Files
modelscope/tests/trainers/test_trainer.py

320 lines
10 KiB
Python
Raw Normal View History

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
from abc import ABCMeta
import json
import numpy as np
import torch
from datasets import Dataset
from torch import nn
from torch.optim import SGD
from torch.optim.lr_scheduler import StepLR
from modelscope.metainfo import Metrics, Trainers
from modelscope.metrics.builder import MetricKeys
from modelscope.msdatasets import MsDataset
from modelscope.trainers import build_trainer
from modelscope.utils.constant import LogKeys, ModeKeys, ModelFile
from modelscope.utils.test_utils import create_dummy_test_dataset, test_level
dummy_dataset_small = create_dummy_test_dataset(
np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20)
dummy_dataset_big = create_dummy_test_dataset(
np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 40)
class DummyModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(5, 4)
self.bn = nn.BatchNorm1d(4)
def forward(self, feat, labels):
x = self.linear(feat)
x = self.bn(x)
loss = torch.sum(x)
return dict(logits=x, loss=loss)
class TrainerTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
super().tearDown()
shutil.rmtree(self.tmp_dir)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_train_0(self):
json_cfg = {
'train': {
'work_dir':
self.tmp_dir,
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1
},
'optimizer': {
'type': 'SGD',
'lr': 0.01,
'options': {
'grad_clip': {
'max_norm': 2.0
}
}
},
'lr_scheduler': {
'type': 'StepLR',
'step_size': 2,
'options': {
'warmup': {
'type': 'LinearWarmup',
'warmup_iters': 2
}
}
},
'hooks': [{
'type': 'CheckpointHook',
'interval': 1
}, {
'type': 'TextLoggerHook',
'interval': 1
}, {
'type': 'IterTimerHook'
}, {
'type': 'EvaluationHook',
'interval': 1
}]
},
'evaluation': {
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1,
'shuffle': False
},
'metrics': [Metrics.seq_cls_metric]
}
}
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
with open(config_path, 'w') as f:
json.dump(json_cfg, f)
2022-08-04 14:07:14 +08:00
trainer_name = Trainers.default
kwargs = dict(
cfg_file=config_path,
model=DummyModel(),
data_collator=None,
train_dataset=dummy_dataset_small,
eval_dataset=dummy_dataset_small,
max_epochs=3)
trainer = build_trainer(trainer_name, kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_train_1(self):
json_cfg = {
'train': {
'work_dir':
self.tmp_dir,
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1
},
'hooks': [{
'type': 'CheckpointHook',
'interval': 1
}, {
'type': 'TextLoggerHook',
'interval': 1
}, {
'type': 'IterTimerHook'
}, {
'type': 'EvaluationHook',
'interval': 1
}]
},
'evaluation': {
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1,
'shuffle': False
},
'metrics': [Metrics.seq_cls_metric]
}
}
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
with open(config_path, 'w') as f:
json.dump(json_cfg, f)
model = DummyModel()
optimmizer = SGD(model.parameters(), lr=0.01)
lr_scheduler = StepLR(optimmizer, 2)
2022-08-04 14:07:14 +08:00
trainer_name = Trainers.default
kwargs = dict(
cfg_file=config_path,
model=model,
data_collator=None,
train_dataset=dummy_dataset_small,
eval_dataset=dummy_dataset_small,
optimizers=(optimmizer, lr_scheduler),
max_epochs=3)
trainer = build_trainer(trainer_name, kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_train_with_default_config(self):
json_cfg = {
'train': {
'work_dir': self.tmp_dir,
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1
},
'hooks': [{
'type': 'EvaluationHook',
'interval': 1
}]
},
'evaluation': {
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1,
'shuffle': False
},
'metrics': [Metrics.seq_cls_metric]
}
}
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
with open(config_path, 'w') as f:
json.dump(json_cfg, f)
model = DummyModel()
optimmizer = SGD(model.parameters(), lr=0.01)
lr_scheduler = StepLR(optimmizer, 2)
2022-08-04 14:07:14 +08:00
trainer_name = Trainers.default
kwargs = dict(
cfg_file=config_path,
model=model,
data_collator=None,
train_dataset=dummy_dataset_big,
eval_dataset=dummy_dataset_small,
optimizers=(optimmizer, lr_scheduler),
max_epochs=3)
trainer = build_trainer(trainer_name, kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
json_file = os.path.join(self.tmp_dir, f'{trainer.timestamp}.log.json')
with open(json_file, 'r') as f:
lines = [i.strip() for i in f.readlines()]
self.assertDictContainsSubset(
{
LogKeys.MODE: ModeKeys.TRAIN,
LogKeys.EPOCH: 1,
LogKeys.ITER: 10,
LogKeys.LR: 0.01
}, json.loads(lines[0]))
self.assertDictContainsSubset(
{
LogKeys.MODE: ModeKeys.TRAIN,
LogKeys.EPOCH: 1,
LogKeys.ITER: 20,
LogKeys.LR: 0.01
}, json.loads(lines[1]))
self.assertDictContainsSubset(
{
LogKeys.MODE: ModeKeys.EVAL,
LogKeys.EPOCH: 1,
LogKeys.ITER: 20
}, json.loads(lines[2]))
self.assertDictContainsSubset(
{
LogKeys.MODE: ModeKeys.TRAIN,
LogKeys.EPOCH: 2,
LogKeys.ITER: 10,
LogKeys.LR: 0.01
}, json.loads(lines[3]))
self.assertDictContainsSubset(
{
LogKeys.MODE: ModeKeys.TRAIN,
LogKeys.EPOCH: 2,
LogKeys.ITER: 20,
LogKeys.LR: 0.01
}, json.loads(lines[4]))
self.assertDictContainsSubset(
{
LogKeys.MODE: ModeKeys.EVAL,
LogKeys.EPOCH: 2,
LogKeys.ITER: 20
}, json.loads(lines[5]))
self.assertDictContainsSubset(
{
LogKeys.MODE: ModeKeys.TRAIN,
LogKeys.EPOCH: 3,
LogKeys.ITER: 10,
LogKeys.LR: 0.001
}, json.loads(lines[6]))
self.assertDictContainsSubset(
{
LogKeys.MODE: ModeKeys.TRAIN,
LogKeys.EPOCH: 3,
LogKeys.ITER: 20,
LogKeys.LR: 0.001
}, json.loads(lines[7]))
self.assertDictContainsSubset(
{
LogKeys.MODE: ModeKeys.EVAL,
LogKeys.EPOCH: 3,
LogKeys.ITER: 20
}, json.loads(lines[8]))
self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
for i in [0, 1, 3, 4, 6, 7]:
self.assertIn(LogKeys.DATA_LOAD_TIME, lines[i])
self.assertIn(LogKeys.ITER_TIME, lines[i])
for i in [2, 5, 8]:
self.assertIn(MetricKeys.ACCURACY, lines[i])
class DummyTrainerTest(unittest.TestCase):
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_dummy(self):
default_args = dict(cfg_file='configs/examples/train.json')
trainer = build_trainer('dummy', default_args)
trainer.train()
trainer.evaluate()
if __name__ == '__main__':
unittest.main()