mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-25 04:29:22 +01:00
add five task finetune
This commit is contained in:
@@ -402,6 +402,7 @@ class Metrics(object):
|
||||
|
||||
# accuracy
|
||||
accuracy = 'accuracy'
|
||||
multi_average_precision = 'mAP'
|
||||
audio_noise_metric = 'audio-noise-metric'
|
||||
|
||||
# text gen
|
||||
|
||||
@@ -24,6 +24,7 @@ class MetricKeys(object):
|
||||
ROUGE_1 = 'rouge-1'
|
||||
ROUGE_L = 'rouge-l'
|
||||
NED = 'ned' # ocr metric
|
||||
mAP = 'mAP'
|
||||
BatchAcc = 'inbatch_t2i_recall_at_1'
|
||||
|
||||
|
||||
|
||||
67
modelscope/metrics/map_metric.py
Normal file
67
modelscope/metrics/map_metric.py
Normal file
@@ -0,0 +1,67 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
|
||||
from modelscope.metainfo import Metrics
|
||||
from modelscope.outputs import OutputKeys
|
||||
from modelscope.utils.registry import default_group
|
||||
from .base import Metric
|
||||
from .builder import METRICS, MetricKeys
|
||||
|
||||
|
||||
@METRICS.register_module(
|
||||
group_key=default_group, module_name=Metrics.multi_average_precision)
|
||||
class AveragePrecisionMetric(Metric):
|
||||
"""The metric computation class for multi avarage precision classes.
|
||||
|
||||
This metric class calculates multi avarage precision for the whole input batches.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.preds = []
|
||||
self.labels = []
|
||||
self.thresh = kwargs.get('threshold', 0.5)
|
||||
|
||||
def add(self, outputs: Dict, inputs: Dict):
|
||||
label_name = OutputKeys.LABEL if OutputKeys.LABEL in inputs else OutputKeys.LABELS
|
||||
ground_truths = inputs[label_name]
|
||||
eval_results = outputs[label_name]
|
||||
for key in [
|
||||
OutputKeys.CAPTION, OutputKeys.TEXT, OutputKeys.BOXES,
|
||||
OutputKeys.LABELS, OutputKeys.SCORES
|
||||
]:
|
||||
if key in outputs and outputs[key] is not None:
|
||||
eval_results = outputs[key]
|
||||
break
|
||||
assert type(ground_truths) == type(eval_results)
|
||||
for truth in ground_truths:
|
||||
self.labels.append(truth)
|
||||
for result in eval_results:
|
||||
if isinstance(truth, str):
|
||||
self.preds.append(result.strip().replace(' ', ''))
|
||||
else:
|
||||
self.preds.append(result)
|
||||
|
||||
def evaluate(self):
|
||||
assert len(self.preds) == len(self.labels)
|
||||
scores = self._calculate_ap_score(self.preds, self.labels, self.thresh)
|
||||
return {MetricKeys.mAP: scores.mean().item()}
|
||||
|
||||
def _calculate_ap_score(self, preds, labels, thresh=0.5):
|
||||
hyps = np.array(preds)
|
||||
refs = np.array(labels)
|
||||
a = np.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2])
|
||||
b = np.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])
|
||||
interacts = np.concatenate([a, b], axis=1)
|
||||
area_predictions = (hyps[:, 2] - hyps[:, 0]) * (
|
||||
hyps[:, 3] - hyps[:, 1])
|
||||
area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1])
|
||||
interacts_w = interacts[:, 2] - interacts[:, 0]
|
||||
interacts_h = interacts[:, 3] - interacts[:, 1]
|
||||
area_interacts = interacts_w * interacts_h
|
||||
ious = area_interacts / (
|
||||
area_predictions + area_targets - area_interacts + 1e-6)
|
||||
return (ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)
|
||||
@@ -9,6 +9,7 @@ from torchvision import transforms
|
||||
from modelscope.preprocessors.image import load_image
|
||||
from modelscope.utils.constant import ModeKeys
|
||||
from .base import OfaBasePreprocessor
|
||||
from .utils import transforms as T
|
||||
|
||||
|
||||
class OfaVisualGroundingPreprocessor(OfaBasePreprocessor):
|
||||
@@ -29,13 +30,14 @@ class OfaVisualGroundingPreprocessor(OfaBasePreprocessor):
|
||||
super(OfaVisualGroundingPreprocessor,
|
||||
self).__init__(cfg, model_dir, mode, *args, **kwargs)
|
||||
|
||||
self.num_bins = self.cfg.model.get('num_bins', 1000)
|
||||
if self.mode == ModeKeys.TRAIN:
|
||||
# for positioning
|
||||
self.positioning_transform = transforms.Compose([
|
||||
transforms.RandomResize([self.patch_image_size],
|
||||
max_size=self.patch_image_size),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(
|
||||
self.positioning_transform = T.Compose([
|
||||
T.RandomResize([self.patch_image_size],
|
||||
max_size=self.patch_image_size),
|
||||
T.ToTensor(),
|
||||
T.Normalize(
|
||||
mean=self.mean,
|
||||
std=self.std,
|
||||
max_image_size=self.max_image_size)
|
||||
@@ -130,4 +132,10 @@ class OfaVisualGroundingPreprocessor(OfaBasePreprocessor):
|
||||
'w_resize_ratio': w_resize_ratio,
|
||||
'h_resize_ratio': h_resize_ratio,
|
||||
}
|
||||
|
||||
if 'region_coord' in self.column_map and self.column_map[
|
||||
'region_coord'] in data:
|
||||
x0, y0, x1, y1 = data[
|
||||
self.column_map['region_coord']].strip().split(',')
|
||||
sample['label'] = [float(x0), float(y0), float(x1), float(y1)]
|
||||
return sample
|
||||
|
||||
@@ -34,6 +34,7 @@ class OFATrainer(EpochBasedTrainer):
|
||||
self,
|
||||
model: Optional[Union[TorchModel, nn.Module, str]] = None,
|
||||
cfg_file: Optional[str] = None,
|
||||
cfg_modify_fn: Optional[Callable] = None,
|
||||
arg_parse_fn: Optional[Callable] = None,
|
||||
data_collator: Optional[Union[Callable, Dict[str,
|
||||
Callable]]] = None,
|
||||
@@ -49,7 +50,8 @@ class OFATrainer(EpochBasedTrainer):
|
||||
**kwargs):
|
||||
model = Model.from_pretrained(model, revision=model_revision)
|
||||
model_dir = model.model_dir
|
||||
cfg = Config.from_file(cfg_file)
|
||||
self.cfg_modify_fn = cfg_modify_fn
|
||||
cfg = self.rebuild_config(Config.from_file(cfg_file))
|
||||
if 'work_dir' not in kwargs or len(kwargs['work_dir']) == 0:
|
||||
work_dir = cfg.train.work_dir
|
||||
else:
|
||||
@@ -57,10 +59,12 @@ class OFATrainer(EpochBasedTrainer):
|
||||
tokenizer_files = {
|
||||
'zh': [
|
||||
'tokenizer.json', 'tokenizer_config.json', 'vocab.txt',
|
||||
'config.json'
|
||||
'config.json', 'ans2label.json'
|
||||
],
|
||||
'en': [
|
||||
'tokenizer.json', 'vocab.json', 'merges.txt', 'config.json',
|
||||
'ans2label.json'
|
||||
],
|
||||
'en':
|
||||
['tokenizer.json', 'vocab.json', 'merges.txt', 'config.json'],
|
||||
}
|
||||
for filename in tokenizer_files[cfg.model.get('language', 'en')]:
|
||||
finetune_file = os.path.join(work_dir, filename)
|
||||
@@ -127,6 +131,11 @@ class OFATrainer(EpochBasedTrainer):
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def rebuild_config(self, cfg: Config):
|
||||
if self.cfg_modify_fn is not None:
|
||||
cfg = self.cfg_modify_fn(cfg)
|
||||
return cfg
|
||||
|
||||
def train_step(self, model, inputs):
|
||||
model.train()
|
||||
loss, sample_size, logging_output = self.criterion(model, inputs)
|
||||
|
||||
@@ -5,10 +5,10 @@ import unittest
|
||||
|
||||
import json
|
||||
|
||||
from modelscope.metainfo import Trainers
|
||||
from modelscope.msdatasets import MsDataset
|
||||
from modelscope.trainers import build_trainer
|
||||
from modelscope.utils.constant import DownloadMode, ModelFile
|
||||
from modelscope.utils.hub import read_config
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
@@ -73,11 +73,12 @@ class TestOfaTrainer(unittest.TestCase):
|
||||
def test_trainer_std(self):
|
||||
WORKSPACE = './workspace/ckpts/recognition'
|
||||
os.makedirs(WORKSPACE, exist_ok=True)
|
||||
config_file = os.path.join(WORKSPACE, ModelFile.CONFIGURATION)
|
||||
with open(config_file, 'w') as writer:
|
||||
json.dump(self.finetune_cfg, writer)
|
||||
|
||||
pretrained_model = 'damo/ofa_ocr-recognition_scene_base_zh'
|
||||
cfg = read_config(pretrained_model)
|
||||
config_file = os.path.join(WORKSPACE, ModelFile.CONFIGURATION)
|
||||
cfg.dump(config_file)
|
||||
|
||||
args = dict(
|
||||
model=pretrained_model,
|
||||
work_dir=WORKSPACE,
|
||||
@@ -94,7 +95,7 @@ class TestOfaTrainer(unittest.TestCase):
|
||||
split='test[:20]',
|
||||
download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS),
|
||||
cfg_file=config_file)
|
||||
trainer = build_trainer(name=Trainers.ofa, default_args=args)
|
||||
trainer = build_trainer(name='ofa', default_args=args)
|
||||
trainer.train()
|
||||
|
||||
self.assertIn(
|
||||
|
||||
Reference in New Issue
Block a user