knock knock.'''
|
||||
|
||||
def __init__(self, var_predictor_cell, is_training, dim, prenet_units):
|
||||
super(VarPredictorCell, self).__init__()
|
||||
self._var_predictor_cell = var_predictor_cell
|
||||
self._is_training = is_training
|
||||
self._dim = dim
|
||||
self._prenet_units = prenet_units
|
||||
|
||||
@property
|
||||
def state_size(self):
|
||||
return tuple([self.output_size, self._var_predictor_cell.state_size])
|
||||
|
||||
@property
|
||||
def output_size(self):
|
||||
return self._dim
|
||||
|
||||
def zero_state(self, batch_size, dtype):
|
||||
return tuple([
|
||||
rnn_cell_impl._zero_state_tensors(self.output_size, batch_size,
|
||||
dtype),
|
||||
self._var_predictor_cell.zero_state(batch_size, dtype)
|
||||
])
|
||||
|
||||
def call(self, inputs, state):
|
||||
'''Run the Tacotron2 super decoder cell.'''
|
||||
super_cell_out, decoder_state = state
|
||||
|
||||
# split
|
||||
prenet_input = inputs[:, 0:self._dim]
|
||||
encoder_output = inputs[:, self._dim:]
|
||||
|
||||
# prenet and concat
|
||||
prenet_output = prenet(
|
||||
prenet_input,
|
||||
self._prenet_units,
|
||||
self._is_training,
|
||||
scope='var_prenet')
|
||||
decoder_input = tf.concat([prenet_output, encoder_output], axis=-1)
|
||||
|
||||
# decoder LSTM/GRU
|
||||
new_super_cell_out, new_decoder_state = self._var_predictor_cell(
|
||||
decoder_input, decoder_state)
|
||||
|
||||
# projection
|
||||
new_super_cell_out = tf.layers.dense(
|
||||
new_super_cell_out, units=self._dim)
|
||||
|
||||
new_states = tuple([new_super_cell_out, new_decoder_state])
|
||||
|
||||
return new_super_cell_out, new_states
|
||||
|
||||
|
||||
class DurPredictorCell(RNNCell):
|
||||
'''Wrapper wrapper knock knock.'''
|
||||
|
||||
def __init__(self, var_predictor_cell, is_training, dim, prenet_units):
|
||||
super(DurPredictorCell, self).__init__()
|
||||
self._var_predictor_cell = var_predictor_cell
|
||||
self._is_training = is_training
|
||||
self._dim = dim
|
||||
self._prenet_units = prenet_units
|
||||
|
||||
@property
|
||||
def state_size(self):
|
||||
return tuple([self.output_size, self._var_predictor_cell.state_size])
|
||||
|
||||
@property
|
||||
def output_size(self):
|
||||
return self._dim
|
||||
|
||||
def zero_state(self, batch_size, dtype):
|
||||
return tuple([
|
||||
rnn_cell_impl._zero_state_tensors(self.output_size, batch_size,
|
||||
dtype),
|
||||
self._var_predictor_cell.zero_state(batch_size, dtype)
|
||||
])
|
||||
|
||||
def call(self, inputs, state):
|
||||
'''Run the Tacotron2 super decoder cell.'''
|
||||
super_cell_out, decoder_state = state
|
||||
|
||||
# split
|
||||
prenet_input = inputs[:, 0:self._dim]
|
||||
encoder_output = inputs[:, self._dim:]
|
||||
|
||||
# prenet and concat
|
||||
prenet_output = prenet(
|
||||
prenet_input,
|
||||
self._prenet_units,
|
||||
self._is_training,
|
||||
scope='dur_prenet')
|
||||
decoder_input = tf.concat([prenet_output, encoder_output], axis=-1)
|
||||
|
||||
# decoder LSTM/GRU
|
||||
new_super_cell_out, new_decoder_state = self._var_predictor_cell(
|
||||
decoder_input, decoder_state)
|
||||
|
||||
# projection
|
||||
new_super_cell_out = tf.layers.dense(
|
||||
new_super_cell_out, units=self._dim)
|
||||
new_super_cell_out = tf.nn.relu(new_super_cell_out)
|
||||
# new_super_cell_out = tf.log(tf.cast(tf.round(tf.exp(new_super_cell_out) - 1), tf.float32) + 1)
|
||||
|
||||
new_states = tuple([new_super_cell_out, new_decoder_state])
|
||||
|
||||
return new_super_cell_out, new_states
|
||||
|
||||
|
||||
class DurPredictorCECell(RNNCell):
|
||||
'''Wrapper wrapper knock knock.'''
|
||||
|
||||
def __init__(self, var_predictor_cell, is_training, dim, prenet_units,
|
||||
max_dur, dur_embedding_dim):
|
||||
super(DurPredictorCECell, self).__init__()
|
||||
self._var_predictor_cell = var_predictor_cell
|
||||
self._is_training = is_training
|
||||
self._dim = dim
|
||||
self._prenet_units = prenet_units
|
||||
self._max_dur = max_dur
|
||||
self._dur_embedding_dim = dur_embedding_dim
|
||||
|
||||
@property
|
||||
def state_size(self):
|
||||
return tuple([self.output_size, self._var_predictor_cell.state_size])
|
||||
|
||||
@property
|
||||
def output_size(self):
|
||||
return self._max_dur
|
||||
|
||||
def zero_state(self, batch_size, dtype):
|
||||
return tuple([
|
||||
rnn_cell_impl._zero_state_tensors(self.output_size, batch_size,
|
||||
dtype),
|
||||
self._var_predictor_cell.zero_state(batch_size, dtype)
|
||||
])
|
||||
|
||||
def call(self, inputs, state):
|
||||
'''Run the Tacotron2 super decoder cell.'''
|
||||
super_cell_out, decoder_state = state
|
||||
|
||||
# split
|
||||
prenet_input = tf.squeeze(
|
||||
tf.cast(inputs[:, 0:self._dim], tf.int32), axis=-1) # [N]
|
||||
prenet_input = tf.one_hot(
|
||||
prenet_input, self._max_dur, on_value=1.0, off_value=0.0,
|
||||
axis=-1) # [N, 120]
|
||||
prenet_input = tf.layers.dense(
|
||||
prenet_input, units=self._dur_embedding_dim)
|
||||
encoder_output = inputs[:, self._dim:]
|
||||
|
||||
# prenet and concat
|
||||
prenet_output = prenet(
|
||||
prenet_input,
|
||||
self._prenet_units,
|
||||
self._is_training,
|
||||
scope='dur_prenet')
|
||||
decoder_input = tf.concat([prenet_output, encoder_output], axis=-1)
|
||||
|
||||
# decoder LSTM/GRU
|
||||
new_super_cell_out, new_decoder_state = self._var_predictor_cell(
|
||||
decoder_input, decoder_state)
|
||||
|
||||
# projection
|
||||
new_super_cell_out = tf.layers.dense(
|
||||
new_super_cell_out, units=self._max_dur) # [N, 120]
|
||||
new_super_cell_out = tf.nn.softmax(new_super_cell_out) # [N, 120]
|
||||
|
||||
new_states = tuple([new_super_cell_out, new_decoder_state])
|
||||
|
||||
return new_super_cell_out, new_states
|
||||
|
||||
|
||||
class VarPredictorCell2(RNNCell):
|
||||
'''Wrapper wrapper knock knock.'''
|
||||
|
||||
def __init__(self, var_predictor_cell, is_training, dim, prenet_units):
|
||||
super(VarPredictorCell2, self).__init__()
|
||||
self._var_predictor_cell = var_predictor_cell
|
||||
self._is_training = is_training
|
||||
self._dim = dim
|
||||
self._prenet_units = prenet_units
|
||||
|
||||
@property
|
||||
def state_size(self):
|
||||
return tuple([self.output_size, self._var_predictor_cell.state_size])
|
||||
|
||||
@property
|
||||
def output_size(self):
|
||||
return self._dim
|
||||
|
||||
def zero_state(self, batch_size, dtype):
|
||||
return tuple([
|
||||
rnn_cell_impl._zero_state_tensors(self.output_size, batch_size,
|
||||
dtype),
|
||||
self._var_predictor_cell.zero_state(batch_size, dtype)
|
||||
])
|
||||
|
||||
def call(self, inputs, state):
|
||||
'''Run the Tacotron2 super decoder cell.'''
|
||||
super_cell_out, decoder_state = state
|
||||
|
||||
# split
|
||||
prenet_input = inputs[:, 0:self._dim]
|
||||
encoder_output = inputs[:, self._dim:]
|
||||
|
||||
# prenet and concat
|
||||
prenet_output = prenet(
|
||||
prenet_input,
|
||||
self._prenet_units,
|
||||
self._is_training,
|
||||
scope='var_prenet')
|
||||
decoder_input = tf.concat([prenet_output, encoder_output], axis=-1)
|
||||
|
||||
# decoder LSTM/GRU
|
||||
new_super_cell_out, new_decoder_state = self._var_predictor_cell(
|
||||
decoder_input, decoder_state)
|
||||
|
||||
# projection
|
||||
new_super_cell_out = tf.layers.dense(
|
||||
new_super_cell_out, units=self._dim)
|
||||
|
||||
# split and relu
|
||||
new_super_cell_out = tf.concat([
|
||||
tf.nn.relu(new_super_cell_out[:, 0:1]), new_super_cell_out[:, 1:]
|
||||
], axis=-1) # yapf:disable
|
||||
|
||||
new_states = tuple([new_super_cell_out, new_decoder_state])
|
||||
|
||||
return new_super_cell_out, new_states
|
||||
760
modelscope/models/audio/tts/am/models/robutrans.py
Executable file
760
modelscope/models/audio/tts/am/models/robutrans.py
Executable file
@@ -0,0 +1,760 @@
|
||||
import tensorflow as tf
|
||||
from tensorflow.contrib.rnn import LSTMBlockCell, MultiRNNCell
|
||||
from tensorflow.contrib.seq2seq import BasicDecoder
|
||||
from tensorflow.python.ops.ragged.ragged_util import repeat
|
||||
|
||||
from .fsmn_encoder import FsmnEncoderV2
|
||||
from .helpers import VarTestHelper, VarTrainingHelper
|
||||
from .modules import conv_prenet, decoder_prenet, encoder_prenet
|
||||
from .position import (BatchSinusodalPositionalEncoding,
|
||||
SinusodalPositionalEncoding)
|
||||
from .rnn_wrappers import DurPredictorCell, VarPredictorCell
|
||||
from .self_attention_decoder import SelfAttentionDecoder
|
||||
from .self_attention_encoder import SelfAttentionEncoder
|
||||
|
||||
|
||||
class RobuTrans():
|
||||
|
||||
def __init__(self, hparams):
|
||||
self._hparams = hparams
|
||||
|
||||
def initialize(self,
|
||||
inputs,
|
||||
inputs_emotion,
|
||||
inputs_speaker,
|
||||
input_lengths,
|
||||
output_lengths=None,
|
||||
mel_targets=None,
|
||||
durations=None,
|
||||
pitch_contours=None,
|
||||
uv_masks=None,
|
||||
pitch_scales=None,
|
||||
duration_scales=None,
|
||||
energy_contours=None,
|
||||
energy_scales=None):
|
||||
'''Initializes the model for inference.
|
||||
|
||||
Sets "mel_outputs", "linear_outputs", "stop_token_outputs", and "alignments" fields.
|
||||
|
||||
Args:
|
||||
inputs: int32 Tensor with shape [N, T_in] where N is batch size, T_in is number of
|
||||
steps in the input time series, and values are character IDs
|
||||
input_lengths: int32 Tensor with shape [N] where N is batch size and values are the lengths
|
||||
of each sequence in inputs.
|
||||
output_lengths: int32 Tensor with shape [N] where N is batch size and values are the lengths
|
||||
of each sequence in outputs.
|
||||
mel_targets: float32 Tensor with shape [N, T_out, M] where N is batch size, T_out is number
|
||||
of steps in the output time series, M is num_mels, and values are entries in the mel
|
||||
spectrogram. Only needed for training.
|
||||
'''
|
||||
with tf.variable_scope('inference') as _:
|
||||
is_training = mel_targets is not None
|
||||
batch_size = tf.shape(inputs)[0]
|
||||
hp = self._hparams
|
||||
|
||||
input_mask = None
|
||||
if input_lengths is not None and is_training:
|
||||
input_mask = tf.sequence_mask(
|
||||
input_lengths, tf.shape(inputs)[1], dtype=tf.float32)
|
||||
|
||||
if input_mask is not None:
|
||||
inputs = inputs * tf.expand_dims(input_mask, -1)
|
||||
|
||||
# speaker embedding
|
||||
embedded_inputs_speaker = tf.layers.dense(
|
||||
inputs_speaker,
|
||||
32,
|
||||
activation=None,
|
||||
use_bias=False,
|
||||
kernel_initializer=tf.truncated_normal_initializer(stddev=0.5))
|
||||
|
||||
# emotion embedding
|
||||
embedded_inputs_emotion = tf.layers.dense(
|
||||
inputs_emotion,
|
||||
32,
|
||||
activation=None,
|
||||
use_bias=False,
|
||||
kernel_initializer=tf.truncated_normal_initializer(stddev=0.5))
|
||||
|
||||
# symbol embedding
|
||||
with tf.variable_scope('Embedding'):
|
||||
embedded_inputs = tf.layers.dense(
|
||||
inputs,
|
||||
hp.embedding_dim,
|
||||
activation=None,
|
||||
use_bias=False,
|
||||
kernel_initializer=tf.truncated_normal_initializer(
|
||||
stddev=0.5))
|
||||
|
||||
# Encoder
|
||||
with tf.variable_scope('Encoder'):
|
||||
Encoder = SelfAttentionEncoder(
|
||||
num_layers=hp.encoder_num_layers,
|
||||
num_units=hp.encoder_num_units,
|
||||
num_heads=hp.encoder_num_heads,
|
||||
ffn_inner_dim=hp.encoder_ffn_inner_dim,
|
||||
dropout=hp.encoder_dropout,
|
||||
attention_dropout=hp.encoder_attention_dropout,
|
||||
relu_dropout=hp.encoder_relu_dropout)
|
||||
encoder_outputs, state_mo, sequence_length_mo, attns = Encoder.encode(
|
||||
embedded_inputs,
|
||||
sequence_length=input_lengths,
|
||||
mode=is_training)
|
||||
encoder_outputs = tf.layers.dense(
|
||||
encoder_outputs,
|
||||
hp.encoder_projection_units,
|
||||
activation=None,
|
||||
use_bias=False,
|
||||
kernel_initializer=tf.truncated_normal_initializer(
|
||||
stddev=0.5))
|
||||
|
||||
# pitch and energy
|
||||
var_inputs = tf.concat([
|
||||
encoder_outputs, embedded_inputs_speaker,
|
||||
embedded_inputs_emotion
|
||||
], 2)
|
||||
if input_mask is not None:
|
||||
var_inputs = var_inputs * tf.expand_dims(input_mask, -1)
|
||||
|
||||
with tf.variable_scope('Pitch_Predictor'):
|
||||
Pitch_Predictor_FSMN = FsmnEncoderV2(
|
||||
filter_size=hp.predictor_filter_size,
|
||||
fsmn_num_layers=hp.predictor_fsmn_num_layers,
|
||||
dnn_num_layers=hp.predictor_dnn_num_layers,
|
||||
num_memory_units=hp.predictor_num_memory_units,
|
||||
ffn_inner_dim=hp.predictor_ffn_inner_dim,
|
||||
dropout=hp.predictor_dropout,
|
||||
shift=hp.predictor_shift,
|
||||
position_encoder=None)
|
||||
pitch_contour_outputs, _, _ = Pitch_Predictor_FSMN.encode(
|
||||
tf.concat([
|
||||
encoder_outputs, embedded_inputs_speaker,
|
||||
embedded_inputs_emotion
|
||||
], 2),
|
||||
sequence_length=input_lengths,
|
||||
mode=is_training)
|
||||
pitch_contour_outputs, _ = tf.nn.bidirectional_dynamic_rnn(
|
||||
LSTMBlockCell(hp.predictor_lstm_units),
|
||||
LSTMBlockCell(hp.predictor_lstm_units),
|
||||
pitch_contour_outputs,
|
||||
sequence_length=input_lengths,
|
||||
dtype=tf.float32)
|
||||
pitch_contour_outputs = tf.concat(
|
||||
pitch_contour_outputs, axis=-1)
|
||||
pitch_contour_outputs = tf.layers.dense(
|
||||
pitch_contour_outputs, units=1) # [N, T_in, 1]
|
||||
pitch_contour_outputs = tf.squeeze(
|
||||
pitch_contour_outputs, axis=2) # [N, T_in]
|
||||
|
||||
with tf.variable_scope('Energy_Predictor'):
|
||||
Energy_Predictor_FSMN = FsmnEncoderV2(
|
||||
filter_size=hp.predictor_filter_size,
|
||||
fsmn_num_layers=hp.predictor_fsmn_num_layers,
|
||||
dnn_num_layers=hp.predictor_dnn_num_layers,
|
||||
num_memory_units=hp.predictor_num_memory_units,
|
||||
ffn_inner_dim=hp.predictor_ffn_inner_dim,
|
||||
dropout=hp.predictor_dropout,
|
||||
shift=hp.predictor_shift,
|
||||
position_encoder=None)
|
||||
energy_contour_outputs, _, _ = Energy_Predictor_FSMN.encode(
|
||||
tf.concat([
|
||||
encoder_outputs, embedded_inputs_speaker,
|
||||
embedded_inputs_emotion
|
||||
], 2),
|
||||
sequence_length=input_lengths,
|
||||
mode=is_training)
|
||||
energy_contour_outputs, _ = tf.nn.bidirectional_dynamic_rnn(
|
||||
LSTMBlockCell(hp.predictor_lstm_units),
|
||||
LSTMBlockCell(hp.predictor_lstm_units),
|
||||
energy_contour_outputs,
|
||||
sequence_length=input_lengths,
|
||||
dtype=tf.float32)
|
||||
energy_contour_outputs = tf.concat(
|
||||
energy_contour_outputs, axis=-1)
|
||||
energy_contour_outputs = tf.layers.dense(
|
||||
energy_contour_outputs, units=1) # [N, T_in, 1]
|
||||
energy_contour_outputs = tf.squeeze(
|
||||
energy_contour_outputs, axis=2) # [N, T_in]
|
||||
|
||||
if is_training:
|
||||
pitch_embeddings = tf.expand_dims(
|
||||
pitch_contours, axis=2) # [N, T_in, 1]
|
||||
pitch_embeddings = tf.layers.conv1d(
|
||||
pitch_embeddings,
|
||||
filters=hp.encoder_projection_units,
|
||||
kernel_size=9,
|
||||
padding='same',
|
||||
name='pitch_embeddings') # [N, T_in, 32]
|
||||
|
||||
energy_embeddings = tf.expand_dims(
|
||||
energy_contours, axis=2) # [N, T_in, 1]
|
||||
energy_embeddings = tf.layers.conv1d(
|
||||
energy_embeddings,
|
||||
filters=hp.encoder_projection_units,
|
||||
kernel_size=9,
|
||||
padding='same',
|
||||
name='energy_embeddings') # [N, T_in, 32]
|
||||
else:
|
||||
pitch_contour_outputs *= pitch_scales
|
||||
pitch_embeddings = tf.expand_dims(
|
||||
pitch_contour_outputs, axis=2) # [N, T_in, 1]
|
||||
pitch_embeddings = tf.layers.conv1d(
|
||||
pitch_embeddings,
|
||||
filters=hp.encoder_projection_units,
|
||||
kernel_size=9,
|
||||
padding='same',
|
||||
name='pitch_embeddings') # [N, T_in, 32]
|
||||
|
||||
energy_contour_outputs *= energy_scales
|
||||
energy_embeddings = tf.expand_dims(
|
||||
energy_contour_outputs, axis=2) # [N, T_in, 1]
|
||||
energy_embeddings = tf.layers.conv1d(
|
||||
energy_embeddings,
|
||||
filters=hp.encoder_projection_units,
|
||||
kernel_size=9,
|
||||
padding='same',
|
||||
name='energy_embeddings') # [N, T_in, 32]
|
||||
|
||||
encoder_outputs_ = encoder_outputs + pitch_embeddings + energy_embeddings
|
||||
|
||||
# duration
|
||||
dur_inputs = tf.concat([
|
||||
encoder_outputs_, embedded_inputs_speaker,
|
||||
embedded_inputs_emotion
|
||||
], 2)
|
||||
if input_mask is not None:
|
||||
dur_inputs = dur_inputs * tf.expand_dims(input_mask, -1)
|
||||
with tf.variable_scope('Duration_Predictor'):
|
||||
duration_predictor_cell = MultiRNNCell([
|
||||
LSTMBlockCell(hp.predictor_lstm_units),
|
||||
LSTMBlockCell(hp.predictor_lstm_units)
|
||||
], state_is_tuple=True) # yapf:disable
|
||||
duration_output_cell = DurPredictorCell(
|
||||
duration_predictor_cell, is_training, 1,
|
||||
hp.predictor_prenet_units)
|
||||
duration_predictor_init_state = duration_output_cell.zero_state(
|
||||
batch_size=batch_size, dtype=tf.float32)
|
||||
if is_training:
|
||||
duration_helper = VarTrainingHelper(
|
||||
tf.expand_dims(
|
||||
tf.log(tf.cast(durations, tf.float32) + 1),
|
||||
axis=2), dur_inputs, 1)
|
||||
else:
|
||||
duration_helper = VarTestHelper(batch_size, dur_inputs, 1)
|
||||
(
|
||||
duration_outputs, _
|
||||
), final_duration_predictor_state, _ = tf.contrib.seq2seq.dynamic_decode(
|
||||
BasicDecoder(duration_output_cell, duration_helper,
|
||||
duration_predictor_init_state),
|
||||
maximum_iterations=1000)
|
||||
duration_outputs = tf.squeeze(
|
||||
duration_outputs, axis=2) # [N, T_in]
|
||||
if input_mask is not None:
|
||||
duration_outputs = duration_outputs * input_mask
|
||||
duration_outputs_ = tf.exp(duration_outputs) - 1
|
||||
|
||||
# Length Regulator
|
||||
with tf.variable_scope('Length_Regulator'):
|
||||
if is_training:
|
||||
i = tf.constant(1)
|
||||
# position embedding
|
||||
j = tf.constant(1)
|
||||
dur_len = tf.shape(durations)[-1]
|
||||
embedded_position_i = tf.range(1, durations[0, 0] + 1)
|
||||
|
||||
def condition_pos(j, e):
|
||||
return tf.less(j, dur_len)
|
||||
|
||||
def loop_body_pos(j, embedded_position_i):
|
||||
embedded_position_i = tf.concat([
|
||||
embedded_position_i,
|
||||
tf.range(1, durations[0, j] + 1)
|
||||
], axis=0) # yapf:disable
|
||||
return [j + 1, embedded_position_i]
|
||||
|
||||
j, embedded_position_i = tf.while_loop(
|
||||
condition_pos,
|
||||
loop_body_pos, [j, embedded_position_i],
|
||||
shape_invariants=[
|
||||
j.get_shape(),
|
||||
tf.TensorShape([None])
|
||||
])
|
||||
embedded_position = tf.reshape(embedded_position_i,
|
||||
(1, -1))
|
||||
|
||||
# others
|
||||
LR_outputs = repeat(
|
||||
encoder_outputs_[0:1, :, :], durations[0, :], axis=1)
|
||||
embedded_outputs_speaker = repeat(
|
||||
embedded_inputs_speaker[0:1, :, :],
|
||||
durations[0, :],
|
||||
axis=1)
|
||||
embedded_outputs_emotion = repeat(
|
||||
embedded_inputs_emotion[0:1, :, :],
|
||||
durations[0, :],
|
||||
axis=1)
|
||||
|
||||
def condition(i, pos, layer, s, e):
|
||||
return tf.less(i, tf.shape(mel_targets)[0])
|
||||
|
||||
def loop_body(i, embedded_position, LR_outputs,
|
||||
embedded_outputs_speaker,
|
||||
embedded_outputs_emotion):
|
||||
# position embedding
|
||||
jj = tf.constant(1)
|
||||
embedded_position_i = tf.range(1, durations[i, 0] + 1)
|
||||
|
||||
def condition_pos_i(j, e):
|
||||
return tf.less(j, dur_len)
|
||||
|
||||
def loop_body_pos_i(j, embedded_position_i):
|
||||
embedded_position_i = tf.concat([
|
||||
embedded_position_i,
|
||||
tf.range(1, durations[i, j] + 1)
|
||||
], axis=0) # yapf:disable
|
||||
return [j + 1, embedded_position_i]
|
||||
|
||||
jj, embedded_position_i = tf.while_loop(
|
||||
condition_pos_i,
|
||||
loop_body_pos_i, [jj, embedded_position_i],
|
||||
shape_invariants=[
|
||||
jj.get_shape(),
|
||||
tf.TensorShape([None])
|
||||
])
|
||||
embedded_position = tf.concat([
|
||||
embedded_position,
|
||||
tf.reshape(embedded_position_i, (1, -1))
|
||||
], 0)
|
||||
|
||||
# others
|
||||
LR_outputs = tf.concat([
|
||||
LR_outputs,
|
||||
repeat(
|
||||
encoder_outputs_[i:i + 1, :, :],
|
||||
durations[i, :],
|
||||
axis=1)
|
||||
], 0)
|
||||
embedded_outputs_speaker = tf.concat([
|
||||
embedded_outputs_speaker,
|
||||
repeat(
|
||||
embedded_inputs_speaker[i:i + 1, :, :],
|
||||
durations[i, :],
|
||||
axis=1)
|
||||
], 0)
|
||||
embedded_outputs_emotion = tf.concat([
|
||||
embedded_outputs_emotion,
|
||||
repeat(
|
||||
embedded_inputs_emotion[i:i + 1, :, :],
|
||||
durations[i, :],
|
||||
axis=1)
|
||||
], 0)
|
||||
return [
|
||||
i + 1, embedded_position, LR_outputs,
|
||||
embedded_outputs_speaker, embedded_outputs_emotion
|
||||
]
|
||||
|
||||
i, embedded_position, LR_outputs,
|
||||
embedded_outputs_speaker,
|
||||
embedded_outputs_emotion = tf.while_loop(
|
||||
condition,
|
||||
loop_body, [
|
||||
i, embedded_position, LR_outputs,
|
||||
embedded_outputs_speaker, embedded_outputs_emotion
|
||||
],
|
||||
shape_invariants=[
|
||||
i.get_shape(),
|
||||
tf.TensorShape([None, None]),
|
||||
tf.TensorShape([None, None, None]),
|
||||
tf.TensorShape([None, None, None]),
|
||||
tf.TensorShape([None, None, None])
|
||||
],
|
||||
parallel_iterations=hp.batch_size)
|
||||
|
||||
ori_framenum = tf.shape(mel_targets)[1]
|
||||
else:
|
||||
# position
|
||||
j = tf.constant(1)
|
||||
dur_len = tf.shape(duration_outputs_)[-1]
|
||||
embedded_position_i = tf.range(
|
||||
1,
|
||||
tf.cast(tf.round(duration_outputs_)[0, 0], tf.int32)
|
||||
+ 1)
|
||||
|
||||
def condition_pos(j, e):
|
||||
return tf.less(j, dur_len)
|
||||
|
||||
def loop_body_pos(j, embedded_position_i):
|
||||
embedded_position_i = tf.concat([
|
||||
embedded_position_i,
|
||||
tf.range(
|
||||
1,
|
||||
tf.cast(
|
||||
tf.round(duration_outputs_)[0, j],
|
||||
tf.int32) + 1)
|
||||
], axis=0) # yapf:disable
|
||||
return [j + 1, embedded_position_i]
|
||||
|
||||
j, embedded_position_i = tf.while_loop(
|
||||
condition_pos,
|
||||
loop_body_pos, [j, embedded_position_i],
|
||||
shape_invariants=[
|
||||
j.get_shape(),
|
||||
tf.TensorShape([None])
|
||||
])
|
||||
embedded_position = tf.reshape(embedded_position_i,
|
||||
(1, -1))
|
||||
# others
|
||||
duration_outputs_ *= duration_scales
|
||||
LR_outputs = repeat(
|
||||
encoder_outputs_[0:1, :, :],
|
||||
tf.cast(tf.round(duration_outputs_)[0, :], tf.int32),
|
||||
axis=1)
|
||||
embedded_outputs_speaker = repeat(
|
||||
embedded_inputs_speaker[0:1, :, :],
|
||||
tf.cast(tf.round(duration_outputs_)[0, :], tf.int32),
|
||||
axis=1)
|
||||
embedded_outputs_emotion = repeat(
|
||||
embedded_inputs_emotion[0:1, :, :],
|
||||
tf.cast(tf.round(duration_outputs_)[0, :], tf.int32),
|
||||
axis=1)
|
||||
ori_framenum = tf.shape(LR_outputs)[1]
|
||||
|
||||
left = hp.outputs_per_step - tf.mod(
|
||||
ori_framenum, hp.outputs_per_step)
|
||||
LR_outputs = tf.cond(
|
||||
tf.equal(left,
|
||||
hp.outputs_per_step), lambda: LR_outputs,
|
||||
lambda: tf.pad(LR_outputs, [[0, 0], [0, left], [0, 0]],
|
||||
'CONSTANT'))
|
||||
embedded_outputs_speaker = tf.cond(
|
||||
tf.equal(left, hp.outputs_per_step),
|
||||
lambda: embedded_outputs_speaker, lambda: tf.pad(
|
||||
embedded_outputs_speaker, [[0, 0], [0, left],
|
||||
[0, 0]], 'CONSTANT'))
|
||||
embedded_outputs_emotion = tf.cond(
|
||||
tf.equal(left, hp.outputs_per_step),
|
||||
lambda: embedded_outputs_emotion, lambda: tf.pad(
|
||||
embedded_outputs_emotion, [[0, 0], [0, left],
|
||||
[0, 0]], 'CONSTANT'))
|
||||
embedded_position = tf.cond(
|
||||
tf.equal(left, hp.outputs_per_step),
|
||||
lambda: embedded_position,
|
||||
lambda: tf.pad(embedded_position, [[0, 0], [0, left]],
|
||||
'CONSTANT'))
|
||||
|
||||
# Pos_Embedding
|
||||
with tf.variable_scope('Position_Embedding'):
|
||||
Pos_Embedding = BatchSinusodalPositionalEncoding()
|
||||
position_embeddings = Pos_Embedding.positional_encoding(
|
||||
batch_size,
|
||||
tf.shape(LR_outputs)[1], hp.encoder_projection_units,
|
||||
embedded_position)
|
||||
LR_outputs += position_embeddings
|
||||
|
||||
# multi-frame
|
||||
LR_outputs = tf.reshape(LR_outputs, [
|
||||
batch_size, -1,
|
||||
hp.outputs_per_step * hp.encoder_projection_units
|
||||
])
|
||||
embedded_outputs_speaker = tf.reshape(
|
||||
embedded_outputs_speaker,
|
||||
[batch_size, -1, hp.outputs_per_step * 32])[:, :, :32]
|
||||
embedded_outputs_emotion = tf.reshape(
|
||||
embedded_outputs_emotion,
|
||||
[batch_size, -1, hp.outputs_per_step * 32])[:, :, :32]
|
||||
# [N, T_out, D_LR_outputs] (D_LR_outputs = hp.outputs_per_step * hp.encoder_projection_units + 64)
|
||||
LR_outputs = tf.concat([
|
||||
LR_outputs, embedded_outputs_speaker, embedded_outputs_emotion
|
||||
], -1)
|
||||
|
||||
# auto bandwidth
|
||||
if is_training:
|
||||
durations_mask = tf.cast(durations,
|
||||
tf.float32) * input_mask # [N, T_in]
|
||||
else:
|
||||
durations_mask = duration_outputs_
|
||||
X_band_width = tf.cast(
|
||||
tf.round(tf.reduce_max(durations_mask) / hp.outputs_per_step),
|
||||
tf.int32)
|
||||
H_band_width = X_band_width
|
||||
|
||||
with tf.variable_scope('Decoder'):
|
||||
Decoder = SelfAttentionDecoder(
|
||||
num_layers=hp.decoder_num_layers,
|
||||
num_units=hp.decoder_num_units,
|
||||
num_heads=hp.decoder_num_heads,
|
||||
ffn_inner_dim=hp.decoder_ffn_inner_dim,
|
||||
dropout=hp.decoder_dropout,
|
||||
attention_dropout=hp.decoder_attention_dropout,
|
||||
relu_dropout=hp.decoder_relu_dropout,
|
||||
prenet_units=hp.prenet_units,
|
||||
dense_units=hp.prenet_proj_units,
|
||||
num_mels=hp.num_mels,
|
||||
outputs_per_step=hp.outputs_per_step,
|
||||
X_band_width=X_band_width,
|
||||
H_band_width=H_band_width,
|
||||
position_encoder=None)
|
||||
if is_training:
|
||||
if hp.free_run:
|
||||
r = hp.outputs_per_step
|
||||
init_decoder_input = tf.expand_dims(
|
||||
tf.tile([[0.0]], [batch_size, hp.num_mels]),
|
||||
axis=1) # [N, 1, hp.num_mels]
|
||||
decoder_input_lengths = tf.cast(
|
||||
output_lengths / r, tf.int32)
|
||||
decoder_outputs, attention_x, attention_h = Decoder.dynamic_decode_and_search(
|
||||
init_decoder_input,
|
||||
maximum_iterations=tf.shape(LR_outputs)[1],
|
||||
mode=is_training,
|
||||
memory=LR_outputs,
|
||||
memory_sequence_length=decoder_input_lengths)
|
||||
else:
|
||||
r = hp.outputs_per_step
|
||||
decoder_input = mel_targets[:, r - 1::
|
||||
r, :] # [N, T_out / r, hp.num_mels]
|
||||
init_decoder_input = tf.expand_dims(
|
||||
tf.tile([[0.0]], [batch_size, hp.num_mels]),
|
||||
axis=1) # [N, 1, hp.num_mels]
|
||||
decoder_input = tf.concat(
|
||||
[init_decoder_input, decoder_input],
|
||||
axis=1) # [N, T_out / r + 1, hp.num_mels]
|
||||
decoder_input = decoder_input[:, :
|
||||
-1, :] # [N, T_out / r, hp.num_mels]
|
||||
decoder_input_lengths = tf.cast(
|
||||
output_lengths / r, tf.int32)
|
||||
decoder_outputs, attention_x, attention_h = Decoder.decode_from_inputs(
|
||||
decoder_input,
|
||||
decoder_input_lengths,
|
||||
mode=is_training,
|
||||
memory=LR_outputs,
|
||||
memory_sequence_length=decoder_input_lengths)
|
||||
else:
|
||||
init_decoder_input = tf.expand_dims(
|
||||
tf.tile([[0.0]], [batch_size, hp.num_mels]),
|
||||
axis=1) # [N, 1, hp.num_mels]
|
||||
decoder_outputs, attention_x, attention_h = Decoder.dynamic_decode_and_search(
|
||||
init_decoder_input,
|
||||
maximum_iterations=tf.shape(LR_outputs)[1],
|
||||
mode=is_training,
|
||||
memory=LR_outputs,
|
||||
memory_sequence_length=tf.expand_dims(
|
||||
tf.shape(LR_outputs)[1], axis=0))
|
||||
|
||||
if is_training:
|
||||
mel_outputs_ = tf.reshape(decoder_outputs,
|
||||
[batch_size, -1, hp.num_mels])
|
||||
else:
|
||||
mel_outputs_ = tf.reshape(
|
||||
decoder_outputs,
|
||||
[batch_size, -1, hp.num_mels])[:, :ori_framenum, :]
|
||||
mel_outputs = mel_outputs_
|
||||
|
||||
with tf.variable_scope('Postnet'):
|
||||
Postnet_FSMN = FsmnEncoderV2(
|
||||
filter_size=hp.postnet_filter_size,
|
||||
fsmn_num_layers=hp.postnet_fsmn_num_layers,
|
||||
dnn_num_layers=hp.postnet_dnn_num_layers,
|
||||
num_memory_units=hp.postnet_num_memory_units,
|
||||
ffn_inner_dim=hp.postnet_ffn_inner_dim,
|
||||
dropout=hp.postnet_dropout,
|
||||
shift=hp.postnet_shift,
|
||||
position_encoder=None)
|
||||
if is_training:
|
||||
postnet_fsmn_outputs, _, _ = Postnet_FSMN.encode(
|
||||
mel_outputs,
|
||||
sequence_length=output_lengths,
|
||||
mode=is_training)
|
||||
hidden_lstm_outputs, _ = tf.nn.dynamic_rnn(
|
||||
LSTMBlockCell(hp.postnet_lstm_units),
|
||||
postnet_fsmn_outputs,
|
||||
sequence_length=output_lengths,
|
||||
dtype=tf.float32)
|
||||
else:
|
||||
postnet_fsmn_outputs, _, _ = Postnet_FSMN.encode(
|
||||
mel_outputs,
|
||||
sequence_length=[tf.shape(mel_outputs_)[1]],
|
||||
mode=is_training)
|
||||
hidden_lstm_outputs, _ = tf.nn.dynamic_rnn(
|
||||
LSTMBlockCell(hp.postnet_lstm_units),
|
||||
postnet_fsmn_outputs,
|
||||
sequence_length=[tf.shape(mel_outputs_)[1]],
|
||||
dtype=tf.float32)
|
||||
|
||||
mel_residual_outputs = tf.layers.dense(
|
||||
hidden_lstm_outputs, units=hp.num_mels)
|
||||
mel_outputs += mel_residual_outputs
|
||||
|
||||
self.inputs = inputs
|
||||
self.inputs_speaker = inputs_speaker
|
||||
self.inputs_emotion = inputs_emotion
|
||||
self.input_lengths = input_lengths
|
||||
self.durations = durations
|
||||
self.output_lengths = output_lengths
|
||||
self.mel_outputs_ = mel_outputs_
|
||||
self.mel_outputs = mel_outputs
|
||||
self.mel_targets = mel_targets
|
||||
self.duration_outputs = duration_outputs
|
||||
self.duration_outputs_ = duration_outputs_
|
||||
self.duration_scales = duration_scales
|
||||
self.pitch_contour_outputs = pitch_contour_outputs
|
||||
self.pitch_contours = pitch_contours
|
||||
self.pitch_scales = pitch_scales
|
||||
self.energy_contour_outputs = energy_contour_outputs
|
||||
self.energy_contours = energy_contours
|
||||
self.energy_scales = energy_scales
|
||||
self.uv_masks_ = uv_masks
|
||||
|
||||
self.embedded_inputs_emotion = embedded_inputs_emotion
|
||||
self.embedding_fsmn_outputs = embedded_inputs
|
||||
self.encoder_outputs = encoder_outputs
|
||||
self.encoder_outputs_ = encoder_outputs_
|
||||
self.LR_outputs = LR_outputs
|
||||
self.postnet_fsmn_outputs = postnet_fsmn_outputs
|
||||
|
||||
self.pitch_embeddings = pitch_embeddings
|
||||
self.energy_embeddings = energy_embeddings
|
||||
|
||||
self.attns = attns
|
||||
self.attention_x = attention_x
|
||||
self.attention_h = attention_h
|
||||
self.X_band_width = X_band_width
|
||||
self.H_band_width = H_band_width
|
||||
|
||||
def add_loss(self):
|
||||
'''Adds loss to the model. Sets "loss" field. initialize must have been called.'''
|
||||
with tf.variable_scope('loss') as _:
|
||||
hp = self._hparams
|
||||
mask = tf.sequence_mask(
|
||||
self.output_lengths,
|
||||
tf.shape(self.mel_targets)[1],
|
||||
dtype=tf.float32)
|
||||
valid_outputs = tf.reduce_sum(mask)
|
||||
|
||||
mask_input = tf.sequence_mask(
|
||||
self.input_lengths,
|
||||
tf.shape(self.durations)[1],
|
||||
dtype=tf.float32)
|
||||
valid_inputs = tf.reduce_sum(mask_input)
|
||||
|
||||
# mel loss
|
||||
if self.uv_masks_ is not None:
|
||||
valid_outputs_mask = tf.reduce_sum(
|
||||
tf.expand_dims(mask, -1) * self.uv_masks_)
|
||||
self.mel_loss_ = tf.reduce_sum(
|
||||
tf.abs(self.mel_targets - self.mel_outputs_)
|
||||
* tf.expand_dims(mask, -1) * self.uv_masks_) / (
|
||||
valid_outputs_mask * hp.num_mels)
|
||||
self.mel_loss = tf.reduce_sum(
|
||||
tf.abs(self.mel_targets - self.mel_outputs)
|
||||
* tf.expand_dims(mask, -1) * self.uv_masks_) / (
|
||||
valid_outputs_mask * hp.num_mels)
|
||||
else:
|
||||
self.mel_loss_ = tf.reduce_sum(
|
||||
tf.abs(self.mel_targets - self.mel_outputs_)
|
||||
* tf.expand_dims(mask, -1)) / (
|
||||
valid_outputs * hp.num_mels)
|
||||
self.mel_loss = tf.reduce_sum(
|
||||
tf.abs(self.mel_targets - self.mel_outputs)
|
||||
* tf.expand_dims(mask, -1)) / (
|
||||
valid_outputs * hp.num_mels)
|
||||
|
||||
# duration loss
|
||||
self.duration_loss = tf.reduce_sum(
|
||||
tf.abs(
|
||||
tf.log(tf.cast(self.durations, tf.float32) + 1)
|
||||
- self.duration_outputs) * mask_input) / valid_inputs
|
||||
|
||||
# pitch contour loss
|
||||
self.pitch_contour_loss = tf.reduce_sum(
|
||||
tf.abs(self.pitch_contours - self.pitch_contour_outputs)
|
||||
* mask_input) / valid_inputs
|
||||
|
||||
# energy contour loss
|
||||
self.energy_contour_loss = tf.reduce_sum(
|
||||
tf.abs(self.energy_contours - self.energy_contour_outputs)
|
||||
* mask_input) / valid_inputs
|
||||
|
||||
# final loss
|
||||
self.loss = self.mel_loss_ + self.mel_loss + self.duration_loss \
|
||||
+ self.pitch_contour_loss + self.energy_contour_loss
|
||||
|
||||
# guided attention loss
|
||||
self.guided_attention_loss = tf.constant(0.0)
|
||||
if hp.guided_attention:
|
||||
i0 = tf.constant(0)
|
||||
loss0 = tf.constant(0.0)
|
||||
|
||||
def c(i, _):
|
||||
return tf.less(i, tf.shape(mel_targets)[0])
|
||||
|
||||
def loop_body(i, loss):
|
||||
decoder_input_lengths = tf.cast(
|
||||
self.output_lengths / hp.outputs_per_step, tf.int32)
|
||||
input_len = decoder_input_lengths[i]
|
||||
output_len = decoder_input_lengths[i]
|
||||
input_w = tf.expand_dims(
|
||||
tf.range(tf.cast(input_len, dtype=tf.float32)),
|
||||
axis=1) / tf.cast(
|
||||
input_len, dtype=tf.float32) # [T_in, 1]
|
||||
output_w = tf.expand_dims(
|
||||
tf.range(tf.cast(output_len, dtype=tf.float32)),
|
||||
axis=0) / tf.cast(
|
||||
output_len, dtype=tf.float32) # [1, T_out]
|
||||
guided_attention_w = 1.0 - tf.exp(
|
||||
-(1 / hp.guided_attention_2g_squared)
|
||||
* tf.square(input_w - output_w)) # [T_in, T_out]
|
||||
guided_attention_w = tf.expand_dims(
|
||||
guided_attention_w, axis=0) # [1, T_in, T_out]
|
||||
# [hp.decoder_num_heads, T_in, T_out]
|
||||
guided_attention_w = tf.tile(guided_attention_w,
|
||||
[hp.decoder_num_heads, 1, 1])
|
||||
loss_i = tf.constant(0.0)
|
||||
for j in range(hp.decoder_num_layers):
|
||||
loss_i += tf.reduce_mean(
|
||||
self.attention_h[j][i, :, :input_len, :output_len]
|
||||
* guided_attention_w)
|
||||
|
||||
return [tf.add(i, 1), tf.add(loss, loss_i)]
|
||||
|
||||
_, loss = tf.while_loop(
|
||||
c,
|
||||
loop_body,
|
||||
loop_vars=[i0, loss0],
|
||||
parallel_iterations=hp.batch_size)
|
||||
self.guided_attention_loss = loss / hp.batch_size
|
||||
self.loss += hp.guided_attention_loss_weight * self.guided_attention_loss
|
||||
|
||||
def add_optimizer(self, global_step):
|
||||
'''Adds optimizer. Sets "gradients" and "optimize" fields. add_loss must have been called.
|
||||
|
||||
Args:
|
||||
global_step: int32 scalar Tensor representing current global step in training
|
||||
'''
|
||||
with tf.variable_scope('optimizer') as _:
|
||||
hp = self._hparams
|
||||
if hp.decay_learning_rate:
|
||||
self.learning_rate = _learning_rate_decay(
|
||||
hp.initial_learning_rate, global_step)
|
||||
else:
|
||||
self.learning_rate = tf.convert_to_tensor(
|
||||
hp.initial_learning_rate)
|
||||
optimizer = tf.train.AdamOptimizer(self.learning_rate,
|
||||
hp.adam_beta1, hp.adam_beta2)
|
||||
gradients, variables = zip(*optimizer.compute_gradients(self.loss))
|
||||
self.gradients = gradients
|
||||
clipped_gradients, _ = tf.clip_by_global_norm(gradients, 1.0)
|
||||
|
||||
# Add dependency on UPDATE_OPS; otherwise batchnorm won't work correctly. See:
|
||||
# https://github.com/tensorflow/tensorflow/issues/1122
|
||||
with tf.control_dependencies(
|
||||
tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
|
||||
self.optimize = optimizer.apply_gradients(
|
||||
zip(clipped_gradients, variables), global_step=global_step)
|
||||
|
||||
|
||||
def _learning_rate_decay(init_lr, global_step):
|
||||
# Noam scheme from tensor2tensor:
|
||||
warmup_steps = 4000.0
|
||||
step = tf.cast(global_step + 1, dtype=tf.float32)
|
||||
return init_lr * warmup_steps**0.5 * tf.minimum(step * warmup_steps**-1.5,
|
||||
step**-0.5)
|
||||
817
modelscope/models/audio/tts/am/models/self_attention_decoder.py
Executable file
817
modelscope/models/audio/tts/am/models/self_attention_decoder.py
Executable file
@@ -0,0 +1,817 @@
|
||||
"""Define self-attention decoder."""
|
||||
|
||||
import sys
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from . import compat, transformer
|
||||
from .modules import decoder_prenet
|
||||
from .position import SinusoidalPositionEncoder
|
||||
|
||||
|
||||
class SelfAttentionDecoder():
|
||||
"""Decoder using self-attention as described in
|
||||
https://arxiv.org/abs/1706.03762.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
num_layers,
|
||||
num_units=512,
|
||||
num_heads=8,
|
||||
ffn_inner_dim=2048,
|
||||
dropout=0.1,
|
||||
attention_dropout=0.1,
|
||||
relu_dropout=0.1,
|
||||
prenet_units=256,
|
||||
dense_units=128,
|
||||
num_mels=80,
|
||||
outputs_per_step=3,
|
||||
X_band_width=None,
|
||||
H_band_width=None,
|
||||
position_encoder=SinusoidalPositionEncoder(),
|
||||
self_attention_type='scaled_dot'):
|
||||
"""Initializes the parameters of the decoder.
|
||||
|
||||
Args:
|
||||
num_layers: The number of layers.
|
||||
num_units: The number of hidden units.
|
||||
num_heads: The number of heads in the multi-head attention.
|
||||
ffn_inner_dim: The number of units of the inner linear transformation
|
||||
in the feed forward layer.
|
||||
dropout: The probability to drop units from the outputs.
|
||||
attention_dropout: The probability to drop units from the attention.
|
||||
relu_dropout: The probability to drop units from the ReLU activation in
|
||||
the feed forward layer.
|
||||
position_encoder: A :class:`opennmt.layers.position.PositionEncoder` to
|
||||
apply on inputs or ``None``.
|
||||
self_attention_type: Type of self attention, "scaled_dot" or "average" (case
|
||||
insensitive).
|
||||
|
||||
Raises:
|
||||
ValueError: if :obj:`self_attention_type` is invalid.
|
||||
"""
|
||||
super(SelfAttentionDecoder, self).__init__()
|
||||
self.num_layers = num_layers
|
||||
self.num_units = num_units
|
||||
self.num_heads = num_heads
|
||||
self.ffn_inner_dim = ffn_inner_dim
|
||||
self.dropout = dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
self.relu_dropout = relu_dropout
|
||||
self.position_encoder = position_encoder
|
||||
self.self_attention_type = self_attention_type.lower()
|
||||
if self.self_attention_type not in ('scaled_dot', 'average'):
|
||||
raise ValueError('invalid attention type %s'
|
||||
% self.self_attention_type)
|
||||
if self.self_attention_type == 'average':
|
||||
tf.logging.warning(
|
||||
'Support for average attention network is experimental '
|
||||
'and may change in future versions.')
|
||||
self.prenet_units = prenet_units
|
||||
self.dense_units = dense_units
|
||||
self.num_mels = num_mels
|
||||
self.outputs_per_step = outputs_per_step
|
||||
self.X_band_width = X_band_width
|
||||
self.H_band_width = H_band_width
|
||||
|
||||
@property
|
||||
def output_size(self):
|
||||
"""Returns the decoder output size."""
|
||||
return self.num_units
|
||||
|
||||
@property
|
||||
def support_alignment_history(self):
|
||||
return True
|
||||
|
||||
@property
|
||||
def support_multi_source(self):
|
||||
return True
|
||||
|
||||
def _init_cache(self, batch_size, dtype=tf.float32, num_sources=1):
|
||||
cache = {}
|
||||
|
||||
for layer in range(self.num_layers):
|
||||
proj_cache_shape = [
|
||||
batch_size, self.num_heads, 0, self.num_units // self.num_heads
|
||||
]
|
||||
layer_cache = {}
|
||||
layer_cache['memory'] = [{
|
||||
'memory_keys':
|
||||
tf.zeros(proj_cache_shape, dtype=dtype),
|
||||
'memory_values':
|
||||
tf.zeros(proj_cache_shape, dtype=dtype)
|
||||
} for _ in range(num_sources)]
|
||||
if self.self_attention_type == 'scaled_dot':
|
||||
layer_cache['self_keys'] = tf.zeros(
|
||||
proj_cache_shape, dtype=dtype)
|
||||
layer_cache['self_values'] = tf.zeros(
|
||||
proj_cache_shape, dtype=dtype)
|
||||
elif self.self_attention_type == 'average':
|
||||
layer_cache['prev_g'] = tf.zeros(
|
||||
[batch_size, 1, self.num_units], dtype=dtype)
|
||||
cache['layer_{}'.format(layer)] = layer_cache
|
||||
|
||||
return cache
|
||||
|
||||
def _init_attn(self, dtype=tf.float32):
|
||||
attn = []
|
||||
for layer in range(self.num_layers):
|
||||
attn.append(tf.TensorArray(tf.float32, size=0, dynamic_size=True))
|
||||
return attn
|
||||
|
||||
def _self_attention_stack(self,
|
||||
inputs,
|
||||
sequence_length=None,
|
||||
mode=True,
|
||||
cache=None,
|
||||
memory=None,
|
||||
memory_sequence_length=None,
|
||||
step=None):
|
||||
|
||||
# [N, T_out, self.dense_units] or [N, 1, self.dense_units]
|
||||
prenet_outputs = decoder_prenet(inputs, self.prenet_units,
|
||||
self.dense_units, mode)
|
||||
if step is None:
|
||||
decoder_inputs = tf.concat(
|
||||
[memory, prenet_outputs],
|
||||
axis=-1) # [N, T_out, memory_size + self.dense_units]
|
||||
else:
|
||||
decoder_inputs = tf.concat(
|
||||
[memory[:, step:step + 1, :], prenet_outputs],
|
||||
axis=-1) # [N, 1, memory_size + self.dense_units]
|
||||
decoder_inputs = tf.layers.dense(
|
||||
decoder_inputs, units=self.dense_units)
|
||||
|
||||
inputs = decoder_inputs
|
||||
inputs *= self.num_units**0.5
|
||||
if self.position_encoder is not None:
|
||||
inputs = self.position_encoder(
|
||||
inputs, position=step + 1 if step is not None else None)
|
||||
|
||||
inputs = tf.layers.dropout(inputs, rate=self.dropout, training=mode)
|
||||
|
||||
decoder_mask = None
|
||||
memory_mask = None
|
||||
# last_attention = None
|
||||
|
||||
X_band_width_tmp = -1
|
||||
H_band_width_tmp = -1
|
||||
if self.X_band_width is not None:
|
||||
X_band_width_tmp = tf.cast(
|
||||
tf.cond(
|
||||
tf.less(tf.shape(memory)[1], self.X_band_width),
|
||||
lambda: -1, lambda: self.X_band_width),
|
||||
dtype=tf.int64)
|
||||
if self.H_band_width is not None:
|
||||
H_band_width_tmp = tf.cast(
|
||||
tf.cond(
|
||||
tf.less(tf.shape(memory)[1], self.H_band_width),
|
||||
lambda: -1, lambda: self.H_band_width),
|
||||
dtype=tf.int64)
|
||||
|
||||
if self.self_attention_type == 'scaled_dot':
|
||||
if sequence_length is not None:
|
||||
decoder_mask = transformer.build_future_mask(
|
||||
sequence_length,
|
||||
num_heads=self.num_heads,
|
||||
maximum_length=tf.shape(inputs)[1],
|
||||
band=X_band_width_tmp) # [N, 1, T_out, T_out]
|
||||
elif self.self_attention_type == 'average':
|
||||
if cache is None:
|
||||
if sequence_length is None:
|
||||
sequence_length = tf.fill([tf.shape(inputs)[0]],
|
||||
tf.shape(inputs)[1])
|
||||
decoder_mask = transformer.cumulative_average_mask(
|
||||
sequence_length,
|
||||
maximum_length=tf.shape(inputs)[1],
|
||||
dtype=inputs.dtype)
|
||||
|
||||
if memory is not None and not tf.contrib.framework.nest.is_sequence(
|
||||
memory):
|
||||
memory = (memory, )
|
||||
if memory_sequence_length is not None:
|
||||
if not tf.contrib.framework.nest.is_sequence(
|
||||
memory_sequence_length):
|
||||
memory_sequence_length = (memory_sequence_length, )
|
||||
if step is None:
|
||||
memory_mask = [
|
||||
transformer.build_history_mask(
|
||||
length,
|
||||
num_heads=self.num_heads,
|
||||
maximum_length=tf.shape(m)[1],
|
||||
band=H_band_width_tmp)
|
||||
for m, length in zip(memory, memory_sequence_length)
|
||||
]
|
||||
else:
|
||||
memory_mask = [
|
||||
transformer.build_history_mask(
|
||||
length,
|
||||
num_heads=self.num_heads,
|
||||
maximum_length=tf.shape(m)[1],
|
||||
band=H_band_width_tmp)[:, :, step:step + 1, :]
|
||||
for m, length in zip(memory, memory_sequence_length)
|
||||
]
|
||||
|
||||
# last_attention = None
|
||||
attns_x = []
|
||||
attns_h = []
|
||||
for layer in range(self.num_layers):
|
||||
layer_name = 'layer_{}'.format(layer)
|
||||
layer_cache = cache[layer_name] if cache is not None else None
|
||||
with tf.variable_scope(layer_name):
|
||||
if memory is not None:
|
||||
for i, (mem, mask) in enumerate(zip(memory, memory_mask)):
|
||||
memory_cache = None
|
||||
if layer_cache is not None:
|
||||
memory_cache = layer_cache['memory'][i]
|
||||
scope_name = 'multi_head_{}'.format(i)
|
||||
if i == 0:
|
||||
scope_name = 'multi_head'
|
||||
with tf.variable_scope(scope_name):
|
||||
encoded, attn_x, attn_h = transformer.multi_head_attention_PNCA(
|
||||
self.num_heads,
|
||||
transformer.norm(inputs),
|
||||
mem,
|
||||
mode,
|
||||
num_units=self.num_units,
|
||||
mask=decoder_mask,
|
||||
mask_h=mask,
|
||||
cache=layer_cache,
|
||||
cache_h=memory_cache,
|
||||
dropout=self.attention_dropout,
|
||||
return_attention=True,
|
||||
layer_name=layer_name,
|
||||
X_band_width=self.X_band_width)
|
||||
attns_x.append(attn_x)
|
||||
attns_h.append(attn_h)
|
||||
context = transformer.drop_and_add(
|
||||
inputs, encoded, mode, dropout=self.dropout)
|
||||
|
||||
with tf.variable_scope('ffn'):
|
||||
transformed = transformer.feed_forward_ori(
|
||||
transformer.norm(context),
|
||||
self.ffn_inner_dim,
|
||||
mode,
|
||||
dropout=self.relu_dropout)
|
||||
transformed = transformer.drop_and_add(
|
||||
context, transformed, mode, dropout=self.dropout)
|
||||
|
||||
inputs = transformed
|
||||
|
||||
outputs = transformer.norm(inputs)
|
||||
outputs = tf.layers.dense(
|
||||
outputs, units=self.num_mels * self.outputs_per_step)
|
||||
return outputs, attns_x, attns_h
|
||||
|
||||
def decode_from_inputs(self,
|
||||
inputs,
|
||||
sequence_length,
|
||||
initial_state=None,
|
||||
mode=True,
|
||||
memory=None,
|
||||
memory_sequence_length=None):
|
||||
outputs, attention_x, attention_h = self._self_attention_stack(
|
||||
inputs,
|
||||
sequence_length=sequence_length,
|
||||
mode=mode,
|
||||
memory=memory,
|
||||
memory_sequence_length=memory_sequence_length)
|
||||
return outputs, attention_x, attention_h
|
||||
|
||||
def step_fn(self,
|
||||
mode,
|
||||
batch_size,
|
||||
initial_state=None,
|
||||
memory=None,
|
||||
memory_sequence_length=None,
|
||||
dtype=tf.float32):
|
||||
if memory is None:
|
||||
num_sources = 0
|
||||
elif tf.contrib.framework.nest.is_sequence(memory):
|
||||
num_sources = len(memory)
|
||||
else:
|
||||
num_sources = 1
|
||||
cache = self._init_cache(
|
||||
batch_size, dtype=dtype, num_sources=num_sources)
|
||||
attention_x = self._init_attn(dtype=dtype)
|
||||
attention_h = self._init_attn(dtype=dtype)
|
||||
|
||||
def _fn(step, inputs, cache):
|
||||
outputs, attention_x, attention_h = self._self_attention_stack(
|
||||
inputs,
|
||||
mode=mode,
|
||||
cache=cache,
|
||||
memory=memory,
|
||||
memory_sequence_length=memory_sequence_length,
|
||||
step=step)
|
||||
attention_x_tmp = []
|
||||
for layer in range(len(attention_h)):
|
||||
attention_x_tmp_l = tf.zeros_like(attention_h[layer])
|
||||
if self.X_band_width is not None:
|
||||
pred = tf.less(step, self.X_band_width + 1)
|
||||
attention_x_tmp_l_1 = tf.cond(pred, # yapf:disable
|
||||
lambda: attention_x_tmp_l[:, :, :, :step + 1] + attention_x[layer],
|
||||
lambda: tf.concat([
|
||||
attention_x_tmp_l[:, :, :,
|
||||
:step - self.X_band_width],
|
||||
attention_x_tmp_l[:, :, :,
|
||||
step - self.X_band_width:step + 1]
|
||||
+ attention_x[layer]],
|
||||
axis=-1)) # yapf:disable
|
||||
attention_x_tmp_l_2 = attention_x_tmp_l[:, :, :, step + 1:]
|
||||
attention_x_tmp.append(
|
||||
tf.concat([attention_x_tmp_l_1, attention_x_tmp_l_2],
|
||||
axis=-1))
|
||||
else:
|
||||
attention_x_tmp_l_1 = attention_x_tmp_l[:, :, :, :step + 1]
|
||||
attention_x_tmp_l_2 = attention_x_tmp_l[:, :, :, step + 1:]
|
||||
attention_x_tmp.append(
|
||||
tf.concat([
|
||||
attention_x_tmp_l_1 + attention_x[layer],
|
||||
attention_x_tmp_l_2
|
||||
], axis=-1)) # yapf:disable
|
||||
attention_x = attention_x_tmp
|
||||
return outputs, cache, attention_x, attention_h
|
||||
|
||||
return _fn, cache, attention_x, attention_h
|
||||
|
||||
def dynamic_decode_and_search(self, init_decoder_input, maximum_iterations,
|
||||
mode, memory, memory_sequence_length):
|
||||
batch_size = tf.shape(init_decoder_input)[0]
|
||||
step_fn, init_cache, init_attn_x, init_attn_h = self.step_fn(
|
||||
mode,
|
||||
batch_size,
|
||||
memory=memory,
|
||||
memory_sequence_length=memory_sequence_length)
|
||||
|
||||
outputs, attention_x, attention_h, cache = self.dynamic_decode(
|
||||
step_fn,
|
||||
init_decoder_input,
|
||||
init_cache=init_cache,
|
||||
init_attn_x=init_attn_x,
|
||||
init_attn_h=init_attn_h,
|
||||
maximum_iterations=maximum_iterations,
|
||||
batch_size=batch_size)
|
||||
return outputs, attention_x, attention_h
|
||||
|
||||
def dynamic_decode_and_search_teacher_forcing(self, decoder_input,
|
||||
maximum_iterations, mode,
|
||||
memory,
|
||||
memory_sequence_length):
|
||||
batch_size = tf.shape(decoder_input)[0]
|
||||
step_fn, init_cache, init_attn_x, init_attn_h = self.step_fn(
|
||||
mode,
|
||||
batch_size,
|
||||
memory=memory,
|
||||
memory_sequence_length=memory_sequence_length)
|
||||
|
||||
outputs, attention_x, attention_h, cache = self.dynamic_decode_teacher_forcing(
|
||||
step_fn,
|
||||
decoder_input,
|
||||
init_cache=init_cache,
|
||||
init_attn_x=init_attn_x,
|
||||
init_attn_h=init_attn_h,
|
||||
maximum_iterations=maximum_iterations,
|
||||
batch_size=batch_size)
|
||||
return outputs, attention_x, attention_h
|
||||
|
||||
def dynamic_decode(self,
|
||||
step_fn,
|
||||
init_decoder_input,
|
||||
init_cache=None,
|
||||
init_attn_x=None,
|
||||
init_attn_h=None,
|
||||
maximum_iterations=None,
|
||||
batch_size=None):
|
||||
|
||||
def _cond(step, cache, inputs, outputs, attention_x, attention_h): # pylint: disable=unused-argument
|
||||
return tf.less(step, maximum_iterations)
|
||||
|
||||
def _body(step, cache, inputs, outputs, attention_x, attention_h):
|
||||
# output: [1, 1, num_mels * r]
|
||||
# attn: [1, 1, T_out]
|
||||
output, cache, attn_x, attn_h = step_fn(
|
||||
step, inputs, cache) # outputs, cache, attention, attns
|
||||
for layer in range(len(attention_x)):
|
||||
attention_x[layer] = attention_x[layer].write(
|
||||
step, tf.cast(attn_x[layer], tf.float32))
|
||||
|
||||
for layer in range(len(attention_h)):
|
||||
attention_h[layer] = attention_h[layer].write(
|
||||
step, tf.cast(attn_h[layer], tf.float32))
|
||||
|
||||
outputs = outputs.write(step, tf.cast(output, tf.float32))
|
||||
return step + 1, cache, output[:, :, -self.
|
||||
num_mels:], outputs, attention_x, attention_h
|
||||
|
||||
step = tf.constant(0, dtype=tf.int32)
|
||||
outputs = tf.TensorArray(tf.float32, size=0, dynamic_size=True)
|
||||
|
||||
_, cache, _, outputs, attention_x, attention_h = tf.while_loop(
|
||||
_cond,
|
||||
_body,
|
||||
loop_vars=(step, init_cache, init_decoder_input, outputs,
|
||||
init_attn_x, init_attn_h),
|
||||
shape_invariants=(step.shape,
|
||||
compat.nest.map_structure(
|
||||
self._get_shape_invariants, init_cache),
|
||||
compat.nest.map_structure(
|
||||
self._get_shape_invariants,
|
||||
init_decoder_input), tf.TensorShape(None),
|
||||
compat.nest.map_structure(
|
||||
self._get_shape_invariants, init_attn_x),
|
||||
compat.nest.map_structure(
|
||||
self._get_shape_invariants, init_attn_h)),
|
||||
parallel_iterations=1,
|
||||
back_prop=False,
|
||||
maximum_iterations=maximum_iterations)
|
||||
# element of outputs: [N, 1, num_mels * r]
|
||||
outputs_stack = outputs.stack() # [T_out, N, 1, num_mels * r]
|
||||
outputs_stack = tf.transpose(
|
||||
outputs_stack, perm=[2, 1, 0, 3]) # [1, N, T_out, num_mels * r]
|
||||
outputs_stack = tf.squeeze(
|
||||
outputs_stack, axis=0) # [N, T_out, num_mels * r]
|
||||
|
||||
attention_x_stack = []
|
||||
for layer in range(len(attention_x)):
|
||||
attention_x_stack_tmp = attention_x[layer].stack(
|
||||
) # [T_out, N, H, 1, T_out]
|
||||
attention_x_stack_tmp = tf.transpose(
|
||||
attention_x_stack_tmp, perm=[3, 1, 2, 0,
|
||||
4]) # [1, N, H, T_out, T_out]
|
||||
attention_x_stack_tmp = tf.squeeze(
|
||||
attention_x_stack_tmp, axis=0) # [N, H, T_out, T_out]
|
||||
attention_x_stack.append(attention_x_stack_tmp)
|
||||
|
||||
attention_h_stack = []
|
||||
for layer in range(len(attention_h)):
|
||||
attention_h_stack_tmp = attention_h[layer].stack(
|
||||
) # [T_out, N, H, 1, T_out]
|
||||
attention_h_stack_tmp = tf.transpose(
|
||||
attention_h_stack_tmp, perm=[3, 1, 2, 0,
|
||||
4]) # [1, N, H, T_out, T_out]
|
||||
attention_h_stack_tmp = tf.squeeze(
|
||||
attention_h_stack_tmp, axis=0) # [N, H, T_out, T_out]
|
||||
attention_h_stack.append(attention_h_stack_tmp)
|
||||
|
||||
return outputs_stack, attention_x_stack, attention_h_stack, cache
|
||||
|
||||
def dynamic_decode_teacher_forcing(self,
|
||||
step_fn,
|
||||
decoder_input,
|
||||
init_cache=None,
|
||||
init_attn_x=None,
|
||||
init_attn_h=None,
|
||||
maximum_iterations=None,
|
||||
batch_size=None):
|
||||
|
||||
def _cond(step, cache, inputs, outputs, attention_x, attention_h): # pylint: disable=unused-argument
|
||||
return tf.less(step, maximum_iterations)
|
||||
|
||||
def _body(step, cache, inputs, outputs, attention_x, attention_h):
|
||||
# output: [1, 1, num_mels * r]
|
||||
# attn: [1, 1, T_out]
|
||||
output, cache, attn_x, attn_h = step_fn(
|
||||
step, inputs[:, step:step + 1, :],
|
||||
cache) # outputs, cache, attention, attns
|
||||
for layer in range(len(attention_x)):
|
||||
attention_x[layer] = attention_x[layer].write(
|
||||
step, tf.cast(attn_x[layer], tf.float32))
|
||||
|
||||
for layer in range(len(attention_h)):
|
||||
attention_h[layer] = attention_h[layer].write(
|
||||
step, tf.cast(attn_h[layer], tf.float32))
|
||||
outputs = outputs.write(step, tf.cast(output, tf.float32))
|
||||
return step + 1, cache, inputs, outputs, attention_x, attention_h
|
||||
|
||||
step = tf.constant(0, dtype=tf.int32)
|
||||
outputs = tf.TensorArray(tf.float32, size=0, dynamic_size=True)
|
||||
|
||||
_, cache, _, outputs, attention_x, attention_h = tf.while_loop(
|
||||
_cond,
|
||||
_body,
|
||||
loop_vars=(step, init_cache, decoder_input, outputs, init_attn_x,
|
||||
init_attn_h),
|
||||
shape_invariants=(step.shape,
|
||||
compat.nest.map_structure(
|
||||
self._get_shape_invariants,
|
||||
init_cache), decoder_input.shape,
|
||||
tf.TensorShape(None),
|
||||
compat.nest.map_structure(
|
||||
self._get_shape_invariants, init_attn_x),
|
||||
compat.nest.map_structure(
|
||||
self._get_shape_invariants, init_attn_h)),
|
||||
parallel_iterations=1,
|
||||
back_prop=False,
|
||||
maximum_iterations=maximum_iterations)
|
||||
# element of outputs: [N, 1, num_mels * r]
|
||||
outputs_stack = outputs.stack() # [T_out, N, 1, num_mels * r]
|
||||
outputs_stack = tf.transpose(
|
||||
outputs_stack, perm=[2, 1, 0, 3]) # [1, N, T_out, num_mels * r]
|
||||
outputs_stack = tf.squeeze(
|
||||
outputs_stack, axis=0) # [N, T_out, num_mels * r]
|
||||
|
||||
attention_x_stack = []
|
||||
for layer in range(len(attention_x)):
|
||||
attention_x_stack_tmp = attention_x[layer].stack(
|
||||
) # [T_out, N, H, 1, T_out]
|
||||
attention_x_stack_tmp = tf.transpose(
|
||||
attention_x_stack_tmp, perm=[3, 1, 2, 0,
|
||||
4]) # [1, N, H, T_out, T_out]
|
||||
attention_x_stack_tmp = tf.squeeze(
|
||||
attention_x_stack_tmp, axis=0) # [N, H, T_out, T_out]
|
||||
attention_x_stack.append(attention_x_stack_tmp)
|
||||
|
||||
attention_h_stack = []
|
||||
for layer in range(len(attention_h)):
|
||||
attention_h_stack_tmp = attention_h[layer].stack(
|
||||
) # [T_out, N, H, 1, T_out]
|
||||
attention_h_stack_tmp = tf.transpose(
|
||||
attention_h_stack_tmp, perm=[3, 1, 2, 0,
|
||||
4]) # [1, N, H, T_out, T_out]
|
||||
attention_h_stack_tmp = tf.squeeze(
|
||||
attention_h_stack_tmp, axis=0) # [N, H, T_out, T_out]
|
||||
attention_h_stack.append(attention_h_stack_tmp)
|
||||
|
||||
return outputs_stack, attention_x_stack, attention_h_stack, cache
|
||||
|
||||
def _get_shape_invariants(self, tensor):
|
||||
"""Returns the shape of the tensor but sets middle dims to None."""
|
||||
if isinstance(tensor, tf.TensorArray):
|
||||
shape = None
|
||||
else:
|
||||
shape = tensor.shape.as_list()
|
||||
for i in range(1, len(shape) - 1):
|
||||
shape[i] = None
|
||||
return tf.TensorShape(shape)
|
||||
|
||||
|
||||
class SelfAttentionDecoderOri():
|
||||
"""Decoder using self-attention as described in
|
||||
https://arxiv.org/abs/1706.03762.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
num_layers,
|
||||
num_units=512,
|
||||
num_heads=8,
|
||||
ffn_inner_dim=2048,
|
||||
dropout=0.1,
|
||||
attention_dropout=0.1,
|
||||
relu_dropout=0.1,
|
||||
position_encoder=SinusoidalPositionEncoder(),
|
||||
self_attention_type='scaled_dot'):
|
||||
"""Initializes the parameters of the decoder.
|
||||
|
||||
Args:
|
||||
num_layers: The number of layers.
|
||||
num_units: The number of hidden units.
|
||||
num_heads: The number of heads in the multi-head attention.
|
||||
ffn_inner_dim: The number of units of the inner linear transformation
|
||||
in the feed forward layer.
|
||||
dropout: The probability to drop units from the outputs.
|
||||
attention_dropout: The probability to drop units from the attention.
|
||||
relu_dropout: The probability to drop units from the ReLU activation in
|
||||
the feed forward layer.
|
||||
position_encoder: A :class:`opennmt.layers.position.PositionEncoder` to
|
||||
apply on inputs or ``None``.
|
||||
self_attention_type: Type of self attention, "scaled_dot" or "average" (case
|
||||
insensitive).
|
||||
|
||||
Raises:
|
||||
ValueError: if :obj:`self_attention_type` is invalid.
|
||||
"""
|
||||
super(SelfAttentionDecoderOri, self).__init__()
|
||||
self.num_layers = num_layers
|
||||
self.num_units = num_units
|
||||
self.num_heads = num_heads
|
||||
self.ffn_inner_dim = ffn_inner_dim
|
||||
self.dropout = dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
self.relu_dropout = relu_dropout
|
||||
self.position_encoder = position_encoder
|
||||
self.self_attention_type = self_attention_type.lower()
|
||||
if self.self_attention_type not in ('scaled_dot', 'average'):
|
||||
raise ValueError('invalid attention type %s'
|
||||
% self.self_attention_type)
|
||||
if self.self_attention_type == 'average':
|
||||
tf.logging.warning(
|
||||
'Support for average attention network is experimental '
|
||||
'and may change in future versions.')
|
||||
|
||||
@property
|
||||
def output_size(self):
|
||||
"""Returns the decoder output size."""
|
||||
return self.num_units
|
||||
|
||||
@property
|
||||
def support_alignment_history(self):
|
||||
return True
|
||||
|
||||
@property
|
||||
def support_multi_source(self):
|
||||
return True
|
||||
|
||||
def _init_cache(self, batch_size, dtype=tf.float32, num_sources=1):
|
||||
cache = {}
|
||||
|
||||
for layer in range(self.num_layers):
|
||||
proj_cache_shape = [
|
||||
batch_size, self.num_heads, 0, self.num_units // self.num_heads
|
||||
]
|
||||
layer_cache = {}
|
||||
layer_cache['memory'] = [{
|
||||
'memory_keys':
|
||||
tf.zeros(proj_cache_shape, dtype=dtype),
|
||||
'memory_values':
|
||||
tf.zeros(proj_cache_shape, dtype=dtype)
|
||||
} for _ in range(num_sources)]
|
||||
if self.self_attention_type == 'scaled_dot':
|
||||
layer_cache['self_keys'] = tf.zeros(
|
||||
proj_cache_shape, dtype=dtype)
|
||||
layer_cache['self_values'] = tf.zeros(
|
||||
proj_cache_shape, dtype=dtype)
|
||||
elif self.self_attention_type == 'average':
|
||||
layer_cache['prev_g'] = tf.zeros(
|
||||
[batch_size, 1, self.num_units], dtype=dtype)
|
||||
cache['layer_{}'.format(layer)] = layer_cache
|
||||
|
||||
return cache
|
||||
|
||||
def _self_attention_stack(self,
|
||||
inputs,
|
||||
sequence_length=None,
|
||||
mode=True,
|
||||
cache=None,
|
||||
memory=None,
|
||||
memory_sequence_length=None,
|
||||
step=None):
|
||||
inputs *= self.num_units**0.5
|
||||
if self.position_encoder is not None:
|
||||
inputs = self.position_encoder(
|
||||
inputs, position=step + 1 if step is not None else None)
|
||||
|
||||
inputs = tf.layers.dropout(inputs, rate=self.dropout, training=mode)
|
||||
|
||||
decoder_mask = None
|
||||
memory_mask = None
|
||||
last_attention = None
|
||||
|
||||
if self.self_attention_type == 'scaled_dot':
|
||||
if sequence_length is not None:
|
||||
decoder_mask = transformer.build_future_mask(
|
||||
sequence_length,
|
||||
num_heads=self.num_heads,
|
||||
maximum_length=tf.shape(inputs)[1])
|
||||
elif self.self_attention_type == 'average':
|
||||
if cache is None:
|
||||
if sequence_length is None:
|
||||
sequence_length = tf.fill([tf.shape(inputs)[0]],
|
||||
tf.shape(inputs)[1])
|
||||
decoder_mask = transformer.cumulative_average_mask(
|
||||
sequence_length,
|
||||
maximum_length=tf.shape(inputs)[1],
|
||||
dtype=inputs.dtype)
|
||||
|
||||
if memory is not None and not tf.contrib.framework.nest.is_sequence(
|
||||
memory):
|
||||
memory = (memory, )
|
||||
if memory_sequence_length is not None:
|
||||
if not tf.contrib.framework.nest.is_sequence(
|
||||
memory_sequence_length):
|
||||
memory_sequence_length = (memory_sequence_length, )
|
||||
memory_mask = [
|
||||
transformer.build_sequence_mask(
|
||||
length,
|
||||
num_heads=self.num_heads,
|
||||
maximum_length=tf.shape(m)[1])
|
||||
for m, length in zip(memory, memory_sequence_length)
|
||||
]
|
||||
|
||||
for layer in range(self.num_layers):
|
||||
layer_name = 'layer_{}'.format(layer)
|
||||
layer_cache = cache[layer_name] if cache is not None else None
|
||||
with tf.variable_scope(layer_name):
|
||||
if self.self_attention_type == 'scaled_dot':
|
||||
with tf.variable_scope('masked_multi_head'):
|
||||
encoded = transformer.multi_head_attention(
|
||||
self.num_heads,
|
||||
transformer.norm(inputs),
|
||||
None,
|
||||
mode,
|
||||
num_units=self.num_units,
|
||||
mask=decoder_mask,
|
||||
cache=layer_cache,
|
||||
dropout=self.attention_dropout)
|
||||
last_context = transformer.drop_and_add(
|
||||
inputs, encoded, mode, dropout=self.dropout)
|
||||
elif self.self_attention_type == 'average':
|
||||
with tf.variable_scope('average_attention'):
|
||||
# Cumulative average.
|
||||
x = transformer.norm(inputs)
|
||||
y = transformer.cumulative_average(
|
||||
x,
|
||||
decoder_mask if cache is None else step,
|
||||
cache=layer_cache)
|
||||
# FFN.
|
||||
y = transformer.feed_forward(
|
||||
y,
|
||||
self.ffn_inner_dim,
|
||||
mode,
|
||||
dropout=self.relu_dropout)
|
||||
# Gating layer.
|
||||
z = tf.layers.dense(
|
||||
tf.concat([x, y], -1), self.num_units * 2)
|
||||
i, f = tf.split(z, 2, axis=-1)
|
||||
y = tf.sigmoid(i) * x + tf.sigmoid(f) * y
|
||||
last_context = transformer.drop_and_add(
|
||||
inputs, y, mode, dropout=self.dropout)
|
||||
|
||||
if memory is not None:
|
||||
for i, (mem, mask) in enumerate(zip(memory, memory_mask)):
|
||||
memory_cache = layer_cache['memory'][i] if layer_cache is not None else None # yapf:disable
|
||||
with tf.variable_scope('multi_head' if i
|
||||
== 0 else 'multi_head_%d' % i): # yapf:disable
|
||||
context, last_attention = transformer.multi_head_attention(
|
||||
self.num_heads,
|
||||
transformer.norm(last_context),
|
||||
mem,
|
||||
mode,
|
||||
mask=mask,
|
||||
cache=memory_cache,
|
||||
dropout=self.attention_dropout,
|
||||
return_attention=True)
|
||||
last_context = transformer.drop_and_add(
|
||||
last_context,
|
||||
context,
|
||||
mode,
|
||||
dropout=self.dropout)
|
||||
if i > 0: # Do not return attention in case of multi source.
|
||||
last_attention = None
|
||||
|
||||
with tf.variable_scope('ffn'):
|
||||
transformed = transformer.feed_forward_ori(
|
||||
transformer.norm(last_context),
|
||||
self.ffn_inner_dim,
|
||||
mode,
|
||||
dropout=self.relu_dropout)
|
||||
transformed = transformer.drop_and_add(
|
||||
last_context, transformed, mode, dropout=self.dropout)
|
||||
|
||||
inputs = transformed
|
||||
|
||||
if last_attention is not None:
|
||||
# The first head of the last layer is returned.
|
||||
first_head_attention = last_attention[:, 0]
|
||||
else:
|
||||
first_head_attention = None
|
||||
|
||||
outputs = transformer.norm(inputs)
|
||||
return outputs, first_head_attention
|
||||
|
||||
def decode_from_inputs(self,
|
||||
inputs,
|
||||
sequence_length,
|
||||
initial_state=None,
|
||||
mode=True,
|
||||
memory=None,
|
||||
memory_sequence_length=None):
|
||||
outputs, attention = self._self_attention_stack(
|
||||
inputs,
|
||||
sequence_length=sequence_length,
|
||||
mode=mode,
|
||||
memory=memory,
|
||||
memory_sequence_length=memory_sequence_length)
|
||||
return outputs, None, attention
|
||||
|
||||
def step_fn(self,
|
||||
mode,
|
||||
batch_size,
|
||||
initial_state=None,
|
||||
memory=None,
|
||||
memory_sequence_length=None,
|
||||
dtype=tf.float32):
|
||||
if memory is None:
|
||||
num_sources = 0
|
||||
elif tf.contrib.framework.nest.is_sequence(memory):
|
||||
num_sources = len(memory)
|
||||
else:
|
||||
num_sources = 1
|
||||
cache = self._init_cache(
|
||||
batch_size, dtype=dtype, num_sources=num_sources)
|
||||
|
||||
def _fn(step, inputs, cache, mode):
|
||||
inputs = tf.expand_dims(inputs, 1)
|
||||
outputs, attention = self._self_attention_stack(
|
||||
inputs,
|
||||
mode=mode,
|
||||
cache=cache,
|
||||
memory=memory,
|
||||
memory_sequence_length=memory_sequence_length,
|
||||
step=step)
|
||||
outputs = tf.squeeze(outputs, axis=1)
|
||||
if attention is not None:
|
||||
attention = tf.squeeze(attention, axis=1)
|
||||
return outputs, cache, attention
|
||||
|
||||
return _fn, cache
|
||||
182
modelscope/models/audio/tts/am/models/self_attention_encoder.py
Executable file
182
modelscope/models/audio/tts/am/models/self_attention_encoder.py
Executable file
@@ -0,0 +1,182 @@
|
||||
"""Define the self-attention encoder."""
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from . import transformer
|
||||
from .position import SinusoidalPositionEncoder
|
||||
|
||||
|
||||
class SelfAttentionEncoder():
|
||||
"""Encoder using self-attention as described in
|
||||
https://arxiv.org/abs/1706.03762.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
num_layers,
|
||||
num_units=512,
|
||||
num_heads=8,
|
||||
ffn_inner_dim=2048,
|
||||
dropout=0.1,
|
||||
attention_dropout=0.1,
|
||||
relu_dropout=0.1,
|
||||
position_encoder=SinusoidalPositionEncoder()):
|
||||
"""Initializes the parameters of the encoder.
|
||||
|
||||
Args:
|
||||
num_layers: The number of layers.
|
||||
num_units: The number of hidden units.
|
||||
num_heads: The number of heads in the multi-head attention.
|
||||
ffn_inner_dim: The number of units of the inner linear transformation
|
||||
in the feed forward layer.
|
||||
dropout: The probability to drop units from the outputs.
|
||||
attention_dropout: The probability to drop units from the attention.
|
||||
relu_dropout: The probability to drop units from the ReLU activation in
|
||||
the feed forward layer.
|
||||
position_encoder: The :class:`opennmt.layers.position.PositionEncoder` to
|
||||
apply on inputs or ``None``.
|
||||
"""
|
||||
super(SelfAttentionEncoder, self).__init__()
|
||||
self.num_layers = num_layers
|
||||
self.num_units = num_units
|
||||
self.num_heads = num_heads
|
||||
self.ffn_inner_dim = ffn_inner_dim
|
||||
self.dropout = dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
self.relu_dropout = relu_dropout
|
||||
self.position_encoder = position_encoder
|
||||
|
||||
def encode(self, inputs, sequence_length=None, mode=True):
|
||||
inputs *= self.num_units**0.5
|
||||
if self.position_encoder is not None:
|
||||
inputs = self.position_encoder(inputs)
|
||||
|
||||
inputs = tf.layers.dropout(inputs, rate=self.dropout, training=mode)
|
||||
mask = transformer.build_sequence_mask(
|
||||
sequence_length,
|
||||
num_heads=self.num_heads,
|
||||
maximum_length=tf.shape(inputs)[1])
|
||||
|
||||
mask_FF = tf.squeeze(
|
||||
transformer.build_sequence_mask(
|
||||
sequence_length, maximum_length=tf.shape(inputs)[1]),
|
||||
axis=1)
|
||||
|
||||
state = ()
|
||||
|
||||
attns = []
|
||||
for layer in range(self.num_layers):
|
||||
with tf.variable_scope('layer_{}'.format(layer)):
|
||||
with tf.variable_scope('multi_head'):
|
||||
context, attn = transformer.multi_head_attention(
|
||||
self.num_heads,
|
||||
transformer.norm(inputs),
|
||||
None,
|
||||
mode,
|
||||
num_units=self.num_units,
|
||||
mask=mask,
|
||||
dropout=self.attention_dropout,
|
||||
return_attention=True)
|
||||
attns.append(attn)
|
||||
context = transformer.drop_and_add(
|
||||
inputs, context, mode, dropout=self.dropout)
|
||||
|
||||
with tf.variable_scope('ffn'):
|
||||
transformed = transformer.feed_forward(
|
||||
transformer.norm(context),
|
||||
self.ffn_inner_dim,
|
||||
mode,
|
||||
dropout=self.relu_dropout,
|
||||
mask=mask_FF)
|
||||
transformed = transformer.drop_and_add(
|
||||
context, transformed, mode, dropout=self.dropout)
|
||||
|
||||
inputs = transformed
|
||||
state += (tf.reduce_mean(inputs, axis=1), )
|
||||
|
||||
outputs = transformer.norm(inputs)
|
||||
return (outputs, state, sequence_length, attns)
|
||||
|
||||
|
||||
class SelfAttentionEncoderOri():
|
||||
"""Encoder using self-attention as described in
|
||||
https://arxiv.org/abs/1706.03762.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
num_layers,
|
||||
num_units=512,
|
||||
num_heads=8,
|
||||
ffn_inner_dim=2048,
|
||||
dropout=0.1,
|
||||
attention_dropout=0.1,
|
||||
relu_dropout=0.1,
|
||||
position_encoder=SinusoidalPositionEncoder()):
|
||||
"""Initializes the parameters of the encoder.
|
||||
|
||||
Args:
|
||||
num_layers: The number of layers.
|
||||
num_units: The number of hidden units.
|
||||
num_heads: The number of heads in the multi-head attention.
|
||||
ffn_inner_dim: The number of units of the inner linear transformation
|
||||
in the feed forward layer.
|
||||
dropout: The probability to drop units from the outputs.
|
||||
attention_dropout: The probability to drop units from the attention.
|
||||
relu_dropout: The probability to drop units from the ReLU activation in
|
||||
the feed forward layer.
|
||||
position_encoder: The :class:`opennmt.layers.position.PositionEncoder` to
|
||||
apply on inputs or ``None``.
|
||||
"""
|
||||
super(SelfAttentionEncoderOri, self).__init__()
|
||||
self.num_layers = num_layers
|
||||
self.num_units = num_units
|
||||
self.num_heads = num_heads
|
||||
self.ffn_inner_dim = ffn_inner_dim
|
||||
self.dropout = dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
self.relu_dropout = relu_dropout
|
||||
self.position_encoder = position_encoder
|
||||
|
||||
def encode(self, inputs, sequence_length=None, mode=True):
|
||||
inputs *= self.num_units**0.5
|
||||
if self.position_encoder is not None:
|
||||
inputs = self.position_encoder(inputs)
|
||||
|
||||
inputs = tf.layers.dropout(inputs, rate=self.dropout, training=mode)
|
||||
mask = transformer.build_sequence_mask(
|
||||
sequence_length,
|
||||
num_heads=self.num_heads,
|
||||
maximum_length=tf.shape(inputs)[1]) # [N, 1, 1, T_out]
|
||||
|
||||
state = ()
|
||||
|
||||
attns = []
|
||||
for layer in range(self.num_layers):
|
||||
with tf.variable_scope('layer_{}'.format(layer)):
|
||||
with tf.variable_scope('multi_head'):
|
||||
context, attn = transformer.multi_head_attention(
|
||||
self.num_heads,
|
||||
transformer.norm(inputs),
|
||||
None,
|
||||
mode,
|
||||
num_units=self.num_units,
|
||||
mask=mask,
|
||||
dropout=self.attention_dropout,
|
||||
return_attention=True)
|
||||
attns.append(attn)
|
||||
context = transformer.drop_and_add(
|
||||
inputs, context, mode, dropout=self.dropout)
|
||||
|
||||
with tf.variable_scope('ffn'):
|
||||
transformed = transformer.feed_forward_ori(
|
||||
transformer.norm(context),
|
||||
self.ffn_inner_dim,
|
||||
mode,
|
||||
dropout=self.relu_dropout)
|
||||
transformed = transformer.drop_and_add(
|
||||
context, transformed, mode, dropout=self.dropout)
|
||||
|
||||
inputs = transformed
|
||||
state += (tf.reduce_mean(inputs, axis=1), )
|
||||
|
||||
outputs = transformer.norm(inputs)
|
||||
return (outputs, state, sequence_length, attns)
|
||||
1157
modelscope/models/audio/tts/am/models/transformer.py
Executable file
1157
modelscope/models/audio/tts/am/models/transformer.py
Executable file
File diff suppressed because it is too large
Load Diff
255
modelscope/models/audio/tts/am/sambert_hifi_16k.py
Normal file
255
modelscope/models/audio/tts/am/sambert_hifi_16k.py
Normal file
@@ -0,0 +1,255 @@
|
||||
import io
|
||||
import os
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from sklearn.preprocessing import MultiLabelBinarizer
|
||||
|
||||
from modelscope.models.base import Model
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.utils.constant import ModelFile, Tasks
|
||||
from .models import create_model
|
||||
from .text.symbols import load_symbols
|
||||
from .text.symbols_dict import SymbolsDict
|
||||
|
||||
__all__ = ['SambertNetHifi16k']
|
||||
|
||||
|
||||
def multi_label_symbol_to_sequence(my_classes, my_symbol):
|
||||
one_hot = MultiLabelBinarizer(my_classes)
|
||||
tokens = my_symbol.strip().split(' ')
|
||||
sequences = []
|
||||
for token in tokens:
|
||||
sequences.append(tuple(token.split('&')))
|
||||
# sequences.append(tuple(['~'])) # sequence length minus 1 to ignore EOS ~
|
||||
return one_hot.fit_transform(sequences)
|
||||
|
||||
|
||||
@MODELS.register_module(Tasks.text_to_speech, module_name=r'sambert_hifi_16k')
|
||||
class SambertNetHifi16k(Model):
|
||||
|
||||
def __init__(self,
|
||||
model_dir,
|
||||
pitch_control_str='',
|
||||
duration_control_str='',
|
||||
energy_control_str='',
|
||||
*args,
|
||||
**kwargs):
|
||||
tf.reset_default_graph()
|
||||
local_ckpt_path = os.path.join(ModelFile.TF_CHECKPOINT_FOLDER, 'ckpt')
|
||||
self._ckpt_path = os.path.join(model_dir, local_ckpt_path)
|
||||
self._dict_path = os.path.join(model_dir, 'dicts')
|
||||
self._hparams = tf.contrib.training.HParams(**kwargs)
|
||||
values = self._hparams.values()
|
||||
hp = [' {}:{}'.format(name, values[name]) for name in sorted(values)]
|
||||
print('Hyperparameters:\n' + '\n'.join(hp))
|
||||
super().__init__(self._ckpt_path, *args, **kwargs)
|
||||
model_name = 'robutrans'
|
||||
self._lfeat_type_list = self._hparams.lfeat_type_list.strip().split(
|
||||
',')
|
||||
sy, tone, syllable_flag, word_segment, emo_category, speaker = load_symbols(
|
||||
self._dict_path)
|
||||
self._sy = sy
|
||||
self._tone = tone
|
||||
self._syllable_flag = syllable_flag
|
||||
self._word_segment = word_segment
|
||||
self._emo_category = emo_category
|
||||
self._speaker = speaker
|
||||
self._inputs_dim = dict()
|
||||
for lfeat_type in self._lfeat_type_list:
|
||||
if lfeat_type == 'sy':
|
||||
self._inputs_dim[lfeat_type] = len(sy)
|
||||
elif lfeat_type == 'tone':
|
||||
self._inputs_dim[lfeat_type] = len(tone)
|
||||
elif lfeat_type == 'syllable_flag':
|
||||
self._inputs_dim[lfeat_type] = len(syllable_flag)
|
||||
elif lfeat_type == 'word_segment':
|
||||
self._inputs_dim[lfeat_type] = len(word_segment)
|
||||
elif lfeat_type == 'emo_category':
|
||||
self._inputs_dim[lfeat_type] = len(emo_category)
|
||||
elif lfeat_type == 'speaker':
|
||||
self._inputs_dim[lfeat_type] = len(speaker)
|
||||
|
||||
self._symbols_dict = SymbolsDict(sy, tone, syllable_flag, word_segment,
|
||||
emo_category, speaker,
|
||||
self._inputs_dim,
|
||||
self._lfeat_type_list)
|
||||
dim_inputs = sum(self._inputs_dim.values(
|
||||
)) - self._inputs_dim['speaker'] - self._inputs_dim['emo_category']
|
||||
inputs = tf.placeholder(tf.float32, [1, None, dim_inputs], 'inputs')
|
||||
inputs_emotion = tf.placeholder(
|
||||
tf.float32, [1, None, self._inputs_dim['emo_category']],
|
||||
'inputs_emotion')
|
||||
inputs_speaker = tf.placeholder(tf.float32,
|
||||
[1, None, self._inputs_dim['speaker']],
|
||||
'inputs_speaker')
|
||||
|
||||
input_lengths = tf.placeholder(tf.int32, [1], 'input_lengths')
|
||||
pitch_contours_scale = tf.placeholder(tf.float32, [1, None],
|
||||
'pitch_contours_scale')
|
||||
energy_contours_scale = tf.placeholder(tf.float32, [1, None],
|
||||
'energy_contours_scale')
|
||||
duration_scale = tf.placeholder(tf.float32, [1, None],
|
||||
'duration_scale')
|
||||
|
||||
with tf.variable_scope('model') as _:
|
||||
self._model = create_model(model_name, self._hparams)
|
||||
self._model.initialize(
|
||||
inputs,
|
||||
inputs_emotion,
|
||||
inputs_speaker,
|
||||
input_lengths,
|
||||
duration_scales=duration_scale,
|
||||
pitch_scales=pitch_contours_scale,
|
||||
energy_scales=energy_contours_scale)
|
||||
self._mel_spec = self._model.mel_outputs[0]
|
||||
self._duration_outputs = self._model.duration_outputs[0]
|
||||
self._duration_outputs_ = self._model.duration_outputs_[0]
|
||||
self._pitch_contour_outputs = self._model.pitch_contour_outputs[0]
|
||||
self._energy_contour_outputs = self._model.energy_contour_outputs[
|
||||
0]
|
||||
self._embedded_inputs_emotion = self._model.embedded_inputs_emotion[
|
||||
0]
|
||||
self._embedding_fsmn_outputs = self._model.embedding_fsmn_outputs[
|
||||
0]
|
||||
self._encoder_outputs = self._model.encoder_outputs[0]
|
||||
self._pitch_embeddings = self._model.pitch_embeddings[0]
|
||||
self._energy_embeddings = self._model.energy_embeddings[0]
|
||||
self._LR_outputs = self._model.LR_outputs[0]
|
||||
self._postnet_fsmn_outputs = self._model.postnet_fsmn_outputs[0]
|
||||
self._attention_h = self._model.attention_h
|
||||
self._attention_x = self._model.attention_x
|
||||
|
||||
print('Loading checkpoint: %s' % self._ckpt_path)
|
||||
config = tf.ConfigProto()
|
||||
config.gpu_options.allow_growth = True
|
||||
self._session = tf.Session(config=config)
|
||||
self._session.run(tf.global_variables_initializer())
|
||||
|
||||
saver = tf.train.Saver()
|
||||
saver.restore(self._session, self._ckpt_path)
|
||||
|
||||
duration_cfg_lst = []
|
||||
if len(duration_control_str) != 0:
|
||||
for item in duration_control_str.strip().split('|'):
|
||||
percent, scale = item.lstrip('(').rstrip(')').split(',')
|
||||
duration_cfg_lst.append((float(percent), float(scale)))
|
||||
|
||||
self._duration_cfg_lst = duration_cfg_lst
|
||||
|
||||
pitch_contours_cfg_lst = []
|
||||
if len(pitch_control_str) != 0:
|
||||
for item in pitch_control_str.strip().split('|'):
|
||||
percent, scale = item.lstrip('(').rstrip(')').split(',')
|
||||
pitch_contours_cfg_lst.append(
|
||||
(float(percent), float(scale)))
|
||||
|
||||
self._pitch_contours_cfg_lst = pitch_contours_cfg_lst
|
||||
|
||||
energy_contours_cfg_lst = []
|
||||
if len(energy_control_str) != 0:
|
||||
for item in energy_control_str.strip().split('|'):
|
||||
percent, scale = item.lstrip('(').rstrip(')').split(',')
|
||||
energy_contours_cfg_lst.append(
|
||||
(float(percent), float(scale)))
|
||||
|
||||
self._energy_contours_cfg_lst = energy_contours_cfg_lst
|
||||
|
||||
def forward(self, text):
|
||||
cleaner_names = [x.strip() for x in self._hparams.cleaners.split(',')]
|
||||
|
||||
lfeat_symbol = text.strip().split(' ')
|
||||
lfeat_symbol_separate = [''] * int(len(self._lfeat_type_list))
|
||||
for this_lfeat_symbol in lfeat_symbol:
|
||||
this_lfeat_symbol = this_lfeat_symbol.strip('{').strip('}').split(
|
||||
'$')
|
||||
if len(this_lfeat_symbol) != len(self._lfeat_type_list):
|
||||
raise Exception(
|
||||
'Length of this_lfeat_symbol in training data'
|
||||
+ ' is not equal to the length of lfeat_type_list, '
|
||||
+ str(len(this_lfeat_symbol)) + ' VS. '
|
||||
+ str(len(self._lfeat_type_list)))
|
||||
index = 0
|
||||
while index < len(lfeat_symbol_separate):
|
||||
lfeat_symbol_separate[index] = lfeat_symbol_separate[
|
||||
index] + this_lfeat_symbol[index] + ' '
|
||||
index = index + 1
|
||||
|
||||
index = 0
|
||||
lfeat_type = self._lfeat_type_list[index]
|
||||
sequence = self._symbols_dict.symbol_to_sequence(
|
||||
lfeat_symbol_separate[index].strip(), lfeat_type, cleaner_names)
|
||||
sequence_array = np.asarray(
|
||||
sequence[:-1],
|
||||
dtype=np.int32) # sequence length minus 1 to ignore EOS ~
|
||||
inputs = np.eye(
|
||||
self._inputs_dim[lfeat_type], dtype=np.float32)[sequence_array]
|
||||
index = index + 1
|
||||
while index < len(self._lfeat_type_list) - 2:
|
||||
lfeat_type = self._lfeat_type_list[index]
|
||||
sequence = self._symbols_dict.symbol_to_sequence(
|
||||
lfeat_symbol_separate[index].strip(), lfeat_type,
|
||||
cleaner_names)
|
||||
sequence_array = np.asarray(
|
||||
sequence[:-1],
|
||||
dtype=np.int32) # sequence length minus 1 to ignore EOS ~
|
||||
inputs_temp = np.eye(
|
||||
self._inputs_dim[lfeat_type], dtype=np.float32)[sequence_array]
|
||||
inputs = np.concatenate((inputs, inputs_temp), axis=1)
|
||||
index = index + 1
|
||||
seq = inputs
|
||||
|
||||
lfeat_type = 'emo_category'
|
||||
inputs_emotion = multi_label_symbol_to_sequence(
|
||||
self._emo_category, lfeat_symbol_separate[index].strip())
|
||||
# inputs_emotion = inputs_emotion * 1.5
|
||||
index = index + 1
|
||||
|
||||
lfeat_type = 'speaker'
|
||||
inputs_speaker = multi_label_symbol_to_sequence(
|
||||
self._speaker, lfeat_symbol_separate[index].strip())
|
||||
|
||||
duration_scale = np.ones((len(seq), ), dtype=np.float32)
|
||||
start_idx = 0
|
||||
for (percent, scale) in self._duration_cfg_lst:
|
||||
duration_scale[start_idx:start_idx
|
||||
+ int(percent * len(seq))] = scale
|
||||
start_idx += int(percent * len(seq))
|
||||
|
||||
pitch_contours_scale = np.ones((len(seq), ), dtype=np.float32)
|
||||
start_idx = 0
|
||||
for (percent, scale) in self._pitch_contours_cfg_lst:
|
||||
pitch_contours_scale[start_idx:start_idx
|
||||
+ int(percent * len(seq))] = scale
|
||||
start_idx += int(percent * len(seq))
|
||||
|
||||
energy_contours_scale = np.ones((len(seq), ), dtype=np.float32)
|
||||
start_idx = 0
|
||||
for (percent, scale) in self._energy_contours_cfg_lst:
|
||||
energy_contours_scale[start_idx:start_idx
|
||||
+ int(percent * len(seq))] = scale
|
||||
start_idx += int(percent * len(seq))
|
||||
|
||||
feed_dict = {
|
||||
self._model.inputs: [np.asarray(seq, dtype=np.float32)],
|
||||
self._model.inputs_emotion:
|
||||
[np.asarray(inputs_emotion, dtype=np.float32)],
|
||||
self._model.inputs_speaker:
|
||||
[np.asarray(inputs_speaker, dtype=np.float32)],
|
||||
self._model.input_lengths:
|
||||
np.asarray([len(seq)], dtype=np.int32),
|
||||
self._model.duration_scales: [duration_scale],
|
||||
self._model.pitch_scales: [pitch_contours_scale],
|
||||
self._model.energy_scales: [energy_contours_scale]
|
||||
}
|
||||
|
||||
result = self._session.run([
|
||||
self._mel_spec, self._duration_outputs, self._duration_outputs_,
|
||||
self._pitch_contour_outputs, self._embedded_inputs_emotion,
|
||||
self._embedding_fsmn_outputs, self._encoder_outputs,
|
||||
self._pitch_embeddings, self._LR_outputs,
|
||||
self._postnet_fsmn_outputs, self._energy_contour_outputs,
|
||||
self._energy_embeddings, self._attention_x, self._attention_h
|
||||
], feed_dict=feed_dict) # yapf:disable
|
||||
return result[0]
|
||||
0
modelscope/models/audio/tts/am/text/__init__.py
Executable file
0
modelscope/models/audio/tts/am/text/__init__.py
Executable file
89
modelscope/models/audio/tts/am/text/cleaners.py
Executable file
89
modelscope/models/audio/tts/am/text/cleaners.py
Executable file
@@ -0,0 +1,89 @@
|
||||
'''
|
||||
Cleaners are transformations that run over the input text at both training and eval time.
|
||||
|
||||
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
|
||||
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
|
||||
1. "english_cleaners" for English text
|
||||
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
|
||||
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
|
||||
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
|
||||
the symbols in symbols.py to match your data).
|
||||
'''
|
||||
|
||||
import re
|
||||
|
||||
from unidecode import unidecode
|
||||
|
||||
from .numbers import normalize_numbers
|
||||
|
||||
# Regular expression matching whitespace:
|
||||
_whitespace_re = re.compile(r'\s+')
|
||||
|
||||
# List of (regular expression, replacement) pairs for abbreviations:
|
||||
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1])
|
||||
for x in [
|
||||
('mrs', 'misess'),
|
||||
('mr', 'mister'),
|
||||
('dr', 'doctor'),
|
||||
('st', 'saint'),
|
||||
('co', 'company'),
|
||||
('jr', 'junior'),
|
||||
('maj', 'major'),
|
||||
('gen', 'general'),
|
||||
('drs', 'doctors'),
|
||||
('rev', 'reverend'),
|
||||
('lt', 'lieutenant'),
|
||||
('hon', 'honorable'),
|
||||
('sgt', 'sergeant'),
|
||||
('capt', 'captain'),
|
||||
('esq', 'esquire'),
|
||||
('ltd', 'limited'),
|
||||
('col', 'colonel'),
|
||||
('ft', 'fort'), ]] # yapf:disable
|
||||
|
||||
|
||||
def expand_abbreviations(text):
|
||||
for regex, replacement in _abbreviations:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def expand_numbers(text):
|
||||
return normalize_numbers(text)
|
||||
|
||||
|
||||
def lowercase(text):
|
||||
return text.lower()
|
||||
|
||||
|
||||
def collapse_whitespace(text):
|
||||
return re.sub(_whitespace_re, ' ', text)
|
||||
|
||||
|
||||
def convert_to_ascii(text):
|
||||
return unidecode(text)
|
||||
|
||||
|
||||
def basic_cleaners(text):
|
||||
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
|
||||
text = lowercase(text)
|
||||
text = collapse_whitespace(text)
|
||||
return text
|
||||
|
||||
|
||||
def transliteration_cleaners(text):
|
||||
'''Pipeline for non-English text that transliterates to ASCII.'''
|
||||
text = convert_to_ascii(text)
|
||||
text = lowercase(text)
|
||||
text = collapse_whitespace(text)
|
||||
return text
|
||||
|
||||
|
||||
def english_cleaners(text):
|
||||
'''Pipeline for English text, including number and abbreviation expansion.'''
|
||||
text = convert_to_ascii(text)
|
||||
text = lowercase(text)
|
||||
text = expand_numbers(text)
|
||||
text = expand_abbreviations(text)
|
||||
text = collapse_whitespace(text)
|
||||
return text
|
||||
64
modelscope/models/audio/tts/am/text/cmudict.py
Executable file
64
modelscope/models/audio/tts/am/text/cmudict.py
Executable file
@@ -0,0 +1,64 @@
|
||||
import re
|
||||
|
||||
valid_symbols = [
|
||||
'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1',
|
||||
'AH2', 'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0',
|
||||
'AY1', 'AY2', 'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0',
|
||||
'ER1', 'ER2', 'EY', 'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0',
|
||||
'IH1', 'IH2', 'IY', 'IY0', 'IY1', 'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG',
|
||||
'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0', 'OY1', 'OY2', 'P', 'R', 'S', 'SH',
|
||||
'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V', 'W',
|
||||
'Y', 'Z', 'ZH'
|
||||
]
|
||||
|
||||
_valid_symbol_set = set(valid_symbols)
|
||||
|
||||
|
||||
class CMUDict:
|
||||
'''Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict'''
|
||||
|
||||
def __init__(self, file_or_path, keep_ambiguous=True):
|
||||
if isinstance(file_or_path, str):
|
||||
with open(file_or_path, encoding='latin-1') as f:
|
||||
entries = _parse_cmudict(f)
|
||||
else:
|
||||
entries = _parse_cmudict(file_or_path)
|
||||
if not keep_ambiguous:
|
||||
entries = {
|
||||
word: pron
|
||||
for word, pron in entries.items() if len(pron) == 1
|
||||
}
|
||||
self._entries = entries
|
||||
|
||||
def __len__(self):
|
||||
return len(self._entries)
|
||||
|
||||
def lookup(self, word):
|
||||
'''Returns list of ARPAbet pronunciations of the given word.'''
|
||||
return self._entries.get(word.upper())
|
||||
|
||||
|
||||
_alt_re = re.compile(r'\([0-9]+\)')
|
||||
|
||||
|
||||
def _parse_cmudict(file):
|
||||
cmudict = {}
|
||||
for line in file:
|
||||
if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
|
||||
parts = line.split(' ')
|
||||
word = re.sub(_alt_re, '', parts[0])
|
||||
pronunciation = _get_pronunciation(parts[1])
|
||||
if pronunciation:
|
||||
if word in cmudict:
|
||||
cmudict[word].append(pronunciation)
|
||||
else:
|
||||
cmudict[word] = [pronunciation]
|
||||
return cmudict
|
||||
|
||||
|
||||
def _get_pronunciation(s):
|
||||
parts = s.strip().split(' ')
|
||||
for part in parts:
|
||||
if part not in _valid_symbol_set:
|
||||
return None
|
||||
return ' '.join(parts)
|
||||
70
modelscope/models/audio/tts/am/text/numbers.py
Executable file
70
modelscope/models/audio/tts/am/text/numbers.py
Executable file
@@ -0,0 +1,70 @@
|
||||
import re
|
||||
|
||||
import inflect
|
||||
|
||||
_inflect = inflect.engine()
|
||||
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
|
||||
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
|
||||
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
|
||||
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
|
||||
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
|
||||
_number_re = re.compile(r'[0-9]+')
|
||||
|
||||
|
||||
def _remove_commas(m):
|
||||
return m.group(1).replace(',', '')
|
||||
|
||||
|
||||
def _expand_decimal_point(m):
|
||||
return m.group(1).replace('.', ' point ')
|
||||
|
||||
|
||||
def _expand_dollars(m):
|
||||
match = m.group(1)
|
||||
parts = match.split('.')
|
||||
if len(parts) > 2:
|
||||
return match + ' dollars' # Unexpected format
|
||||
dollars = int(parts[0]) if parts[0] else 0
|
||||
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
||||
if dollars and cents:
|
||||
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
||||
cent_unit = 'cent' if cents == 1 else 'cents'
|
||||
return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
|
||||
elif dollars:
|
||||
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
||||
return '%s %s' % (dollars, dollar_unit)
|
||||
elif cents:
|
||||
cent_unit = 'cent' if cents == 1 else 'cents'
|
||||
return '%s %s' % (cents, cent_unit)
|
||||
else:
|
||||
return 'zero dollars'
|
||||
|
||||
|
||||
def _expand_ordinal(m):
|
||||
return _inflect.number_to_words(m.group(0))
|
||||
|
||||
|
||||
def _expand_number(m):
|
||||
num = int(m.group(0))
|
||||
if num > 1000 and num < 3000:
|
||||
if num == 2000:
|
||||
return 'two thousand'
|
||||
elif num > 2000 and num < 2010:
|
||||
return 'two thousand ' + _inflect.number_to_words(num % 100)
|
||||
elif num % 100 == 0:
|
||||
return _inflect.number_to_words(num // 100) + ' hundred'
|
||||
else:
|
||||
return _inflect.number_to_words(
|
||||
num, andword='', zero='oh', group=2).replace(', ', ' ')
|
||||
else:
|
||||
return _inflect.number_to_words(num, andword='')
|
||||
|
||||
|
||||
def normalize_numbers(text):
|
||||
text = re.sub(_comma_number_re, _remove_commas, text)
|
||||
text = re.sub(_pounds_re, r'\1 pounds', text)
|
||||
text = re.sub(_dollars_re, _expand_dollars, text)
|
||||
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
||||
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
||||
text = re.sub(_number_re, _expand_number, text)
|
||||
return text
|
||||
95
modelscope/models/audio/tts/am/text/symbols.py
Normal file
95
modelscope/models/audio/tts/am/text/symbols.py
Normal file
@@ -0,0 +1,95 @@
|
||||
'''
|
||||
Defines the set of symbols used in text input to the model.
|
||||
|
||||
The default is a set of ASCII characters that works well for English or text that has been run
|
||||
through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details.
|
||||
'''
|
||||
import codecs
|
||||
import os
|
||||
|
||||
_pad = '_'
|
||||
_eos = '~'
|
||||
_mask = '@[MASK]'
|
||||
|
||||
|
||||
def load_symbols(dict_path):
|
||||
_characters = ''
|
||||
_ch_symbols = []
|
||||
sy_dict_name = 'sy_dict.txt'
|
||||
sy_dict_path = os.path.join(dict_path, sy_dict_name)
|
||||
f = codecs.open(sy_dict_path, 'r')
|
||||
for line in f:
|
||||
line = line.strip('\r\n')
|
||||
_ch_symbols.append(line)
|
||||
|
||||
_arpabet = ['@' + s for s in _ch_symbols]
|
||||
|
||||
# Export all symbols:
|
||||
sy = list(_characters) + _arpabet + [_pad, _eos, _mask]
|
||||
|
||||
_characters = ''
|
||||
|
||||
_ch_tones = []
|
||||
tone_dict_name = 'tone_dict.txt'
|
||||
tone_dict_path = os.path.join(dict_path, tone_dict_name)
|
||||
f = codecs.open(tone_dict_path, 'r')
|
||||
for line in f:
|
||||
line = line.strip('\r\n')
|
||||
_ch_tones.append(line)
|
||||
|
||||
# Export all tones:
|
||||
tone = list(_characters) + _ch_tones + [_pad, _eos, _mask]
|
||||
|
||||
_characters = ''
|
||||
|
||||
_ch_syllable_flags = []
|
||||
syllable_flag_name = 'syllable_flag_dict.txt'
|
||||
syllable_flag_path = os.path.join(dict_path, syllable_flag_name)
|
||||
f = codecs.open(syllable_flag_path, 'r')
|
||||
for line in f:
|
||||
line = line.strip('\r\n')
|
||||
_ch_syllable_flags.append(line)
|
||||
|
||||
# Export all syllable_flags:
|
||||
syllable_flag = list(_characters) + _ch_syllable_flags + [
|
||||
_pad, _eos, _mask
|
||||
]
|
||||
|
||||
_characters = ''
|
||||
|
||||
_ch_word_segments = []
|
||||
word_segment_name = 'word_segment_dict.txt'
|
||||
word_segment_path = os.path.join(dict_path, word_segment_name)
|
||||
f = codecs.open(word_segment_path, 'r')
|
||||
for line in f:
|
||||
line = line.strip('\r\n')
|
||||
_ch_word_segments.append(line)
|
||||
|
||||
# Export all syllable_flags:
|
||||
word_segment = list(_characters) + _ch_word_segments + [_pad, _eos, _mask]
|
||||
|
||||
_characters = ''
|
||||
|
||||
_ch_emo_types = []
|
||||
emo_category_name = 'emo_category_dict.txt'
|
||||
emo_category_path = os.path.join(dict_path, emo_category_name)
|
||||
f = codecs.open(emo_category_path, 'r')
|
||||
for line in f:
|
||||
line = line.strip('\r\n')
|
||||
_ch_emo_types.append(line)
|
||||
|
||||
emo_category = list(_characters) + _ch_emo_types + [_pad, _eos, _mask]
|
||||
|
||||
_characters = ''
|
||||
|
||||
_ch_speakers = []
|
||||
speaker_name = 'speaker_dict.txt'
|
||||
speaker_path = os.path.join(dict_path, speaker_name)
|
||||
f = codecs.open(speaker_path, 'r')
|
||||
for line in f:
|
||||
line = line.strip('\r\n')
|
||||
_ch_speakers.append(line)
|
||||
|
||||
# Export all syllable_flags:
|
||||
speaker = list(_characters) + _ch_speakers + [_pad, _eos, _mask]
|
||||
return sy, tone, syllable_flag, word_segment, emo_category, speaker
|
||||
200
modelscope/models/audio/tts/am/text/symbols_dict.py
Normal file
200
modelscope/models/audio/tts/am/text/symbols_dict.py
Normal file
@@ -0,0 +1,200 @@
|
||||
import re
|
||||
import sys
|
||||
|
||||
from .cleaners import (basic_cleaners, english_cleaners,
|
||||
transliteration_cleaners)
|
||||
|
||||
|
||||
class SymbolsDict:
|
||||
|
||||
def __init__(self, sy, tone, syllable_flag, word_segment, emo_category,
|
||||
speaker, inputs_dim, lfeat_type_list):
|
||||
self._inputs_dim = inputs_dim
|
||||
self._lfeat_type_list = lfeat_type_list
|
||||
self._sy_to_id = {s: i for i, s in enumerate(sy)}
|
||||
self._id_to_sy = {i: s for i, s in enumerate(sy)}
|
||||
self._tone_to_id = {s: i for i, s in enumerate(tone)}
|
||||
self._id_to_tone = {i: s for i, s in enumerate(tone)}
|
||||
self._syllable_flag_to_id = {s: i for i, s in enumerate(syllable_flag)}
|
||||
self._id_to_syllable_flag = {i: s for i, s in enumerate(syllable_flag)}
|
||||
self._word_segment_to_id = {s: i for i, s in enumerate(word_segment)}
|
||||
self._id_to_word_segment = {i: s for i, s in enumerate(word_segment)}
|
||||
self._emo_category_to_id = {s: i for i, s in enumerate(emo_category)}
|
||||
self._id_to_emo_category = {i: s for i, s in enumerate(emo_category)}
|
||||
self._speaker_to_id = {s: i for i, s in enumerate(speaker)}
|
||||
self._id_to_speaker = {i: s for i, s in enumerate(speaker)}
|
||||
print('_sy_to_id: ')
|
||||
print(self._sy_to_id)
|
||||
print('_tone_to_id: ')
|
||||
print(self._tone_to_id)
|
||||
print('_syllable_flag_to_id: ')
|
||||
print(self._syllable_flag_to_id)
|
||||
print('_word_segment_to_id: ')
|
||||
print(self._word_segment_to_id)
|
||||
print('_emo_category_to_id: ')
|
||||
print(self._emo_category_to_id)
|
||||
print('_speaker_to_id: ')
|
||||
print(self._speaker_to_id)
|
||||
self._curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
|
||||
self._cleaners = {
|
||||
basic_cleaners.__name__: basic_cleaners,
|
||||
transliteration_cleaners.__name__: transliteration_cleaners,
|
||||
english_cleaners.__name__: english_cleaners
|
||||
}
|
||||
|
||||
def _clean_text(self, text, cleaner_names):
|
||||
for name in cleaner_names:
|
||||
cleaner = self._cleaners.get(name)
|
||||
if not cleaner:
|
||||
raise Exception('Unknown cleaner: %s' % name)
|
||||
text = cleaner(text)
|
||||
return text
|
||||
|
||||
def _sy_to_sequence(self, sy):
|
||||
return [self._sy_to_id[s] for s in sy if self._should_keep_sy(s)]
|
||||
|
||||
def _arpabet_to_sequence(self, text):
|
||||
return self._sy_to_sequence(['@' + s for s in text.split()])
|
||||
|
||||
def _should_keep_sy(self, s):
|
||||
return s in self._sy_to_id and s != '_' and s != '~'
|
||||
|
||||
def symbol_to_sequence(self, this_lfeat_symbol, lfeat_type, cleaner_names):
|
||||
sequence = []
|
||||
if lfeat_type == 'sy':
|
||||
this_lfeat_symbol = this_lfeat_symbol.strip().split(' ')
|
||||
this_lfeat_symbol_format = ''
|
||||
index = 0
|
||||
while index < len(this_lfeat_symbol):
|
||||
this_lfeat_symbol_format = this_lfeat_symbol_format + '{' + this_lfeat_symbol[
|
||||
index] + '}' + ' '
|
||||
index = index + 1
|
||||
sequence = self.text_to_sequence(this_lfeat_symbol_format,
|
||||
cleaner_names)
|
||||
elif lfeat_type == 'tone':
|
||||
sequence = self.tone_to_sequence(this_lfeat_symbol)
|
||||
elif lfeat_type == 'syllable_flag':
|
||||
sequence = self.syllable_flag_to_sequence(this_lfeat_symbol)
|
||||
elif lfeat_type == 'word_segment':
|
||||
sequence = self.word_segment_to_sequence(this_lfeat_symbol)
|
||||
elif lfeat_type == 'emo_category':
|
||||
sequence = self.emo_category_to_sequence(this_lfeat_symbol)
|
||||
elif lfeat_type == 'speaker':
|
||||
sequence = self.speaker_to_sequence(this_lfeat_symbol)
|
||||
else:
|
||||
raise Exception('Unknown lfeat type: %s' % lfeat_type)
|
||||
|
||||
return sequence
|
||||
|
||||
def text_to_sequence(self, text, cleaner_names):
|
||||
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
||||
|
||||
The text can optionally have ARPAbet sequences enclosed in curly braces embedded
|
||||
in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
|
||||
|
||||
Args:
|
||||
text: string to convert to a sequence
|
||||
cleaner_names: names of the cleaner functions to run the text through
|
||||
|
||||
Returns:
|
||||
List of integers corresponding to the symbols in the text
|
||||
'''
|
||||
sequence = []
|
||||
|
||||
# Check for curly braces and treat their contents as ARPAbet:
|
||||
while len(text):
|
||||
m = self._curly_re.match(text)
|
||||
if not m:
|
||||
sequence += self._sy_to_sequence(
|
||||
self._clean_text(text, cleaner_names))
|
||||
break
|
||||
sequence += self._sy_to_sequence(
|
||||
self._clean_text(m.group(1), cleaner_names))
|
||||
sequence += self._arpabet_to_sequence(m.group(2))
|
||||
text = m.group(3)
|
||||
|
||||
# Append EOS token
|
||||
sequence.append(self._sy_to_id['~'])
|
||||
return sequence
|
||||
|
||||
def tone_to_sequence(self, tone):
|
||||
tones = tone.strip().split(' ')
|
||||
sequence = []
|
||||
for this_tone in tones:
|
||||
sequence.append(self._tone_to_id[this_tone])
|
||||
sequence.append(self._tone_to_id['~'])
|
||||
return sequence
|
||||
|
||||
def syllable_flag_to_sequence(self, syllable_flag):
|
||||
syllable_flags = syllable_flag.strip().split(' ')
|
||||
sequence = []
|
||||
for this_syllable_flag in syllable_flags:
|
||||
sequence.append(self._syllable_flag_to_id[this_syllable_flag])
|
||||
sequence.append(self._syllable_flag_to_id['~'])
|
||||
return sequence
|
||||
|
||||
def word_segment_to_sequence(self, word_segment):
|
||||
word_segments = word_segment.strip().split(' ')
|
||||
sequence = []
|
||||
for this_word_segment in word_segments:
|
||||
sequence.append(self._word_segment_to_id[this_word_segment])
|
||||
sequence.append(self._word_segment_to_id['~'])
|
||||
return sequence
|
||||
|
||||
def emo_category_to_sequence(self, emo_type):
|
||||
emo_categories = emo_type.strip().split(' ')
|
||||
sequence = []
|
||||
for this_category in emo_categories:
|
||||
sequence.append(self._emo_category_to_id[this_category])
|
||||
sequence.append(self._emo_category_to_id['~'])
|
||||
return sequence
|
||||
|
||||
def speaker_to_sequence(self, speaker):
|
||||
speakers = speaker.strip().split(' ')
|
||||
sequence = []
|
||||
for this_speaker in speakers:
|
||||
sequence.append(self._speaker_to_id[this_speaker])
|
||||
sequence.append(self._speaker_to_id['~'])
|
||||
return sequence
|
||||
|
||||
def sequence_to_symbol(self, sequence):
|
||||
result = ''
|
||||
pre_lfeat_dim = 0
|
||||
for lfeat_type in self._lfeat_type_list:
|
||||
current_one_hot_sequence = sequence[:, pre_lfeat_dim:pre_lfeat_dim
|
||||
+ self._inputs_dim[lfeat_type]]
|
||||
current_sequence = current_one_hot_sequence.argmax(1)
|
||||
length = current_sequence.shape[0]
|
||||
|
||||
index = 0
|
||||
while index < length:
|
||||
this_sequence = current_sequence[index]
|
||||
s = ''
|
||||
if lfeat_type == 'sy':
|
||||
s = self._id_to_sy[this_sequence]
|
||||
if len(s) > 1 and s[0] == '@':
|
||||
s = s[1:]
|
||||
elif lfeat_type == 'tone':
|
||||
s = self._id_to_tone[this_sequence]
|
||||
elif lfeat_type == 'syllable_flag':
|
||||
s = self._id_to_syllable_flag[this_sequence]
|
||||
elif lfeat_type == 'word_segment':
|
||||
s = self._id_to_word_segment[this_sequence]
|
||||
elif lfeat_type == 'emo_category':
|
||||
s = self._id_to_emo_category[this_sequence]
|
||||
elif lfeat_type == 'speaker':
|
||||
s = self._id_to_speaker[this_sequence]
|
||||
else:
|
||||
raise Exception('Unknown lfeat type: %s' % lfeat_type)
|
||||
|
||||
if index == 0:
|
||||
result = result + lfeat_type + ': '
|
||||
|
||||
result = result + '{' + s + '}'
|
||||
|
||||
if index == length - 1:
|
||||
result = result + '; '
|
||||
|
||||
index = index + 1
|
||||
pre_lfeat_dim = pre_lfeat_dim + self._inputs_dim[lfeat_type]
|
||||
return result
|
||||
1
modelscope/models/audio/tts/frontend/__init__.py
Normal file
1
modelscope/models/audio/tts/frontend/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .generic_text_to_speech_frontend import * # noqa F403
|
||||
@@ -0,0 +1,39 @@
|
||||
import os
|
||||
import zipfile
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import ttsfrd
|
||||
|
||||
from modelscope.models.base import Model
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.utils.audio.tts_exceptions import (
|
||||
TtsFrontendInitializeFailedException,
|
||||
TtsFrontendLanguageTypeInvalidException)
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
__all__ = ['GenericTtsFrontend']
|
||||
|
||||
|
||||
@MODELS.register_module(
|
||||
Tasks.text_to_speech, module_name=r'generic_tts_frontend')
|
||||
class GenericTtsFrontend(Model):
|
||||
|
||||
def __init__(self, model_dir='.', lang_type='pinyin', *args, **kwargs):
|
||||
super().__init__(model_dir, *args, **kwargs)
|
||||
frontend = ttsfrd.TtsFrontendEngine()
|
||||
zip_file = os.path.join(model_dir, 'resource.zip')
|
||||
self._res_path = os.path.join(model_dir, 'resource')
|
||||
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
|
||||
zip_ref.extractall(model_dir)
|
||||
if not frontend.initialize(self._res_path):
|
||||
raise TtsFrontendInitializeFailedException(
|
||||
'resource invalid: {}'.format(self._res_path))
|
||||
if not frontend.set_lang_type(lang_type):
|
||||
raise TtsFrontendLanguageTypeInvalidException(
|
||||
'language type invalid: {}, valid is pinyin and chenmix'.
|
||||
format(lang_type))
|
||||
self._frontend = frontend
|
||||
|
||||
def forward(self, data: str) -> Dict[str, List]:
|
||||
result = self._frontend.gen_tacotron_symbols(data)
|
||||
return {'texts': [s for s in result.splitlines() if s != '']}
|
||||
1
modelscope/models/audio/tts/vocoder/__init__.py
Normal file
1
modelscope/models/audio/tts/vocoder/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .hifigan16k import * # noqa F403
|
||||
73
modelscope/models/audio/tts/vocoder/hifigan16k.py
Normal file
73
modelscope/models/audio/tts/vocoder/hifigan16k.py
Normal file
@@ -0,0 +1,73 @@
|
||||
from __future__ import (absolute_import, division, print_function,
|
||||
unicode_literals)
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import time
|
||||
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
from scipy.io.wavfile import write
|
||||
|
||||
from modelscope.models.base import Model
|
||||
from modelscope.models.builder import MODELS
|
||||
from modelscope.utils.audio.tts_exceptions import \
|
||||
TtsVocoderMelspecShapeMismatchException
|
||||
from modelscope.utils.constant import ModelFile, Tasks
|
||||
from .models import Generator
|
||||
|
||||
__all__ = ['Hifigan16k', 'AttrDict']
|
||||
MAX_WAV_VALUE = 32768.0
|
||||
|
||||
|
||||
def load_checkpoint(filepath, device):
|
||||
assert os.path.isfile(filepath)
|
||||
print("Loading '{}'".format(filepath))
|
||||
checkpoint_dict = torch.load(filepath, map_location=device)
|
||||
print('Complete.')
|
||||
return checkpoint_dict
|
||||
|
||||
|
||||
class AttrDict(dict):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(AttrDict, self).__init__(*args, **kwargs)
|
||||
self.__dict__ = self
|
||||
|
||||
|
||||
@MODELS.register_module(Tasks.text_to_speech, module_name=r'hifigan16k')
|
||||
class Hifigan16k(Model):
|
||||
|
||||
def __init__(self, model_dir, *args, **kwargs):
|
||||
self._ckpt_path = os.path.join(model_dir,
|
||||
ModelFile.TORCH_MODEL_BIN_FILE)
|
||||
self._config = AttrDict(**kwargs)
|
||||
|
||||
super().__init__(self._ckpt_path, *args, **kwargs)
|
||||
if torch.cuda.is_available():
|
||||
torch.manual_seed(self._config.seed)
|
||||
self._device = torch.device('cuda')
|
||||
else:
|
||||
self._device = torch.device('cpu')
|
||||
self._generator = Generator(self._config).to(self._device)
|
||||
state_dict_g = load_checkpoint(self._ckpt_path, self._device)
|
||||
self._generator.load_state_dict(state_dict_g['generator'])
|
||||
self._generator.eval()
|
||||
self._generator.remove_weight_norm()
|
||||
|
||||
def forward(self, melspec):
|
||||
dim0 = list(melspec.shape)[-1]
|
||||
if dim0 != 80:
|
||||
raise TtsVocoderMelspecShapeMismatchException(
|
||||
'input melspec mismatch 0 dim require 80 but {}'.format(dim0))
|
||||
with torch.no_grad():
|
||||
x = melspec.T
|
||||
x = torch.FloatTensor(x).to(self._device)
|
||||
if len(x.shape) == 2:
|
||||
x = x.unsqueeze(0)
|
||||
y_g_hat = self._generator(x)
|
||||
audio = y_g_hat.squeeze()
|
||||
audio = audio * MAX_WAV_VALUE
|
||||
audio = audio.cpu().numpy().astype('int16')
|
||||
return audio
|
||||
1
modelscope/models/audio/tts/vocoder/models/__init__.py
Normal file
1
modelscope/models/audio/tts/vocoder/models/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .models import Generator
|
||||
516
modelscope/models/audio/tts/vocoder/models/models.py
Executable file
516
modelscope/models/audio/tts/vocoder/models/models.py
Executable file
@@ -0,0 +1,516 @@
|
||||
from distutils.version import LooseVersion
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from pytorch_wavelets import DWT1DForward
|
||||
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
|
||||
from .utils import get_padding, init_weights
|
||||
|
||||
is_pytorch_17plus = LooseVersion(torch.__version__) >= LooseVersion('1.7')
|
||||
|
||||
|
||||
def stft(x, fft_size, hop_size, win_length, window):
|
||||
"""Perform STFT and convert to magnitude spectrogram.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input signal tensor (B, T).
|
||||
fft_size (int): FFT size.
|
||||
hop_size (int): Hop size.
|
||||
win_length (int): Window length.
|
||||
window (str): Window function type.
|
||||
|
||||
Returns:
|
||||
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
|
||||
|
||||
"""
|
||||
if is_pytorch_17plus:
|
||||
x_stft = torch.stft(
|
||||
x, fft_size, hop_size, win_length, window, return_complex=False)
|
||||
else:
|
||||
x_stft = torch.stft(x, fft_size, hop_size, win_length, window)
|
||||
real = x_stft[..., 0]
|
||||
imag = x_stft[..., 1]
|
||||
|
||||
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
|
||||
return torch.sqrt(torch.clamp(real**2 + imag**2, min=1e-7)).transpose(2, 1)
|
||||
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
def get_padding_casual(kernel_size, dilation=1):
|
||||
return int(kernel_size * dilation - dilation)
|
||||
|
||||
|
||||
class Conv1dCasual(torch.nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=True,
|
||||
padding_mode='zeros'):
|
||||
super(Conv1dCasual, self).__init__()
|
||||
self.pad = padding
|
||||
self.conv1d = weight_norm(
|
||||
Conv1d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding=0,
|
||||
dilation=dilation,
|
||||
groups=groups,
|
||||
bias=bias,
|
||||
padding_mode=padding_mode))
|
||||
self.conv1d.apply(init_weights)
|
||||
|
||||
def forward(self, x): # bdt
|
||||
# described starting from the last dimension and moving forward.
|
||||
x = F.pad(x, (self.pad, 0, 0, 0, 0, 0), 'constant')
|
||||
x = self.conv1d(x)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.conv1d)
|
||||
|
||||
|
||||
class ConvTranspose1dCausal(torch.nn.Module):
|
||||
"""CausalConvTranspose1d module with customized initialization."""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding=0):
|
||||
"""Initialize CausalConvTranspose1d module."""
|
||||
super(ConvTranspose1dCausal, self).__init__()
|
||||
self.deconv = weight_norm(
|
||||
ConvTranspose1d(in_channels, out_channels, kernel_size, stride))
|
||||
self.stride = stride
|
||||
self.deconv.apply(init_weights)
|
||||
self.pad = kernel_size - stride
|
||||
|
||||
def forward(self, x):
|
||||
"""Calculate forward propagation.
|
||||
Args:
|
||||
x (Tensor): Input tensor (B, in_channels, T_in).
|
||||
Returns:
|
||||
Tensor: Output tensor (B, out_channels, T_out).
|
||||
"""
|
||||
# x = F.pad(x, (self.pad, 0, 0, 0, 0, 0), "constant")
|
||||
return self.deconv(x)[:, :, :-self.pad]
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.deconv)
|
||||
|
||||
|
||||
class ResBlock1(torch.nn.Module):
|
||||
|
||||
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
||||
super(ResBlock1, self).__init__()
|
||||
self.h = h
|
||||
self.convs1 = nn.ModuleList([
|
||||
Conv1dCasual(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[i],
|
||||
padding=get_padding_casual(kernel_size, dilation[i]))
|
||||
for i in range(len(dilation))
|
||||
])
|
||||
|
||||
self.convs2 = nn.ModuleList([
|
||||
Conv1dCasual(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding_casual(kernel_size, 1))
|
||||
for i in range(len(dilation))
|
||||
])
|
||||
|
||||
def forward(self, x):
|
||||
for c1, c2 in zip(self.convs1, self.convs2):
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
xt = c1(xt)
|
||||
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for layer in self.convs1:
|
||||
layer.remove_weight_norm()
|
||||
for layer in self.convs2:
|
||||
layer.remove_weight_norm()
|
||||
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
|
||||
def __init__(self, h):
|
||||
super(Generator, self).__init__()
|
||||
self.h = h
|
||||
self.num_kernels = len(h.resblock_kernel_sizes)
|
||||
self.num_upsamples = len(h.upsample_rates)
|
||||
print('num_kernels={}, num_upsamples={}'.format(
|
||||
self.num_kernels, self.num_upsamples))
|
||||
self.conv_pre = Conv1dCasual(
|
||||
80, h.upsample_initial_channel, 7, 1, padding=7 - 1)
|
||||
resblock = ResBlock1 if h.resblock == '1' else ResBlock2
|
||||
|
||||
self.ups = nn.ModuleList()
|
||||
self.repeat_ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(
|
||||
zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
||||
upsample = nn.Sequential(
|
||||
nn.Upsample(mode='nearest', scale_factor=u),
|
||||
nn.LeakyReLU(LRELU_SLOPE),
|
||||
Conv1dCasual(
|
||||
h.upsample_initial_channel // (2**i),
|
||||
h.upsample_initial_channel // (2**(i + 1)),
|
||||
kernel_size=7,
|
||||
stride=1,
|
||||
padding=7 - 1))
|
||||
self.repeat_ups.append(upsample)
|
||||
self.ups.append(
|
||||
ConvTranspose1dCausal(
|
||||
h.upsample_initial_channel // (2**i),
|
||||
h.upsample_initial_channel // (2**(i + 1)),
|
||||
k,
|
||||
u,
|
||||
padding=(k - u) // 2))
|
||||
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = h.upsample_initial_channel // (2**(i + 1))
|
||||
for j, (k, d) in enumerate(
|
||||
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
||||
self.resblocks.append(resblock(h, ch, k, d))
|
||||
|
||||
self.conv_post = Conv1dCasual(ch, 1, 7, 1, padding=7 - 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv_pre(x)
|
||||
for i in range(self.num_upsamples):
|
||||
x = torch.sin(x) + x
|
||||
# transconv
|
||||
x1 = F.leaky_relu(x, LRELU_SLOPE)
|
||||
x1 = self.ups[i](x1)
|
||||
# repeat
|
||||
x2 = self.repeat_ups[i](x)
|
||||
x = x1 + x2
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||
else:
|
||||
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||
x = xs / self.num_kernels
|
||||
x = F.leaky_relu(x)
|
||||
x = self.conv_post(x)
|
||||
x = torch.tanh(x)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
print('Removing weight norm...')
|
||||
for layer in self.ups:
|
||||
layer.remove_weight_norm()
|
||||
for layer in self.repeat_ups:
|
||||
layer[-1].remove_weight_norm()
|
||||
for layer in self.resblocks:
|
||||
layer.remove_weight_norm()
|
||||
self.conv_pre.remove_weight_norm()
|
||||
self.conv_post.remove_weight_norm()
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
period,
|
||||
kernel_size=5,
|
||||
stride=3,
|
||||
use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
self.period = period
|
||||
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(
|
||||
Conv2d(
|
||||
1,
|
||||
32, (kernel_size, 1), (stride, 1),
|
||||
padding=(get_padding(5, 1), 0))),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
32,
|
||||
128, (kernel_size, 1), (stride, 1),
|
||||
padding=(get_padding(5, 1), 0))),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
128,
|
||||
512, (kernel_size, 1), (stride, 1),
|
||||
padding=(get_padding(5, 1), 0))),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
512,
|
||||
1024, (kernel_size, 1), (stride, 1),
|
||||
padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
||||
])
|
||||
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
||||
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
|
||||
# 1d to 2d
|
||||
b, c, t = x.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x = F.pad(x, (0, n_pad), 'reflect')
|
||||
t = t + n_pad
|
||||
x = x.view(b, c, t // self.period, self.period)
|
||||
|
||||
for layer in self.convs:
|
||||
x = layer(x)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(MultiPeriodDiscriminator, self).__init__()
|
||||
self.discriminators = nn.ModuleList([
|
||||
DiscriminatorP(2),
|
||||
DiscriminatorP(3),
|
||||
DiscriminatorP(5),
|
||||
DiscriminatorP(7),
|
||||
DiscriminatorP(11),
|
||||
])
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(y)
|
||||
y_d_g, fmap_g = d(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorS(torch.nn.Module):
|
||||
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(DiscriminatorS, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
|
||||
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
|
||||
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
|
||||
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
|
||||
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
|
||||
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
|
||||
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
||||
])
|
||||
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
||||
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
for layer in self.convs:
|
||||
x = layer(x)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiScaleDiscriminator(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(MultiScaleDiscriminator, self).__init__()
|
||||
self.discriminators = nn.ModuleList([
|
||||
DiscriminatorS(use_spectral_norm=True),
|
||||
DiscriminatorS(),
|
||||
DiscriminatorS(),
|
||||
])
|
||||
self.meanpools = nn.ModuleList(
|
||||
[DWT1DForward(wave='db3', J=1),
|
||||
DWT1DForward(wave='db3', J=1)])
|
||||
self.convs = nn.ModuleList([
|
||||
weight_norm(Conv1d(2, 1, 15, 1, padding=7)),
|
||||
weight_norm(Conv1d(2, 1, 15, 1, padding=7))
|
||||
])
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
if i != 0:
|
||||
yl, yh = self.meanpools[i - 1](y)
|
||||
y = torch.cat([yl, yh[0]], dim=1)
|
||||
y = self.convs[i - 1](y)
|
||||
y = F.leaky_relu(y, LRELU_SLOPE)
|
||||
|
||||
yl_hat, yh_hat = self.meanpools[i - 1](y_hat)
|
||||
y_hat = torch.cat([yl_hat, yh_hat[0]], dim=1)
|
||||
y_hat = self.convs[i - 1](y_hat)
|
||||
y_hat = F.leaky_relu(y_hat, LRELU_SLOPE)
|
||||
|
||||
y_d_r, fmap_r = d(y)
|
||||
y_d_g, fmap_g = d(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorSTFT(torch.nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
kernel_size=11,
|
||||
stride=2,
|
||||
use_spectral_norm=False,
|
||||
fft_size=1024,
|
||||
shift_size=120,
|
||||
win_length=600,
|
||||
window='hann_window'):
|
||||
super(DiscriminatorSTFT, self).__init__()
|
||||
self.fft_size = fft_size
|
||||
self.shift_size = shift_size
|
||||
self.win_length = win_length
|
||||
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(
|
||||
Conv2d(
|
||||
fft_size // 2 + 1,
|
||||
32, (15, 1), (1, 1),
|
||||
padding=(get_padding(15, 1), 0))),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
32,
|
||||
32, (kernel_size, 1), (stride, 1),
|
||||
padding=(get_padding(9, 1), 0))),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
32,
|
||||
32, (kernel_size, 1), (stride, 1),
|
||||
padding=(get_padding(9, 1), 0))),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
32,
|
||||
32, (kernel_size, 1), (stride, 1),
|
||||
padding=(get_padding(9, 1), 0))),
|
||||
norm_f(Conv2d(32, 32, (5, 1), (1, 1), padding=(2, 0))),
|
||||
])
|
||||
self.conv_post = norm_f(Conv2d(32, 1, (3, 1), (1, 1), padding=(1, 0)))
|
||||
self.register_buffer('window', getattr(torch, window)(win_length))
|
||||
|
||||
def forward(self, wav):
|
||||
wav = torch.squeeze(wav, 1)
|
||||
x_mag = stft(wav, self.fft_size, self.shift_size, self.win_length,
|
||||
self.window)
|
||||
x = torch.transpose(x_mag, 2, 1).unsqueeze(-1)
|
||||
fmap = []
|
||||
for layer in self.convs:
|
||||
x = layer(x)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = x.squeeze(-1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiSTFTDiscriminator(torch.nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fft_sizes=[1024, 2048, 512],
|
||||
hop_sizes=[120, 240, 50],
|
||||
win_lengths=[600, 1200, 240],
|
||||
window='hann_window',
|
||||
):
|
||||
super(MultiSTFTDiscriminator, self).__init__()
|
||||
self.discriminators = nn.ModuleList()
|
||||
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
|
||||
self.discriminators += [
|
||||
DiscriminatorSTFT(fft_size=fs, shift_size=ss, win_length=wl)
|
||||
]
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(y)
|
||||
y_d_g, fmap_g = d(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
def feature_loss(fmap_r, fmap_g):
|
||||
loss = 0
|
||||
for dr, dg in zip(fmap_r, fmap_g):
|
||||
for rl, gl in zip(dr, dg):
|
||||
loss += torch.mean(torch.abs(rl - gl))
|
||||
|
||||
return loss * 2
|
||||
|
||||
|
||||
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
||||
loss = 0
|
||||
r_losses = []
|
||||
g_losses = []
|
||||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||
r_loss = torch.mean((1 - dr)**2)
|
||||
g_loss = torch.mean(dg**2)
|
||||
loss += (r_loss + g_loss)
|
||||
r_losses.append(r_loss.item())
|
||||
g_losses.append(g_loss.item())
|
||||
|
||||
return loss, r_losses, g_losses
|
||||
|
||||
|
||||
def generator_loss(disc_outputs):
|
||||
loss = 0
|
||||
gen_losses = []
|
||||
for dg in disc_outputs:
|
||||
temp_loss = torch.mean((1 - dg)**2)
|
||||
gen_losses.append(temp_loss)
|
||||
loss += temp_loss
|
||||
|
||||
return loss, gen_losses
|
||||
59
modelscope/models/audio/tts/vocoder/models/utils.py
Executable file
59
modelscope/models/audio/tts/vocoder/models/utils.py
Executable file
@@ -0,0 +1,59 @@
|
||||
import glob
|
||||
import os
|
||||
|
||||
import matplotlib
|
||||
import matplotlib.pylab as plt
|
||||
import torch
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
matplotlib.use('Agg')
|
||||
|
||||
|
||||
def plot_spectrogram(spectrogram):
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(
|
||||
spectrogram, aspect='auto', origin='lower', interpolation='none')
|
||||
plt.colorbar(im, ax=ax)
|
||||
|
||||
fig.canvas.draw()
|
||||
plt.close()
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find('Conv') != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def apply_weight_norm(m):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find('Conv') != -1:
|
||||
weight_norm(m)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
def load_checkpoint(filepath, device):
|
||||
assert os.path.isfile(filepath)
|
||||
print("Loading '{}'".format(filepath))
|
||||
checkpoint_dict = torch.load(filepath, map_location=device)
|
||||
print('Complete.')
|
||||
return checkpoint_dict
|
||||
|
||||
|
||||
def save_checkpoint(filepath, obj):
|
||||
print('Saving checkpoint to {}'.format(filepath))
|
||||
torch.save(obj, filepath)
|
||||
print('Complete.')
|
||||
|
||||
|
||||
def scan_checkpoint(cp_dir, prefix):
|
||||
pattern = os.path.join(cp_dir, prefix + '????????')
|
||||
cp_list = glob.glob(pattern)
|
||||
if len(cp_list) == 0:
|
||||
return None
|
||||
return sorted(cp_list)[-1]
|
||||
@@ -62,4 +62,6 @@ class Model(ABC):
|
||||
if hasattr(model_cfg, 'model_type') and not hasattr(model_cfg, 'type'):
|
||||
model_cfg.type = model_cfg.model_type
|
||||
model_cfg.model_dir = local_model_dir
|
||||
for k, v in kwargs.items():
|
||||
model_cfg.k = v
|
||||
return build_model(model_cfg, task_name)
|
||||
|
||||
@@ -1 +1,2 @@
|
||||
from .linear_aec_pipeline import LinearAECPipeline
|
||||
from .text_to_speech_pipeline import * # noqa F403
|
||||
|
||||
46
modelscope/pipelines/audio/text_to_speech_pipeline.py
Normal file
46
modelscope/pipelines/audio/text_to_speech_pipeline.py
Normal file
@@ -0,0 +1,46 @@
|
||||
import time
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import numpy as np
|
||||
|
||||
from modelscope.models import Model
|
||||
from modelscope.models.audio.tts.am import SambertNetHifi16k
|
||||
from modelscope.models.audio.tts.vocoder import Hifigan16k
|
||||
from modelscope.pipelines.base import Pipeline
|
||||
from modelscope.pipelines.builder import PIPELINES
|
||||
from modelscope.preprocessors import TextToTacotronSymbols, build_preprocessor
|
||||
from modelscope.utils.constant import Fields, Tasks
|
||||
|
||||
__all__ = ['TextToSpeechSambertHifigan16kPipeline']
|
||||
|
||||
|
||||
@PIPELINES.register_module(
|
||||
Tasks.text_to_speech, module_name=r'tts-sambert-hifigan-16k')
|
||||
class TextToSpeechSambertHifigan16kPipeline(Pipeline):
|
||||
|
||||
def __init__(self,
|
||||
config_file: str = None,
|
||||
model: List[Model] = None,
|
||||
preprocessor: TextToTacotronSymbols = None,
|
||||
**kwargs):
|
||||
super().__init__(
|
||||
config_file=config_file,
|
||||
model=model,
|
||||
preprocessor=preprocessor,
|
||||
**kwargs)
|
||||
assert len(model) == 2, 'model number should be 2'
|
||||
self._am = model[0]
|
||||
self._vocoder = model[1]
|
||||
self._preprocessor = preprocessor
|
||||
|
||||
def forward(self, inputs: Dict[str, Any]) -> Dict[str, np.ndarray]:
|
||||
texts = inputs['texts']
|
||||
audio_total = np.empty((0), dtype='int16')
|
||||
for line in texts:
|
||||
line = line.strip().split('\t')
|
||||
audio = self._vocoder.forward(self._am.forward(line[1]))
|
||||
audio_total = np.append(audio_total, audio, axis=0)
|
||||
return {'output': audio_total}
|
||||
|
||||
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return inputs
|
||||
@@ -8,3 +8,4 @@ from .image import LoadImage, load_image
|
||||
from .nlp import * # noqa F403
|
||||
from .space.dialog_intent_prediction_preprocessor import * # noqa F403
|
||||
from .space.dialog_modeling_preprocessor import * # noqa F403
|
||||
from .text_to_speech import * # noqa F403
|
||||
|
||||
@@ -5,7 +5,6 @@ from typing import Any, Dict
|
||||
import numpy as np
|
||||
import scipy.io.wavfile as wav
|
||||
import torch
|
||||
import torchaudio.compliance.kaldi as kaldi
|
||||
from numpy.ctypeslib import ndpointer
|
||||
|
||||
from modelscope.utils.constant import Fields
|
||||
@@ -123,6 +122,8 @@ class Feature:
|
||||
if self.feat_type == 'raw':
|
||||
return utt
|
||||
elif self.feat_type == 'fbank':
|
||||
# have to use local import before modelscope framework supoort lazy loading
|
||||
import torchaudio.compliance.kaldi as kaldi
|
||||
if len(utt.shape) == 1:
|
||||
utt = utt.unsqueeze(0)
|
||||
feat = kaldi.fbank(utt, **self.fbank_config)
|
||||
|
||||
53
modelscope/preprocessors/text_to_speech.py
Normal file
53
modelscope/preprocessors/text_to_speech.py
Normal file
@@ -0,0 +1,53 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
import io
|
||||
from typing import Any, Dict, Union
|
||||
|
||||
import ttsfrd
|
||||
|
||||
from modelscope.fileio import File
|
||||
from modelscope.models.audio.tts.frontend import GenericTtsFrontend
|
||||
from modelscope.models.base import Model
|
||||
from modelscope.utils.audio.tts_exceptions import * # noqa F403
|
||||
from modelscope.utils.constant import Fields
|
||||
from .base import Preprocessor
|
||||
from .builder import PREPROCESSORS
|
||||
|
||||
__all__ = ['TextToTacotronSymbols', 'text_to_tacotron_symbols']
|
||||
|
||||
|
||||
@PREPROCESSORS.register_module(
|
||||
Fields.audio, module_name=r'text_to_tacotron_symbols')
|
||||
class TextToTacotronSymbols(Preprocessor):
|
||||
"""extract tacotron symbols from text.
|
||||
|
||||
Args:
|
||||
res_path (str): TTS frontend resource url
|
||||
lang_type (str): language type, valid values are "pinyin" and "chenmix"
|
||||
"""
|
||||
|
||||
def __init__(self, model_name, lang_type='pinyin'):
|
||||
self._frontend_model = Model.from_pretrained(
|
||||
model_name, lang_type=lang_type)
|
||||
assert self._frontend_model is not None, 'load model from pretained failed'
|
||||
|
||||
def __call__(self, data: str) -> Dict[str, Any]:
|
||||
"""Call functions to load text and get tacotron symbols.
|
||||
|
||||
Args:
|
||||
input (str): text with utf-8
|
||||
Returns:
|
||||
symbos (list[str]): texts in tacotron symbols format.
|
||||
"""
|
||||
return self._frontend_model.forward(data)
|
||||
|
||||
|
||||
def text_to_tacotron_symbols(text='', path='./', lang='pinyin'):
|
||||
""" simple interface to transform text to tacotron symbols
|
||||
|
||||
Args:
|
||||
text (str): input text
|
||||
path (str): resource path
|
||||
lang (str): language type from one of "pinyin" and "chenmix"
|
||||
"""
|
||||
transform = TextToTacotronSymbols(path, lang)
|
||||
return transform(text)
|
||||
0
modelscope/utils/audio/__init__.py
Normal file
0
modelscope/utils/audio/__init__.py
Normal file
42
modelscope/utils/audio/tts_exceptions.py
Normal file
42
modelscope/utils/audio/tts_exceptions.py
Normal file
@@ -0,0 +1,42 @@
|
||||
"""
|
||||
Define TTS exceptions
|
||||
"""
|
||||
|
||||
|
||||
class TtsException(Exception):
|
||||
"""
|
||||
TTS exception class.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class TtsFrontendException(TtsException):
|
||||
"""
|
||||
TTS frontend module level exceptions.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class TtsFrontendInitializeFailedException(TtsFrontendException):
|
||||
"""
|
||||
If tts frontend resource is invalid or not exist, this exception will be raised.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class TtsFrontendLanguageTypeInvalidException(TtsFrontendException):
|
||||
"""
|
||||
If language type is invalid, this exception will be raised.
|
||||
"""
|
||||
|
||||
|
||||
class TtsVocoderException(TtsException):
|
||||
"""
|
||||
Vocoder exception
|
||||
"""
|
||||
|
||||
|
||||
class TtsVocoderMelspecShapeMismatchException(TtsVocoderException):
|
||||
"""
|
||||
If vocoder's input melspec shape mismatch, this exception will be raised.
|
||||
"""
|
||||
@@ -67,7 +67,6 @@ class Registry(object):
|
||||
if module_name in self._modules[group_key]:
|
||||
raise KeyError(f'{module_name} is already registered in '
|
||||
f'{self._name}[{group_key}]')
|
||||
|
||||
self._modules[group_key][module_name] = module_cls
|
||||
module_cls.group_key = group_key
|
||||
|
||||
|
||||
@@ -2,4 +2,5 @@
|
||||
-r requirements/pipeline.txt
|
||||
-r requirements/multi-modal.txt
|
||||
-r requirements/nlp.txt
|
||||
-r requirements/audio.txt
|
||||
-r requirements/cv.txt
|
||||
|
||||
26
requirements/audio.txt
Normal file
26
requirements/audio.txt
Normal file
@@ -0,0 +1,26 @@
|
||||
#tts
|
||||
h5py==2.10.0
|
||||
#https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/TTS/requirements/ttsfrd-0.0.1-cp36-cp36m-linux_x86_64.whl
|
||||
https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/TTS/requirements/ttsfrd-0.0.1-cp37-cp37m-linux_x86_64.whl
|
||||
https://swap.oss-cn-hangzhou.aliyuncs.com/Jiaqi%2Fmaas%2Ftts%2Frequirements%2Fpytorch_wavelets-1.3.0-py3-none-any.whl?Expires=1685688388&OSSAccessKeyId=LTAI4Ffebq4d9jTVDwiSbY4L&Signature=jcQbg5EZ%2Bdys3%2F4BRn3srrKLdIg%3D
|
||||
#https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/TTS/requirements/ttsfrd-0.0.1-cp38-cp38-linux_x86_64.whl
|
||||
#https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/TTS/requirements/ttsfrd-0.0.1-cp39-cp39-linux_x86_64.whl
|
||||
inflect
|
||||
keras==2.2.4
|
||||
librosa
|
||||
lxml
|
||||
matplotlib
|
||||
nara_wpe
|
||||
numpy==1.18.*
|
||||
protobuf==3.20.*
|
||||
ptflops
|
||||
PyWavelets>=1.0.0
|
||||
scikit-learn==0.23.2
|
||||
sox
|
||||
tensorboard
|
||||
tensorflow==1.15.*
|
||||
torch==1.10.*
|
||||
torchaudio
|
||||
torchvision
|
||||
tqdm
|
||||
unidecode
|
||||
60
tests/pipelines/test_text_to_speech.py
Normal file
60
tests/pipelines/test_text_to_speech.py
Normal file
@@ -0,0 +1,60 @@
|
||||
import time
|
||||
import unittest
|
||||
|
||||
import json
|
||||
import tensorflow as tf
|
||||
# NOTICE: Tensorflow 1.15 seems not so compatible with pytorch.
|
||||
# A segmentation fault may be raise by pytorch cpp library
|
||||
# if 'import tensorflow' in front of 'import torch'.
|
||||
# Puting a 'import torch' here can bypass this incompatibility.
|
||||
import torch
|
||||
from scipy.io.wavfile import write
|
||||
|
||||
from modelscope.fileio import File
|
||||
from modelscope.models import Model, build_model
|
||||
from modelscope.models.audio.tts.am import SambertNetHifi16k
|
||||
from modelscope.models.audio.tts.vocoder import AttrDict, Hifigan16k
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.preprocessors import build_preprocessor
|
||||
from modelscope.utils.constant import Fields, InputFields, Tasks
|
||||
from modelscope.utils.logger import get_logger
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
|
||||
class TextToSpeechSambertHifigan16kPipelineTest(unittest.TestCase):
|
||||
|
||||
def test_pipeline(self):
|
||||
lang_type = 'pinyin'
|
||||
text = '明天天气怎么样'
|
||||
preprocessor_model_id = 'damo/speech_binary_tts_frontend_resource'
|
||||
am_model_id = 'damo/speech_sambert16k_tts_zhitian_emo'
|
||||
voc_model_id = 'damo/speech_hifigan16k_tts_zhitian_emo'
|
||||
|
||||
cfg_preprocessor = dict(
|
||||
type='text_to_tacotron_symbols',
|
||||
model_name=preprocessor_model_id,
|
||||
lang_type=lang_type)
|
||||
preprocessor = build_preprocessor(cfg_preprocessor, Fields.audio)
|
||||
self.assertTrue(preprocessor is not None)
|
||||
|
||||
am = Model.from_pretrained(am_model_id)
|
||||
self.assertTrue(am is not None)
|
||||
|
||||
voc = Model.from_pretrained(voc_model_id)
|
||||
self.assertTrue(voc is not None)
|
||||
|
||||
sambert_tts = pipeline(
|
||||
pipeline_name='tts-sambert-hifigan-16k',
|
||||
config_file='',
|
||||
model=[am, voc],
|
||||
preprocessor=preprocessor)
|
||||
self.assertTrue(sambert_tts is not None)
|
||||
|
||||
output = sambert_tts(text)
|
||||
self.assertTrue(len(output['output']) > 0)
|
||||
write('output.wav', 16000, output['output'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
28
tests/preprocessors/test_text_to_speech.py
Normal file
28
tests/preprocessors/test_text_to_speech.py
Normal file
@@ -0,0 +1,28 @@
|
||||
import shutil
|
||||
import unittest
|
||||
|
||||
from modelscope.preprocessors import build_preprocessor
|
||||
from modelscope.utils.constant import Fields, InputFields
|
||||
from modelscope.utils.logger import get_logger
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
|
||||
class TtsPreprocessorTest(unittest.TestCase):
|
||||
|
||||
def test_preprocess(self):
|
||||
lang_type = 'pinyin'
|
||||
text = '今天天气不错,我们去散步吧。'
|
||||
cfg = dict(
|
||||
type='text_to_tacotron_symbols',
|
||||
model_name='damo/speech_binary_tts_frontend_resource',
|
||||
lang_type=lang_type)
|
||||
preprocessor = build_preprocessor(cfg, Fields.audio)
|
||||
output = preprocessor(text)
|
||||
self.assertTrue(output)
|
||||
for line in output['texts']:
|
||||
print(line)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
@@ -7,6 +7,12 @@ import sys
|
||||
import unittest
|
||||
from fnmatch import fnmatch
|
||||
|
||||
# NOTICE: Tensorflow 1.15 seems not so compatible with pytorch.
|
||||
# A segmentation fault may be raise by pytorch cpp library
|
||||
# if 'import tensorflow' in front of 'import torch'.
|
||||
# Puting a 'import torch' here can bypass this incompatibility.
|
||||
import torch
|
||||
|
||||
from modelscope.utils.logger import get_logger
|
||||
from modelscope.utils.test_utils import set_test_level, test_level
|
||||
|
||||
|
||||
Reference in New Issue
Block a user