feat: llama training & update deepspeed hook

This commit is contained in:
suluyana
2023-05-10 16:51:26 +08:00
parent e8bca5a11e
commit 0179368f7b
5 changed files with 411 additions and 26 deletions

View File

@@ -37,6 +37,7 @@ class DDPHook(Hook):
def before_val(self, trainer):
self.wrap_module(trainer)
@Hook.overload_func(name='DDPHook.wrap_module')
def wrap_module(self, trainer):
if not self.wrapped:
trainer.model = trainer.to_parallel(trainer.model)

View File

@@ -1,12 +1,16 @@
# Copyright 2020 The HuggingFace Team. All rights reserved.
# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import math
import deepspeed
import torch
from functools import partialmethod
from deepspeed import DeepSpeedEngine
from megatron_util import mpu, print_rank_0
from modelscope.utils.torch_utils import get_local_rank, get_dist_info
from modelscope.metainfo import Hooks
from modelscope.trainers.hooks.builder import HOOKS
from modelscope.trainers.hooks.hook import Hook
@@ -14,14 +18,221 @@ from modelscope.trainers.hooks.priority import Priority
from modelscope.utils.checkpoint import save_checkpoint
from modelscope.utils.logger import get_logger
from .checkpoint_hook import CheckpointHook, LoadCheckpointHook
from .megatron_hook import MegatronHook
from modelscope.utils.constant import DistributedParallelType
# from accelerate.utils.deepspeed import HfDeepSpeedConfig
from transformers.deepspeed import HfTrainerDeepSpeedConfig
class DeepSpeedConfig(HfTrainerDeepSpeedConfig):
"""
The `DeepSpeedConfig` object is meant to be created during `TrainingArguments` object creation and has the
same lifespan as the latter.
"""
def __init__(self, config_file_or_dict):
super().__init__(config_file_or_dict)
self._dtype = None
self.mismatches = []
def dtype(self):
if self._dtype is None:
raise ValueError("trainer_config_process() wasn't called yet to tell dtype")
return self._dtype
def is_auto(self, ds_key_long):
val = self.get_value(ds_key_long)
if val is None:
return False
else:
return val == "auto"
def fill_match(self, ds_key_long, hf_val, hf_key=None, must_match=True):
"""
A utility method that massages the config file and can optionally verify that the values match.
1. Replace "auto" values with `TrainingArguments` value.
2. If it wasn't "auto" and `must_match` is true, then check that DS config matches Trainer
config values and if mismatched add the entry to `self.mismatched` - will assert during
`trainer_config_finalize` for one or more mismatches.
"""
config, ds_key = self.find_config_node(ds_key_long)
if config is None:
return
if config.get(ds_key) == "auto":
config[ds_key] = hf_val
return
if not must_match:
return
ds_val = config.get(ds_key)
if ds_val is not None and ds_val != hf_val:
self.mismatches.append(f"- ds {ds_key_long}={ds_val} vs hf {hf_key}={hf_val}")
fill_only = partialmethod(fill_match, must_match=False)
def trainer_config_process(self, args):
"""
Adjust the config with `TrainingArguments` values. This stage is run during `TrainingArguments` object
creation.
"""
batch_size_per_gpu = args.train.dataloader.get("batch_size_per_gpu", 4)
gradient_accumulation_steps = args.train.get("gradient_accumulation_steps", 8)
workers_per_gpu = args.train.dataloader.get("workers_per_gpu", 2)
clip_grad = args.train.get("clip_grad", 1.0)
lr = args.train.optimizer.get("lr", 2e-5)
adam_beta1 = args.train.optimizer.get("adam_beta1", 0.9)
adam_beta2 = args.train.optimizer.get("adam_beta2", 0.999)
adam_epsilon = args.train.optimizer.get("adam_epsilon", 1e-8)
weight_decay = args.train.optimizer.get("weight_decay", 0.0)
# DeepSpeed does:
# train_batch_size = world_size * train_micro_batch_size_per_gpu * gradient_accumulation_steps
train_batch_size = args.world_size * batch_size_per_gpu * gradient_accumulation_steps
self.fill_match(
"train_micro_batch_size_per_gpu", batch_size_per_gpu)
self.fill_match("gradient_accumulation_steps", gradient_accumulation_steps)
self.fill_match("train_batch_size", train_batch_size)
self.fill_match("gradient_clipping", clip_grad)
self.fill_match("optimizer.params.lr", lr)
self.fill_match("optimizer.params.betas", [adam_beta1, adam_beta2])
self.fill_match("optimizer.params.eps", adam_epsilon)
self.fill_match("optimizer.params.weight_decay", weight_decay)
self.fill_only("scheduler.params.warmup_min_lr", 0) # not a trainer arg
self.fill_match("scheduler.params.warmup_max_lr", lr)
# total_num_steps - will get set in trainer_config_finalize
args.fp16 = args.train.get("use_fp16", False)
args.fp16_full_eval = args.train.get("use_fp16", False)
args.fp16_backend = args.train.get("fp16_backend", "amp")
# fp16
if args.fp16 or args.fp16_full_eval:
fp16_backend = "apex" if args.fp16_backend == "apex" else "amp"
else:
fp16_backend = None
args.save_on_each_node = args.train.get("save_on_each_node", False)
if args.save_on_each_node:
# deepspeed uses shared storage by default. Let's override this setting if save_on_each_node == True
self.config["checkpoint"] = self.config.get("checkpoint", {})
self.config["checkpoint"]["use_node_local_storage"] = args.save_on_each_node
# amp: similar to the pytorch native amp - it has a bunch of optional params but we won't set
# any here unless the user did the work
self.fill_match(
"fp16.enabled",
((args.fp16 or args.fp16_full_eval) and fp16_backend == "amp"),
"fp16|fp16_full_eval+fp16_backend(amp)",
)
args.fp16_opt_level = args.train.get("fp16_opt_level", None)
args.fp16_opt_level = next((item["opt_level"] for item in args.train.hooks if item["type"] == "ApexAMPOptimizerHook"), args.fp16_opt_level)
if not args.fp16_opt_level:
args.fp16_opt_level = "O1"
# apex: delegates amp work to apex (which needs to be available), but it cannot be used with any
# ZeRO features
self.fill_match("amp.enabled", fp16_backend == "apex", "fp16+fp16_backend(apex)")
self.fill_match("amp.opt_level", args.fp16_opt_level, "fp16_opt_level")
args.bf16 = args.train.get("bf16", False)
self.fill_match("bf16.enabled", (args.bf16 or args.bf16_full_eval), "bf16|bf16_full_eval")
# deepspeed's default mode is fp16 unless there is a config that says differently
if self.is_true("bf16.enabled"):
self._dtype = torch.bfloat16
elif self.is_false("fp16.enabled"):
self._dtype = torch.float32
else:
self._dtype = torch.float16
def trainer_config_finalize(self, args, model, num_training_steps):
"""
This stage is run after we have the model and know num_training_steps.
Now we can complete the configuration process.
"""
# zero
# deal with config keys that use `auto` value and rely on model's hidden_size
hidden_size_based_keys = [
"zero_optimization.reduce_bucket_size",
"zero_optimization.stage3_prefetch_bucket_size",
"zero_optimization.stage3_param_persistence_threshold",
]
hidden_size_auto_keys = [x for x in hidden_size_based_keys if self.is_auto(x)]
if len(hidden_size_auto_keys) > 0:
if hasattr(model.config, "hidden_size"):
hidden_size = model.config.hidden_size
elif hasattr(model.config, "hidden_sizes"):
# if there are many hidden sizes pick the largest one
hidden_size = max(model.config.hidden_sizes)
else:
raise ValueError(
"The model's config file has neither `hidden_size` nor `hidden_sizes` entry, "
"therefore it's not possible to automatically fill out the following `auto` entries "
f"in the DeepSpeed config file: {hidden_size_auto_keys}. You can fix that by replacing "
"`auto` values for these keys with an integer value of your choice."
)
self.fill_only("zero_optimization.reduce_bucket_size", hidden_size * hidden_size)
if self.is_zero3():
# automatically assign the optimal config values based on model config
self.fill_only("zero_optimization.stage3_prefetch_bucket_size", 0.9 * hidden_size * hidden_size)
self.fill_only("zero_optimization.stage3_param_persistence_threshold", 10 * hidden_size)
# scheduler
warmup = args.train.optimizer["options"].get("warmup", {})
warmup_steps = warmup.get("warmup_steps", 0)
warmup_ratio = warmup.get("warmup_ratio", 0.0)
warmup_steps = warmup_steps if warmup_steps > 0 else math.ceil(num_training_steps * warmup_ratio)
self.fill_match("scheduler.params.total_num_steps", num_training_steps)
self.fill_match("scheduler.params.warmup_num_steps", warmup_steps)
if len(self.mismatches) > 0:
mismatches = "\n".join(self.mismatches)
raise ValueError(
"Please correct the following DeepSpeed config values that mismatch TrainingArguments"
f" values:\n{mismatches}\nThe easiest method is to set these DeepSpeed config values to 'auto'."
)
def deepspeed_optim_sched(trainer, hf_deepspeed_config, num_training_steps):
config = hf_deepspeed_config.config
optimizer = None
if "optimizer" not in config:
if hf_deepspeed_config.is_offload():
logger.info(
"Detected ZeRO Offload and non-DeepSpeed optimizers: This combination should work as long as the"
" custom optimizer has both CPU and GPU implementation (except LAMB)"
)
# ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch.
# But trainer uses AdamW by default.
optimizer = trainer.optimizer
# To use other optimizers requires voiding warranty with: `zero_allow_untested_optimizer`
config["zero_allow_untested_optimizer"] = True
lr_scheduler = None
if "scheduler" not in config:
lr_scheduler = trainer.scheduler
return optimizer, lr_scheduler
@HOOKS.register_module(module_name=Hooks.DeepspeedHook)
class DeepspeedHook(MegatronHook):
class DeepspeedHook(Hook):
PRIORITY = Priority.VERY_HIGH
_BIN_FILE_DIR = 'model'
def __init__(self,
config,
deepspeed_activation_checkpointing=True,
save_zero_checkpoint=False,
with_mpu=True):
@@ -29,13 +240,15 @@ class DeepspeedHook(MegatronHook):
self.deepspeed_activation_checkpointing = deepspeed_activation_checkpointing
# TODO without mpu
self.with_mpu = with_mpu
assert with_mpu, 'DeepspeedHook now is only for mpu models.'
self.deepspeed_config = config
#assert with_mpu, 'DeepspeedHook now is only for mpu models.'
def register_strategy(self):
Hook.overload(name='OptimizerHook.backward', function=self.backward)
Hook.overload(
name='OptimizerHook.initialize_optimizer', function=self.idle)
Hook.overload(name='LrSchedulerHook.step', function=self.idle)
Hook.overload(name='LrSchedulerHook.get_current_lr', function=self.get_current_lr)
Hook.overload(
name='CheckpointHook.save_checkpoints',
function=self.save_checkpoints)
@@ -47,11 +260,17 @@ class DeepspeedHook(MegatronHook):
function=self.remove_checkpoints)
Hook.overload(
name='CheckpointHook.prepare_output', function=self.prepare_output)
Hook.overload(
name='DDPHook.wrap_module', function=self.wrap_module)
if self.with_mpu:
Hook.overload(
name='CheckpointHook.should_save_on_rank',
function=self.should_save_on_rank)
def wrap_module(self, trainer):
# deepspeed initializes its own ddp
self.wrapped = True
def backward(self, trainer, loss_keys, cumulative_iters, grad_clip):
# assert cumulative_iters == 1, 'DeepSpeed only support cumulative_iters=1'
# The `trainer.model` here is actually a deepspeed engine object.
@@ -66,6 +285,19 @@ class DeepspeedHook(MegatronHook):
def idle(self, *args, **kwargs):
pass
def get_current_lr(self, trainer):
if isinstance(trainer.optimizer, torch.optim.Optimizer) or isinstance(trainer.optimizer, deepspeed.DeepSpeedOptimizer):
lr = [group['lr'] for group in trainer.optimizer.param_groups]
elif isinstance(trainer.optimizer, dict):
lr = dict()
for name, optim in trainer.optimizer.items():
lr[name] = [group['lr'] for group in optim.param_groups]
else:
raise RuntimeError(
'lr is not applicable because optimizer does not exist.')
return lr
def save_checkpoints(self,
trainer,
checkpoint_path_prefix,
@@ -138,9 +370,43 @@ class DeepspeedHook(MegatronHook):
checkpoint, strict=strict)
return meta
def prepare_output(self, trainer, output_dir):
config = trainer.cfg
CheckpointHook.copy_files_and_dump_config(trainer, output_dir, config,
self._BIN_FILE_DIR)
os.makedirs(
os.path.join(output_dir, self._BIN_FILE_DIR), exist_ok=True)
def before_val(self, trainer):
pass
def after_init(self, trainer):
device_id = get_local_rank()
trainer.device = f'cuda:{device_id}'
#trainer.parallel_groups[DistributedParallelType.DP] = None
def prepare_for_init(self, trainer):
args = trainer.cfg
_, args.world_size = get_dist_info()
if os.path.exists(self.deepspeed_config):
deepspeed_config = self.deepspeed_config
else:
deepspeed_config = os.path.join(trainer.model_dir,
self.deepspeed_config)
self.logger.info(f"Loading deepspeed config from {deepspeed_config}")
gradient_accumulation_steps = args.train.get("gradient_accumulation_steps", 8)
num_update_steps_per_epoch = trainer.iters_per_epoch // gradient_accumulation_steps
max_steps = math.ceil(trainer._max_epochs * num_update_steps_per_epoch)
ds_config = DeepSpeedConfig(deepspeed_config)
ds_config.trainer_config_process(args)
ds_config.trainer_config_finalize(args, trainer.model, max_steps)
optimizer, lr_scheduler = deepspeed_optim_sched(trainer, ds_config, max_steps)
config = ds_config.config
return config, optimizer, lr_scheduler
def before_run(self, trainer):
if not hasattr(trainer, 'logger'):
self.logger = get_logger()
@@ -148,26 +414,12 @@ class DeepspeedHook(MegatronHook):
self.logger = trainer.logger
# deepspeed init
args = trainer.cfg.train
args.deepspeed_config = os.path.join(trainer.model_dir,
args.deepspeed_config)
trainer.model, _, _, _ = deepspeed.initialize(
config, optimizer, lr_scheduler = self.prepare_for_init(trainer)
# TODO: 判断是否需要dist_init 和 mpu 而非写死;
trainer.model, trainer.optimizer, _, trainer.lr_scheduler = deepspeed.initialize(
model=trainer.model,
optimizer=trainer.optimizer,
args=args,
lr_scheduler=trainer.lr_scheduler,
mpu=mpu,
dist_init_required=False)
optimizer=optimizer,
config=config,
lr_scheduler=lr_scheduler)
trainer.model.save_zero_checkpoint = self.save_zero_checkpoint
if self.deepspeed_activation_checkpointing:
model = trainer.unwrap_module(trainer.model)
deepspeed.checkpointing.configure(
mpu,
deepspeed_config=args.deepspeed_config,
num_checkpoints=model.config.num_hidden_layers)
mpu.checkpoint = deepspeed.checkpointing.checkpoint
mpu.get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker
mpu.model_parallel_cuda_manual_seed = deepspeed.checkpointing.model_parallel_cuda_manual_seed

View File

@@ -52,6 +52,7 @@ class LrSchedulerHook(Hook):
else:
trainer.lr_scheduler.step()
@Hook.overload_func(name='LrSchedulerHook.get_current_lr')
def get_current_lr(self, trainer):
import torch

View File

@@ -221,7 +221,7 @@ class EpochBasedTrainer(BaseTrainer):
self.tune_module(efficient_tuners)
# The parallel_groups field will be initialized in the hooks' after_init stage.
# Please check the DDPHook and MegatronHook for details.
# Please check the DDPHook, MegatronHook and DeepspeedHook for details.
self.parallel_groups = {}
# Clear the Hook overload functions to avoid duplication.
@@ -980,7 +980,7 @@ class EpochBasedTrainer(BaseTrainer):
"""
optimizer, lr_scheduler = self.optimizers
if optimizer is None:
optimizer_cfg = self.cfg.train.get('optimizer', None)
optimizer_cfg = deepcopy(self.cfg.train.get('optimizer', None))
else:
optimizer_cfg = None
@@ -990,7 +990,7 @@ class EpochBasedTrainer(BaseTrainer):
optimizer = self.build_optimizer(cfg=optimizer_cfg)
if lr_scheduler is None:
lr_scheduler_cfg = self.cfg.train.get('lr_scheduler', None)
lr_scheduler_cfg = deepcopy(self.cfg.train.get('lr_scheduler', None))
else:
lr_scheduler_cfg = None

131
tst_train.py Normal file
View File

@@ -0,0 +1,131 @@
import os
import shutil
import tempfile
import unittest
from modelscope.msdatasets.dataset_cls.custom_datasets.torch_custom_dataset import TorchCustomDataset
from modelscope.metainfo import Trainers
from modelscope.msdatasets import MsDataset
from modelscope.trainers import build_trainer
from modelscope.utils.test_utils import DistributedTestCase, test_level
from stanford_alpaca.train import *
from modelscope.models.nlp.llama import LlamaForTextGeneration, LlamaTokenizerFast
class SupervisedDataset(TorchCustomDataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer):
logging.warning("Loading data...")
list_data_dict = utils.jload(data_path)
logging.warning("Formatting inputs...")
prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"]
sources = [
prompt_input.format_map(example) if example.get("input", "") != "" else prompt_no_input.format_map(example)
for example in list_data_dict
]
targets = [f"{example['output']}{tokenizer.eos_token}" for example in list_data_dict]
logging.warning("Tokenizing inputs... This may take some time...")
data_dict = preprocess(sources, targets, tokenizer)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(input_ids=self.input_ids[i], labels=self.labels[i])
if __name__ == '__main__':
def cfg_modify_fn(cfg):
cfg.train.lr_scheduler = {
'type': 'CosineAnnealingLR',
'T_max': 3,
'options': {
'by_epoch': False
}
}
cfg.train.optimizer = {
'type': 'AdamW',
'lr': 2e-5,
"weight_decay": 0.0,
"options": {
"warmup": {
"type": "LinearWarmup",
"warmup_ratio": 0.03
}
}
}
cfg.train["bf16"] = True
cfg.train["gradient_accumulation_steps"] = 8
cfg.train.dataloader = {
'batch_size_per_gpu': 4,
'workers_per_gpu': 2
}
cfg.train.hooks.append({
"type": "DeepspeedHook",
"config": "/root/work/stanford_alpaca/configs/default_offload_opt_param.json",
"with_mpu": False,
})
cfg.preprocessor.sequence_length = 512
return cfg
model_name_or_path="/run/model/llama-7b"
model = LlamaForTextGeneration.from_pretrained(
model_name_or_path,
cache_dir="/run/model/ms_out",
)
tokenizer = LlamaTokenizerFast.from_pretrained(
model_name_or_path,
cache_dir="/run/model/ms_out",
model_max_length=512,
padding_side="right",
use_fast=False,
)
special_tokens_dict = dict()
if tokenizer.pad_token is None:
special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKEN
if tokenizer.eos_token is None:
special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKEN
if tokenizer.bos_token is None:
special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKEN
if tokenizer.unk_token is None:
special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKEN
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=tokenizer,
model=model,
)
train_dataset = SupervisedDataset(tokenizer=tokenizer, data_path='/root/work/stanford_alpaca/alpaca_data.json')
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
kwargs = dict(
model=model,
cfg_file=os.path.join(model_name_or_path, "configuration.json"),
train_dataset=train_dataset,
eval_dataset=None,
data_collator=data_collator,
max_epochs=3,
launcher='pytorch',
work_dir="/run/model/ms_out",
cfg_modify_fn=cfg_modify_fn)
# Construct trainer and train
trainer = build_trainer(
name=Trainers.text_generation_trainer, default_args=kwargs)
trainer.train()