mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 16:27:45 +01:00
85 lines
3.1 KiB
Python
85 lines
3.1 KiB
Python
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||
|
|
import os.path as osp
|
||
|
|
import tempfile
|
||
|
|
import unittest
|
||
|
|
|
||
|
|
import cv2
|
||
|
|
import numpy as np
|
||
|
|
|
||
|
|
from modelscope.fileio import File
|
||
|
|
from modelscope.msdatasets import MsDataset
|
||
|
|
from modelscope.outputs import OutputKeys
|
||
|
|
from modelscope.pipelines import pipeline
|
||
|
|
from modelscope.utils.constant import ModelFile, Tasks
|
||
|
|
from modelscope.utils.test_utils import test_level
|
||
|
|
|
||
|
|
|
||
|
|
class FaceDetectionTest(unittest.TestCase):
|
||
|
|
|
||
|
|
def setUp(self) -> None:
|
||
|
|
self.model_id = 'damo/cv_resnet_facedetection_scrfd10gkps'
|
||
|
|
|
||
|
|
def show_result(self, img_path, bboxes, kpss, scores):
|
||
|
|
bboxes = np.array(bboxes)
|
||
|
|
kpss = np.array(kpss)
|
||
|
|
scores = np.array(scores)
|
||
|
|
img = cv2.imread(img_path)
|
||
|
|
assert img is not None, f"Can't read img: {img_path}"
|
||
|
|
for i in range(len(scores)):
|
||
|
|
bbox = bboxes[i].astype(np.int32)
|
||
|
|
kps = kpss[i].reshape(-1, 2).astype(np.int32)
|
||
|
|
score = scores[i]
|
||
|
|
x1, y1, x2, y2 = bbox
|
||
|
|
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
||
|
|
for kp in kps:
|
||
|
|
cv2.circle(img, tuple(kp), 1, (0, 0, 255), 1)
|
||
|
|
cv2.putText(
|
||
|
|
img,
|
||
|
|
f'{score:.2f}', (x1, y2),
|
||
|
|
1,
|
||
|
|
1.0, (0, 255, 0),
|
||
|
|
thickness=1,
|
||
|
|
lineType=8)
|
||
|
|
cv2.imwrite('result.png', img)
|
||
|
|
print(
|
||
|
|
f'Found {len(scores)} faces, output written to {osp.abspath("result.png")}'
|
||
|
|
)
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||
|
|
def test_run_with_dataset(self):
|
||
|
|
input_location = ['data/test/images/face_detection.png']
|
||
|
|
# alternatively:
|
||
|
|
# input_location = '/dir/to/images'
|
||
|
|
|
||
|
|
dataset = MsDataset.load(input_location, target='image')
|
||
|
|
face_detection = pipeline(Tasks.face_detection, model=self.model_id)
|
||
|
|
# note that for dataset output, the inference-output is a Generator that can be iterated.
|
||
|
|
result = face_detection(dataset)
|
||
|
|
result = next(result)
|
||
|
|
self.show_result(input_location[0], result[OutputKeys.BOXES],
|
||
|
|
result[OutputKeys.KEYPOINTS],
|
||
|
|
result[OutputKeys.SCORES])
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
|
|
def test_run_modelhub(self):
|
||
|
|
face_detection = pipeline(Tasks.face_detection, model=self.model_id)
|
||
|
|
img_path = 'data/test/images/face_detection.png'
|
||
|
|
|
||
|
|
result = face_detection(img_path)
|
||
|
|
self.show_result(img_path, result[OutputKeys.BOXES],
|
||
|
|
result[OutputKeys.KEYPOINTS],
|
||
|
|
result[OutputKeys.SCORES])
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
|
|
def test_run_modelhub_default_model(self):
|
||
|
|
face_detection = pipeline(Tasks.face_detection)
|
||
|
|
img_path = 'data/test/images/face_detection.png'
|
||
|
|
result = face_detection(img_path)
|
||
|
|
self.show_result(img_path, result[OutputKeys.BOXES],
|
||
|
|
result[OutputKeys.KEYPOINTS],
|
||
|
|
result[OutputKeys.SCORES])
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == '__main__':
|
||
|
|
unittest.main()
|