mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-21 10:39:24 +01:00
210 lines
6.1 KiB
Python
210 lines
6.1 KiB
Python
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||
|
|
import os
|
||
|
|
import shutil
|
||
|
|
import tempfile
|
||
|
|
import unittest
|
||
|
|
from abc import ABCMeta
|
||
|
|
|
||
|
|
import json
|
||
|
|
import torch
|
||
|
|
from torch import nn
|
||
|
|
from torch.optim import SGD
|
||
|
|
from torch.optim.lr_scheduler import StepLR
|
||
|
|
from torch.utils.data import Dataset
|
||
|
|
|
||
|
|
from modelscope.trainers import build_trainer
|
||
|
|
from modelscope.utils.constant import ModelFile
|
||
|
|
from modelscope.utils.test_utils import test_level
|
||
|
|
|
||
|
|
|
||
|
|
class DummyMetric:
|
||
|
|
|
||
|
|
def __call__(self, ground_truth, predict_results):
|
||
|
|
return {'accuracy': 0.5}
|
||
|
|
|
||
|
|
|
||
|
|
class DummyDataset(Dataset, metaclass=ABCMeta):
|
||
|
|
"""Base Dataset
|
||
|
|
"""
|
||
|
|
|
||
|
|
def __len__(self):
|
||
|
|
return 20
|
||
|
|
|
||
|
|
def __getitem__(self, idx):
|
||
|
|
return dict(feat=torch.rand((5, )), label=torch.randint(0, 4, (1, )))
|
||
|
|
|
||
|
|
|
||
|
|
class DummyModel(nn.Module):
|
||
|
|
|
||
|
|
def __init__(self):
|
||
|
|
super().__init__()
|
||
|
|
self.linear = nn.Linear(5, 4)
|
||
|
|
self.bn = nn.BatchNorm1d(4)
|
||
|
|
|
||
|
|
def forward(self, feat, labels):
|
||
|
|
x = self.linear(feat)
|
||
|
|
|
||
|
|
x = self.bn(x)
|
||
|
|
loss = torch.sum(x)
|
||
|
|
return dict(logits=x, loss=loss)
|
||
|
|
|
||
|
|
|
||
|
|
class TrainerTest(unittest.TestCase):
|
||
|
|
|
||
|
|
def setUp(self):
|
||
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
||
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
||
|
|
if not os.path.exists(self.tmp_dir):
|
||
|
|
os.makedirs(self.tmp_dir)
|
||
|
|
|
||
|
|
def tearDown(self):
|
||
|
|
super().tearDown()
|
||
|
|
shutil.rmtree(self.tmp_dir)
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||
|
|
def test_train_0(self):
|
||
|
|
json_cfg = {
|
||
|
|
'train': {
|
||
|
|
'work_dir':
|
||
|
|
self.tmp_dir,
|
||
|
|
'dataloader': {
|
||
|
|
'batch_size_per_gpu': 2,
|
||
|
|
'workers_per_gpu': 1
|
||
|
|
},
|
||
|
|
'optimizer': {
|
||
|
|
'type': 'SGD',
|
||
|
|
'lr': 0.01,
|
||
|
|
'options': {
|
||
|
|
'grad_clip': {
|
||
|
|
'max_norm': 2.0
|
||
|
|
}
|
||
|
|
}
|
||
|
|
},
|
||
|
|
'lr_scheduler': {
|
||
|
|
'type': 'StepLR',
|
||
|
|
'step_size': 2,
|
||
|
|
'options': {
|
||
|
|
'warmup': {
|
||
|
|
'type': 'LinearWarmup',
|
||
|
|
'warmup_iters': 2
|
||
|
|
}
|
||
|
|
}
|
||
|
|
},
|
||
|
|
'hooks': [{
|
||
|
|
'type': 'CheckpointHook',
|
||
|
|
'interval': 1
|
||
|
|
}, {
|
||
|
|
'type': 'TextLoggerHook',
|
||
|
|
'interval': 1
|
||
|
|
}, {
|
||
|
|
'type': 'IterTimerHook'
|
||
|
|
}, {
|
||
|
|
'type': 'EvaluationHook',
|
||
|
|
'interval': 1
|
||
|
|
}]
|
||
|
|
},
|
||
|
|
'evaluation': {
|
||
|
|
'dataloader': {
|
||
|
|
'batch_size_per_gpu': 2,
|
||
|
|
'workers_per_gpu': 1,
|
||
|
|
'shuffle': False
|
||
|
|
},
|
||
|
|
'metrics': ['seq_cls_metric']
|
||
|
|
}
|
||
|
|
}
|
||
|
|
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
|
||
|
|
with open(config_path, 'w') as f:
|
||
|
|
json.dump(json_cfg, f)
|
||
|
|
|
||
|
|
trainer_name = 'EpochBasedTrainer'
|
||
|
|
kwargs = dict(
|
||
|
|
cfg_file=config_path,
|
||
|
|
model=DummyModel(),
|
||
|
|
data_collator=None,
|
||
|
|
train_dataset=DummyDataset(),
|
||
|
|
eval_dataset=DummyDataset(),
|
||
|
|
max_epochs=3)
|
||
|
|
|
||
|
|
trainer = build_trainer(trainer_name, kwargs)
|
||
|
|
trainer.train()
|
||
|
|
results_files = os.listdir(self.tmp_dir)
|
||
|
|
|
||
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
||
|
|
self.assertIn('epoch_1.pth', results_files)
|
||
|
|
self.assertIn('epoch_2.pth', results_files)
|
||
|
|
self.assertIn('epoch_3.pth', results_files)
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||
|
|
def test_train_1(self):
|
||
|
|
json_cfg = {
|
||
|
|
'train': {
|
||
|
|
'work_dir':
|
||
|
|
self.tmp_dir,
|
||
|
|
'dataloader': {
|
||
|
|
'batch_size_per_gpu': 2,
|
||
|
|
'workers_per_gpu': 1
|
||
|
|
},
|
||
|
|
'hooks': [{
|
||
|
|
'type': 'CheckpointHook',
|
||
|
|
'interval': 1
|
||
|
|
}, {
|
||
|
|
'type': 'TextLoggerHook',
|
||
|
|
'interval': 1
|
||
|
|
}, {
|
||
|
|
'type': 'IterTimerHook'
|
||
|
|
}, {
|
||
|
|
'type': 'EvaluationHook',
|
||
|
|
'interval': 1
|
||
|
|
}]
|
||
|
|
},
|
||
|
|
'evaluation': {
|
||
|
|
'dataloader': {
|
||
|
|
'batch_size_per_gpu': 2,
|
||
|
|
'workers_per_gpu': 1,
|
||
|
|
'shuffle': False
|
||
|
|
},
|
||
|
|
'metrics': ['seq_cls_metric']
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
config_path = os.path.join(self.tmp_dir, 'config.json')
|
||
|
|
with open(config_path, 'w') as f:
|
||
|
|
json.dump(json_cfg, f)
|
||
|
|
|
||
|
|
model = DummyModel()
|
||
|
|
optimmizer = SGD(model.parameters(), lr=0.01)
|
||
|
|
lr_scheduler = StepLR(optimmizer, 2)
|
||
|
|
trainer_name = 'EpochBasedTrainer'
|
||
|
|
kwargs = dict(
|
||
|
|
cfg_file=config_path,
|
||
|
|
model=model,
|
||
|
|
data_collator=None,
|
||
|
|
train_dataset=DummyDataset(),
|
||
|
|
eval_dataset=DummyDataset(),
|
||
|
|
optimizers=(optimmizer, lr_scheduler),
|
||
|
|
max_epochs=3)
|
||
|
|
|
||
|
|
trainer = build_trainer(trainer_name, kwargs)
|
||
|
|
trainer.train()
|
||
|
|
results_files = os.listdir(self.tmp_dir)
|
||
|
|
|
||
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
||
|
|
self.assertIn('epoch_1.pth', results_files)
|
||
|
|
self.assertIn('epoch_2.pth', results_files)
|
||
|
|
self.assertIn('epoch_3.pth', results_files)
|
||
|
|
|
||
|
|
|
||
|
|
class DummyTrainerTest(unittest.TestCase):
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||
|
|
def test_dummy(self):
|
||
|
|
default_args = dict(cfg_file='configs/examples/train.json')
|
||
|
|
trainer = build_trainer('dummy', default_args)
|
||
|
|
|
||
|
|
trainer.train()
|
||
|
|
trainer.evaluate()
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == '__main__':
|
||
|
|
unittest.main()
|